供电技术心得体会

时间:2019-05-14 14:13:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《供电技术心得体会》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《供电技术心得体会》。

第一篇:供电技术心得体会

心得体会

通过这次课程设计,使我得到了很多的经验,并且巩固和加深以及扩大了专业知识面,锻炼综合及灵活运用所学知识的能力,正确使用技术资料的能力。知识系统化能力得到提高,设计过程中运用了很多的知识,因此如何将知识系统化就成了关键。如本设计中用到了工厂供电的绝大多数的基础理论和设计方案,因此在设计过程中侧重了知识系统化能力的培养,为今后的工作和学习打下了很好的理论基础。懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。从小事做起,从身边做起,此次的课程设计是根据煤矿企业的变电所的电力主接线而设计的,但是,这并不妨碍对知识的融会贯通,只有对知识的深刻地理解与认识,才能应对以后千变万化的工作岗位上遇到的艰难险阻。

虽然这次课程设计我还有很多的不会,但是通过对课本知识的深刻的解读与自己的认识,我还是没有放弃,而是更加的努力的去学习知识,也许这次课程设计并不算什么,它只是一个开始,它开启了我们未来工作中的从事的各种设计的种种。我们是电专业的,此生必定与其结下不解的缘,我会更加的去学习,去了解,去爱上这门学科,一生一世。

第二篇:风电技术清单

附件:风电工程主要技术文件清单

1.综合性标准或文件:

1.1 建设工程质量管理条例 中华人民共和国国务院令第279 号; 1.2 工程质量监督工作导则 建质〔2003〕162 号; 1.3 电力建设工程质量监督规定(暂行)电建质监〔2005〕52 号; 1.4 电力建设文明施工规定及考核办法 电建〔1995〕543 号; 1.5 电力建设工程施工技术管理导则 国电电源〔2002〕896 号; 1.6 实施工程建设标准强制性监督规定(2000)建设部令81号 1.7 工程建设标准强制性条文(房屋建筑部分)建标〔2002〕219 号; 1.8 工程建设标准强制性条文(电力工程部分)建标[2006]102 号; 1.9 电力建设安全健康与环境管理工作规定 国电电源〔2002〕49 号; 1.10 电力建设安全工作规程(变电所部分)DL5009.3-2005 1.11 电力建设安全工作规程(架空电力线路部分)DL5009.2-2004 1.12 测绘资质管理规定 国测法字〔2004〕4 号; 1.13 建设工程勘察设计资质管理规定(2007)建设部令160 号; 1.14 建筑业企业资质管理规定(2007)建设部令159 号; 1.15 工程建设施工企业管理规范

GB/T50430-2007 1.16 建设工程勘察设计管理条例

国务院令第293号 1.17 工程建设勘察企业管理规范

GB/T50380-2006 1.18 工程建设设计企业管理规范

GB/T50379-2006 1.19 关于加强测绘质量管理的若干意见 国测国字[2008]8号 1.20 建设项目工程总承包管理规范

GB/T50358-2005 1.21建筑施工现场环境与卫生标准 JGJ 146 — 2004 1.22 施工现场临时用电安全技术规范 JGJ 46 — 2005 1.23 电力工程调试能力资格管理办法(2010版)中电建协〔2010〕51号 1.24建筑施工特种作业人员管理规定 建质[2008]75号 1.25 工程监理企业资质管理规定(2007)建设部令158号; 1.26 建设工程项目管理规范 GB/T50326-2006; 1.27 建设工程监理规范 GB 50319-2000; 1.28 国家重大建设项目文件归档要求与档案整理规范 DA/T28-2002;

1.29 建设工程文件归档整理规范 GB/T50328-2001; 1.30 科学技术档案案卷构成的一般要求)GB/T 11822—2008 1.31 电子文件归档管理规范 GB/T 11894—2002 1.32 照片档案管理规范

GB/T 11821—2002 1.33 重大建设项目档案验收办法

档发〔2006〕2号

2.风电工程专用标准

2.1 风电场工程可行性研究报告设计概算编制办法及计算标准 FD001—2007 2.2 风电场工程等级划分及安全标准(试行)FD002—2007 2.3 风电机组地基基础设计规定(试行)FD003—2007 2.4 风电场工程概算定额 FD004—2007 2.5 风力发电厂设计技术规范 DL/T 5383—2007 2.6 风力发电工程施工组织设计规范 DL/T 5384—2007 2.7 风力发电场项目建设工程验收规程 DL /T 5191—2004 2.8 风力发电机组验收规范 GB/T 20319—2006 2.9 风力发电场运行规程 DL/T 666-1999 2.10风力发电场安全规程 DL 796-2001 2.11风力发电场检修规程 DL/T 797-2012

2.12风力发电场项目可行性研究报告编制规程 DL/T 5067-1996 2.13风力发电机组 设计要求 JB/T 10300-2001 2.14风力发电机组 安全要求 GB 18451.1-2012 2.15风电场风能资源测量方法 GB/T 18709-2002 2.16风电场风能资源评估方法 GB/T 18710-2002 2.17风力发电机组装配和安装规范 GB/T 19568-2004 2.18风电场场址工程地质勘察技术规定 发改能源[2003]1403号 2.19风电特许权项目前期工作管理办法 发改能源[2003]1403号 2.20风电场工程前期工作管理暂行办法 发改办能源[2005]899号 2.21风电场工程建设用地和环境保护管理暂行办法 发改能源[2005]1511号 2.22风电工程安全设施竣工验收办法 水电规办[2008]001号

2.23风力发电机组 第1部分:通用技术条件 GB/T 19960.1-2005 2.24风力发电机组 第2部分:通用试验方法 GB/T 19960.2-2005 2.25风力发电机组 电能质量测量和评估方法 GB/T 20320-2006 2.26风力发电机组 异步发电机 第1部分:技术条件 GB/T 19071.1-2003 2.27风力发电机组 异步发电机 第2部分:试验方法 GB/T 19071.2-2003 2.28风力发电机组 塔架 GB/T 19072-2010 2.29风力发电机组 功率特性试验 GB/T 18451.2-2012 2.30风力发电机组 电工术语 GB/T 2900.53-2001 2.31风力发电机组 控制器 技术条件 GB/T 19069-2003 2.32风力发电机组 控制器 试验方法 GB/T 19070-2003 2.33风力发电机组 齿轮箱 GB/T 19073-2008 2.34风力发电机组 风轮叶片 JB/T 10194-2000

2.35风力发电机组 偏航系统 第1部分:技术条件 JB/T 10425.1-2004 2.36风力发电机组 偏航系统 第2部分:试验方法 JB/T 10425.2-2004 2.37风力发电机组 制动系统 第1部分:技术条件 JB/T 10426.1-2004 2.38风力发电机组 制动系统 第2部分:试验方法 JB/T 10426.2-2004 2.39风力发电机组 一般液压系统 JB/T 10427-2004 2.40风电厂接入电力系统技术规定 GB/Z 19963-2011 3.电气标准

3.1 建筑电气工程施工质量验收规范 GB 50303-2002 3.2 电气设备交接试验标准 GB 50150-2006 3.3 电气装置安装工程电缆线路施工及验收规范 GB 50168-2006 3.4 电气装置安装工程接地装置施工及验收规范 GB 50169-2006 3.5 电气装置安装工程盘、柜及二次回路结线施工及验收规范 GB 50171-2012 3.6 电气装置安装工程35kV及以下架空电力线路施工及验收规范 GB 50173-92 3.7 电气装置安装工程低压电器施工及验收规范 GB 50254-96 3.8 电气装置安装工程高压电器施工与验收规范 GBJl47-2010 3.9 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GBJ148-2010 3.10电气装置安装工程母线装置施工及验收规范 GBJl49-2010 3.11 110~500kV架空电力线路施工及验收规范 GBJ 50233-2005 3.12 110~500kV架空电力线路工程施工质量及评定规程 DL/T 5168-2002 3.13电力建设施工及验收技术规范 DL/T 5007 3.14箱式变电站技术条件 DL/T 537-2002 3.15变电所设计技术规程 DL/T 5103-2012 3.16电气装置安装工程质量检验及评定规程

第1部分:通则 DL/T5161.1-2002 第2部分:高压电气施工质量检验 DL/T5161.2-2002 第3部分:电力变压器、油浸电抗器、互感器施工质量检验 DL/T5161.3-2002 第4部分:母线装置施工质量检验 DL/T5161.4-2002 第5部分:电缆线路施工质量检验 DL/T5161.5-2002 第6部分:接地装置施工质量检验 DL/T5161.6-2002 第8部分:盘、柜及二次回路接线施工质量检验 DL/T5161.8-2002 第9部分:蓄电池施工质量检验 DL/T5161.9-2002 第10部分:35kV及以下架空电力线路施工质量检验 DL/T5161.10-2002 第12部分:低压电器施工质量检验 DL/T5161.12-2002 第13部分:电力变流设备施工质量检验 DL/T5161.13-2002 第14部分:起重机电气装置施工质量检验 DL/T5161.14-2002

第16部分:1kV及以下配线工程施工质量检验 DL/T5161.16-2002 第17部分:电气照明装置施工质量检验 DL/T5161.17-2002 3.17 110kV及以上送变电工程启动及竣工验收规程 DL/T782-2001 3.18 国家电网公司十八项电网重大反事故措施 国网生技[2005]400号 3.19 电气装置安装工程1kV及以下配线工程施工及验收规范 GB50303-2002 3.20 火力发电厂与变电站设计防火规范 GB50229-2006 3.21 建筑物防雷装置检测技术规范 GB/T21431-2008 3.22 用电安全导则 GBT 13869-2008 3.23 35kV-110kV变电所设计规范 GB50059-2011 3.24 66kV及以下架空电力线路设计规范 GB 50061-2010 4.建筑工程标准

4.1 建筑工程施工质量验收统一标准 GB 50300-2001 4.2 电力建设施工质量验收及评定规程第1 部分:土建工程 DL/T5210.1-2005 4.3 110kV-1000kV变电站、换流站

土建工程施工质量检验及评定标准 Q/GDW 183-2008 4.4 建筑工程冬期施工规程 JGJ 104 —2011 4.5 工程测量规范 GB50026—2007 4.6 建筑变形测量规范 JGJ 8-2007 4.7 湿陷性黄土地区建筑规范

GB 50025-2004 4.8 电力工程地基处理技术规程 DL/T 5024—2005 4.9 建筑桩基技术规范 JGJ 94-2008 4.10 建筑桩基检测技术规范 JGJ 106-2003 4.11 混凝土结构设计规范 GB50010-2010 4.12 建筑地基基础工程施工质量验收规范 GB50202-2002; 4.13 建筑地基处理技术规范 JGJ79-2002; 4.14 混凝土结构工程施工质量验收规范 GB50204-2011; 4.15 地下防水工程质量验收规范 GB50208-2011; 4.16 混凝土质量控制标准 GB 50164-2011;4.17 混凝土强度检验评定标准 GBJ50107-2010;4.18 清水混凝土应用技术规程 JGJ 169-2009 4.19.钢 筋 焊 接 验 收 规 程 JGJ 18— 2012 4.20 钢筋机械连接通用技术规程 JGJ 107--2010 4.21 钢结构工程施工质量验收规范 GB 50205—2001 4.22 建筑钢结构焊接技术规程 JGJ 81—2002 4.23 钢结构用抗剪型高强度连接副及技术条件 GB/T3632-2008

4.24 建筑防腐工程施工及验收规范 GB50212-2002; 4.25建筑防腐蚀工程施工质量验收规范

GB50224-2010 4.25 砌体结构工程设计规范 GB 50003 -2011 4.26 砌体结构工程施工质量验收规范 GB 50203—2011 4.27多孔砖砌体结构技术规范 JGJ 137 -2001 4.28蒸压加气混凝土建筑应用技术规程 JGJ/ T17-2008 4.29屋面工程质量验收规范 GB 50207—2012 4.30屋面工程技术规范 GB 503454.31建筑地面工程施工质量验收规范 GB 50209 4.32建筑装饰装修工程质量验收规范 GB 50210 4.33 电力建设房屋工程质量通病防治工作规定 4.34 建设工程质量检测管理办法(2005)4.35 给水排水管道工程施工及验收规范 GB 502424.36 通风与空调工程施工质量验收规范 GB 502434.37 高耸结构设计规范 GBJ 501354.38建筑地基基础设计规范 GB 50007-2011 5.相关材料标准

5.1 混凝土结构用成型钢筋

5.2钢筋混凝土用钢 第1部分:热轧光圆钢筋

5.3钢筋混凝土用钢 第2部分:热轧带肋钢筋

5.4钢筋混凝土用钢 第3部分: 钢筋焊接网

5.5通用硅酸盐水泥

5.6混凝土用水标准

5.7普通混凝土用砂、石质量标准试验方法

5.8建筑用砂

5.9建筑用卵石、碎石 GB/T146855.10用于水泥和混凝土中的粉煤灰 GB 15965.11粉煤灰混凝土应用技术规范 GBJ 1465.12用于水泥和混凝土中的粉状高炉矿渣 GB 180465.13高强高性能混凝土用矿物外加剂 GB/T187365.14混凝土外加剂 GB 8076 5.15混凝土外加剂应用技术规范 GB 501195.16混凝土泵送剂 JC 4735.17混凝土防冻剂 JC 4755.18混凝土膨胀剂 JC 476

—2012 —2010 —2001 电建质监〔2004〕18 号建设部令141号 -2008 -2002 -2006

JG/T 226-2008

GB 1499.1-2008

GB 1499.2-2007

GB 1499.3-2002

GB 175 - 2007

JGJ 63 -2006

JGJ 52-2006

GB/T14684-2001 -2001 -2005 -1990 —2008 —2002 -2008 -2003 -2001 -2004 -2001

5.19砂浆.混凝土防水剂 JC 474-2008 5.20混凝土外加剂中释放氨的限量 GB 18588 —2001 5.21水泥基灌浆材料应用技术规程

GB/T50448-2008 5.22水泥基灌浆材料 JC/T 986 —2005 5.23建筑用钢结构防腐涂料 JG/T 224 -2007 5.24钢结构防火涂料 GB 14907 -2002 5.25电力工程地下金属构筑物防腐技术导则

DL/T5394-2007 6 本工程全部设计、设备、施工、调试的技术文件 6.1 风电机组安装调试工程验收文件 6.1.1风电机组技术说明书;

6.1.2风电机组订货合同中的有关技术性能指标要求; 6.1.3风电机组塔架及其基础设计图纸与有关技术要求。6.2 升压站设备安装调试工程验收文件 6.2.1设备技术性能说明书; 6.2.2设备订货合同及技术条件; 6.2.3电气施工设计图纸及资料。6.3 中控楼和升压站建筑等工程文件 6.3.1设计图纸及技术要求; 6.3.2施工合同及有关技术说明。6.4 场内电力线路工程验收文件

6.4.1架空电力线路勘测设计、施工图纸及其技术条件; 6.4.2施工合同。6.5 交通工程验收文件

6.5.1公路施工设计图纸及有关技术条件; 6.5.2施工合同。

第三篇:电加热炉技术协议

RT2-80-8型 台车式电阻炉 技术协议 甲方: 乙方:

(甲方)与——————————有限公司(乙方)经过友好协商,甲方决定委托乙方设计制造《RT2-80-8型台车式电阻炉》壹台,并达成如下协议: 用途

金属热处理。

二、主要技术参数

1.额定加热功率:

80KW 2.额定工作温度:

800℃

3.工作电压、频率:

380V±5

50HZ 4.控制电压:

220V±5 5.控温精度:±2℃ 6.温度均匀性:±10℃

7.控温区:

2区 8.工作区尺寸(长×宽×高):

1800×1200×1000mm 9.最大装炉量:≤2000kg 10.空炉升温时间:≤2h(室温20℃-800℃)11.炉壳表面温升:≤40℃

12.设备质量:

4500 kg 结构简介 设备组成

该设备由炉壳、炉衬、台车及其驱动机构、加热元件、炉底板、炉门及其升降机构、电气控制系统等组成。炉壳

采用Q235A、6mm钢板与型钢焊接成形,面板选用16mm钢板制作,面板上设有收缩缝,可防止面板受热变形,整个炉壳具有结构坚固耐用而且美观的效果。炉衬

采用高铝耐火砖与硅酸铝陶瓷纤维材料组成的复合结构,炉底、炉门口、采用耐火材料砌筑,其余部位用高铝陶瓷纤维板和折叠块制作,高铝耐火砖的砌筑浆料采用生熟料+粘结剂。可提高砖缝强度,从而提高整体炉衬高温机械强度和使用寿命,能够承受炉子荷重和热应力,在高温状态下保持体积稳定和适应温度急变的热振稳定性能,根据筑炉规范,砖缝厚度≤1~2mm,并合理预留膨胀缝。砌好的炉墙具备表面平整,砖缝整齐,所有砖缝相互对错砌筑,墙体颜色一致。整体结构具有质量轻、保温性能好、热效率高等优点,炉壳外表温度≤40℃。炉衬的砌筑完全按照筑炉规范及相应的标准执行,炉衬使用寿命≥2年。电热元件

采用牌号为OCr25AL5高电阻合金丝绕制成罗圈状电阻丝并用电桥检测其电阻,精确到1/1000Ω。

加热元件分布在两侧墙和炉底。

引出帮与电阻丝的连接采用钻孔套入焊接法,减小连接电阻,提高加热元件使用寿命。电热元件的布置按照炉底密、两侧墙较疏的原则分布,有利于提高温度均匀度。加热元件绕制后经退火处理,去除绕制产生的应力。电阻丝寿命≥1年。炉底板

炉底板采用牌号为CrMnN的耐热钢铸件,热强度高抗撞击。炉门及其升降机构

炉门外壳用Q235A的钢板焊接而成;

炉门内衬用高铝陶瓷纤维板和折叠块制作;

炉门与炉口密封采用斜锲轮压紧机构自动密封,即炉门两侧分别装有大、小导轮各一对,炉体的炉口两侧各有一根带斜锲的导轨,炉门两侧的导轮沿导轨上下运行,当炉门关闭到位时,导轮进入导轨斜锲内将炉门与炉口自动压紧密闭。

炉门升降驱动机构由带电磁制动器电动机和摆线针轮减速器组成,通过链传动驱动炉门上下运行,炉门运行设有上下限位开关。台车及其驱动机构

台车壳体用Q235A钢板和型钢焊接而成

台车内衬的面砖和电阻丝搁砖用高铝耐火砖砌筑,底部用轻质耐火砖和硅藻土保温砖砌筑,筑炉规范与炉体内衬相同。

采用专用密封机构使台车与炉体保持密封,阻止炉内热量外溢。台车驱动机构由带电磁制动器电动机和蜗轮减速器组成,通过三角皮带传动和链传动驱动台车进出炉膛运行,台车运行设有进出限位开关。电气控制

8.1电控柜采用2mm厚的冷轧钢板制作,内外表面喷电脑漆,其面板装有电流表、电压表、温控表、温度记录仪、定时器及控制开关和指示灯。

8.2温度控制按炉膛前后分二区控制,主回路采用双向可控硅模块过零调功触发,可控硅采用风冷形式,设有过载、过热及过流保护等功能。

8.3控制仪表主要由日本岛田系列数显式智能型温控仪对炉膛加热区实现PID调节控制,具有多量程输入,温度任意设定和超温报警功能。

8.4炉门开关与加热控制电气连锁,当炉门离开下限位,加热自动关闭,反之,只有当炉门关闭到位时,加热才能启动。炉门与台车运行有连锁控制,炉门开足,台车才能启动,台车进炉膛到位,炉门才能启动。

8.5电气控制系统设有电源总闸,加热主回路设有空气开关,在可控硅前设有快速熔断器作为短路、过载、过流保护、超温自动切断加热主回路电源。8.6 主要电气元件选用施耐德或国内知名产品。8.7 电控柜设计和制造符合国际电工标准(IEC),仪表、电气元件和计量单位均符合国际单位(SI)标准。

8.8 炉温检测:选用二支K分度号的镍铬-镍硅电偶设置在前后工 作区内测控炉内温度。

四、成套供应范围

1.RT2-80-8型台车式电阻炉(包括台车)

1台 2.电气控制柜

套 3.18kg/m轻轨

6m×2根 3.现场二次接线材料

1套 4.产品说明书:

1份

五、交货周期 合同生效之日起,50天内交付使用。

六、安装调试

乙方负责设备在甲方现场的安装调试,乙方给予积极的配合。产品的工艺调试由甲方负责,乙方给予配合。

七、人员培训及售后服务

1.设备安装调试时乙方技术人员负责培训甲方的操作人员及维修人员; 2.设备质保期为壹年;

3.在质保期内非人为因果引起的设备故障,由乙方免费修复;

4.质保期过后,乙方继续为甲方做好服务工作,确保设备正常使用。甲方:签字:

第四篇:技术作图总结电

一.火灾应急照明和疏散指示标志

1.高层建筑的下列部位应设置应急照明:

1)楼梯间、防烟楼梯间前室、消防电梯间及其前室、合用前室和避难层(间)。

2)配电室、消防控制室、消防水泵房、防烟排烟机房、供消防用电的蓄电池室、自备发电机房、电话总机房以及发生火灾时仍需坚持工作的其它房间。

3)观众厅、展览厅、多功能厅、餐厅和商业营业厅等人员密集的场所。

4)公共建筑内的疏散走道和居住建筑内走道长度超过20m的内走道。人防工程不宜大于10m 2.疏散用的应急照明,其地面最低照度不应低于0.5lx。

消防控制室、消防水泵房、防烟排烟机房、配电室和自备发电机房、电话总机房以及发生火灾时仍需 坚持工作的其它房间的应急照明,仍应保证正常照明的照度。

3.除二类居住建筑外,高层建筑的疏散走道和安全出口处应设灯光疏散指示标志。

4.疏散应急照明灯宜设在墙面上或顶棚上。安全出口标志宜设在出口的顶部;疏散走道的指示标志宜设在疏散走道及其转角处距地面1.OOm以下的墙面上。走道疏散标志灯的间距不应大于20m。5.应急照明和疏散指示标志,可采用蓄电池作备用电源,且连续供电时间不应少于20min;高度超过1OOm的高层建筑连续供电时间不应少于30min。

二.安全出口标志灯布置

1.设置在建筑物通向室外的出口和应急出口处;

2.多层、高层建筑各楼层楼梯间、消防电梯的前室的出口处; 3.公共建筑中人员聚集的观众厅、会堂、比赛馆、展览厅等通向疏散通道或前厅、侧厅、休息厅的出口处。

三.常用光源适用场所

1.白炽灯:1).要求照度不很高的场所

2).局部照明、应急照明

3).要求频闪效应小或开关频繁的地方

4).避免气体放电灯对无线电或测试设备干扰的场所 5).需要调光的场所

高度较低的房间、仓库、办公室、礼堂、宿舍、次要道路、图书馆等

2.卤钨灯:1).照度要求较高,显色性要好,且无振动的场所

2).要求频闪效应小的场所 3).需要调光的场所

礼堂、体育馆等

3.荧光灯1).悬挂高度较低,又需要照度较高的场所

2).需要正确识别色彩的场所

办公室、学校等

4.荧光高压汞灯照度要求高,但对光色无特殊要求的场所

道路照明、广场照明

5.金属卤化物灯房子高大,要求照度较高、光色较好的场所

体育馆、礼堂等

6.高压钠灯1).要求照度高,但对光色无要求场所

2).多烟尘场所

道路照明、露天场地等

四.常用色表色温适用场所

暖光源:(>3300K):居室、餐厅、宴会厅、多功能厅、四季厅、(室内花园)、酒吧、咖啡厅、重点陈列厅 中间光源:(3300-5300)教室、办公室、会议室、阅览室、一般营业厅、普通餐厅、一般休息室、洗衣房 冷光源:(>5300):设计室、计算机房 围棋台面

五.办公建筑照明照度标准值

设计室、高档办公用500lx,资料、档案200lx,其余办公300lx 六.住宅建筑电源插座要求

1.《住宅设计规范》电源插座的数量:

1).卧室、厨房:一个单相三线和一个单相二线的插座两组 2).起居室(厅):一个单相三线和一个单相二线的插座三组

3).卫生间:防溅水型一个单相三线和一个单相二线的组合插座一组

4).布置洗衣机、冰箱、排气机械和空调器等处:专用单相三线插座各一个

2.住宅的空调电源插座、电源插座与照明,应分路设计;厨房电源插座和卫生间电源插座宜设置独立回路 七.火灾应急广播扬声器的设置

1).民用建筑内扬声器应设置在走道和大厅等公共场所。

2).其数量应能保证从一个防火分区内的任何部位到最近一个扬声器的距离不大于25m。

走道内最后一个扬声器至走道末端的距离不应大于12.5m。

第五篇:电生理基本技术

电生理基本技术

一电刺激。

二生物放大器正确选择,植物性神经冲动幅度多为50-100μV。不同组织,应采用不同的参 数。如 ECG:振幅0.1-2mV,灵敏度0.5-1mV,时间常数0.1-1.0s,高频滤波1KHz 植物性神经冲动:振幅50-150μV,灵敏度25-100μV,时间常数0.01-0.1s,高频滤波3-5KHz 中枢神经元单位放电振幅100-300μV, 灵敏度50-100μV,时间常数0.01-0.1s,高频滤波5-10KHz

三玻璃微电极

常用尖端0.5-5μm,向细胞内插入时,需小于0.5μm(细胞直径的1/10~1/100),且尖端的倾斜度应相当缓和,一般微电极可分为金属微电极和玻璃微电极两类。

金属微电极,现多用镀铂钨丝电极(platinum-plated tungsten electrode),在钨丝上镀铂,可极大改善电极的电学特性,噪声可大大降低,加之机械强度大,适合长期体外记录(paré D,Gaudreau H.Projection cells and interneurons of the lateral and basolateral amygdala: distinct firing patterns and differential relation to the thera and delta rhythms in conscious cats.J Neursci, 1996,16(10):3334-3350 现要也常用镀银碳纤维电极。玻璃微电极记录易受机械位移的影响,加之尖端的电解质会漏出或堵塞,不适合半小时以上的长时间记录,玻璃微电极可分单管和多管微电极。

毛坯管在国外多用Pyrex管,国内多用GG-17和95料玻管。细胞外记录多采用外径1.5-2mm玻璃,细胞内记录则采用外径1mm细玻管,内外径之比约为2:3或5:6,长6-8cm。拉制前必须经过清洁处理。

清洁液:用等量的(250ml)王水(可反复应用)。一般毛坯管捆成把放入清洁液中1-2h,取出自来水冲洗20-30min,再放入无水酒精中洗涤,再放入盛满蒸馏水烧杯中加热煮沸10min,倒去蒸馏水,再换新蒸馏水反复3次,再放入烤箱中烤干,备用,切不可用市售的洗涤剂,以防降低电极充灌液的表面张力而影响冲灌。

充灌液常用3mol/L KCl,为避免Cl-扩散,也可用2mol/L醋酸钾或柠檬酸钾充灌,也有人用 0.5-1mol/L NaCl(低浓度)充灌可降低噪音。细胞外记录时,最后再用3-4mol/L NaCl +2%旁 胺天蓝溶液定位。在膜片钳中还常加钙螯合剂,如EGTA。阻抗与不同组织相关。

四电生理实验中噪声和干扰的形成和排除。(一)来源。

1干扰信号与生物电生理信号的鉴别。准确区分生物电信号与干扰的伪迹是电生理实验的先决条件。

2来源。主要有三个方面

其一。物理性干扰。1)静电和电磁的干扰实验室附近高压电,室内日光灯可产生50Hz的静电干扰,尤其是交流电,尤其是50Hz频率干扰最大(电子设备为50Hz)。其特点是幅度大,波形规则。

2)噪声干扰电子元件本身产生杂乱无章电压和电流称噪声,一般与放大器内部元件的质量与性能有关。

其二。接地不良。1)地线电阻应小。2)仪器故障。产生漏电电流,在地线上形成电位差,产生干扰。3)地线行走过程中打圈,形成线圈,易接受电场和磁场的干扰。4)各仪器设备应采用一点接地的方式,若采用多点接地,形成大地回路,也会引起干扰。5)地线过长与电源线形成交流环路。6)误用市电三孔中性线作为大地线(中性线上有4-5A电流)。

其三。生理性干扰。1)大脑电活动时,眨眼、眼球运动均对脑电具有干扰作用。2)实验中环境温度过低,动物寒战、抖动,引起肌电的发放而干扰记录,或因呼吸运动引起记录部位机械位移引起干扰信号。3)心电干扰,频率与心电一致。(二)排除。

1物理性干扰。1)屏蔽法用于低频电和静电干扰,屏蔽线分布电容较大,线与线之间不可平行排列,更不可为了美观而将多线扎在一起,这会加大分布电容,易偶合高频干扰噪声。2)远离法。3)改变位置法。依电流方向相反,产生反向磁场的原理,改变各个仪器的位置或放大器输入的方位,会使干扰磁场抵消,微电极放大器探头阻抗高,易引入干扰,实验前可反复调整其方向和位置。4)微电极记录时尽量减少微电极本身的阻抗,减少输入阻抗及干扰信号在这个阻抗上形成干扰电压降,微电极到探头的连线<5cm。5)用监听器监听噪声,以便及时排除。

2仪器质量,尽量改进。接地不良。地线应尽量短粗,不能与电源线平行或打圈,不 要接在电源线的中性线 上,地线单独埋设,埋置处应较潮湿,附近无大型变压电动机,并在坑内加些食盐。4检查各仪器 是否漏电。

5慢生物电变化时用乏极化电极,实验对象宜安静,勿受振动。

(三)刺激伪迹过大及防止。1)尽量减少刺激脉冲的波宽和强度。2)在动物体或标本上,尽量延长刺激部位 的距离,在刺激电极 和引导电极之间加一接地电极,此电极离引导电极愈近,刺激伪迹就越小采用变换刺激极性,结合叠加处理,可抵消伪迹。

注微电极中高浓度充灌液易蒸发,造成电极回路的开路,因此常在微电极插入Ag-AgCl丝或铂金丝后,在微电极尾部开口处涂上一层凡士林,防止水分蒸发。

动物麻醉和制动下,体温会下降,故应保温调节,加温维持肛温36-38℃.记录脊髓背角或腹角神经元将脊柱前后拉直以减小呼吸运动造成的位移。记录脑神经元应在表面用温热石蜡制成一油槽,防止血管博动和呼吸运动的影响。

五细胞内微电极记录

多用幼年离体标本,其原因1)幼年动物骨骼骨化不完全,结缔组织少,神经组织易于分离,标本耐缺氧能力强,有的标本可存活数小时至数天,但标本也可能发育不完全,如背根和脑干到脊髓的投射纤维要到三周动物才完全。神经纤维髓鞘化不全,其药理作用与成年动物也不同。从实验角度上讲,脊髓背腹根短,不利于电生理刺激记录。小鼠一般应小于15g,制备标本才 有可能成功,而这样小鼠背腹根神经节不利于电生理实验。最适合的动物是金黄地鼠(hamster),介于大小鼠之间,制备标本活性很好,可能与其冬眠习性有关,而且其脊髓背腹根长达20-25mm,利于电生理记录。动物选择仍依实验而定,同一标本,不同中枢结构对缺氧耐受力也不同。金黄地鼠,若观察脊髓背角神经元活动,可用150-160g体重的鼠均可,但要研究腹角神经元,则体重不宜超过30g。离体标本的灌流注,如ACSF。其中缓冲液成分有两种,一是重碳酸盐(bicarbonate)温度低(4℃),配方有利于降低组织兴奋性。二是磷酸盐缓冲液和HEPES缓冲液其优点是接近于 人体环境。各种缓冲液一般都先配母液,临用前一天,或临用前稀释

脑片膜片钳实验方法

脑片膜片钳实验方法 文献综述一 1966年,Yamamoto和McIlwain首次在脑片上记录了电生理活动(1966a, b),证实了脑组织在体外也能存活,并保持很好的活性状态。此后,该方法在生理学研究中的应用越来越广泛,并为中枢神经系统生理和药理学领域突飞猛进的发展奠定了基础。1989年,Blanton将脑片电生理记录与细胞的膜片钳记录结合起来,建立了脑片膜片钳记录技术,这为在细胞水平研究中枢神经系统离子通道或受体在神经环路中的生理和药理学作用及其机制提供了可能性。

在脑片电生理记录中,实验者可以按不同的实验目的直接准确地改变脑片灌流液的成份和条 件,如温度、酸度和渗透压、通氧状态、以及离子通道或细胞信号转导通路的阻断剂等另外,实验者还能借助显微镜准确地放置记录电极和刺激电极,同时,可借助一些特殊的加药装置,将一定浓度的药物加到整个脑片或是脑片上的特定区域上,研究电信号沿神经环路的传递规律。在电生理学实验结束后,活性较好的脑片还可用于生物化学或解剖学的分析。这些优点使实验者能获得准确的神经生理学的研究结果,也是其应用较在位大脑广泛的原因所在。

海马脑片是中枢神经系统研究中应用最为广泛标本之一。其原因有以下几点:

1、海马与脑的其它部位相对隔离,较易剥离,且剥离后受到的损伤较小

2、海马具有高度分化的片层结构,一方面,海马神经环路在片层中的分布有一定的空间规律,如锥体细胞胞体分布在锥体细胞层,而雪氏侧支突触分布于辐射层,且海马中存在一个三突触联系的回路,即穿通纤维-齿状回颗粒细胞层、苔状纤维-CA3区锥体细胞层、雪氏侧支-CA1区锥体细胞层等,因此,在海马中可以较准确地记录到特定神经元或突触的反应另一方面,这种板层结构有利于解释在某一部位记录到的细胞外场电位的意义。这些都使海马成为电生理学研究的理想标本。本文对海马脑片膜片钳的操作规程及注意事项总结如下。

一、海马脑片的制备

脑片制备中,海马分离应在断头后10分钟内完成,5~6分钟为宜。在分离海马时,还应注意不要扭转或撕扯海马,更不要损伤海马。分离海马的速度和质量是保证海马脑片制备成功的关键所在。

评价脑片活性最简单的方法是记录脑片上的群峰。在一个状态良好的脑片上记录到的群峰在一个很宽的刺激强度范围内始终是单峰的。出现多个群峰往往提示抑制性突触功能已受损,这是脑片最早的病理生理学改变。如果仅存在突触前纤维群峰(Fiber Volley, FV),或FV峰大于突触后反应,这提示脑片活性极差,有活性的突触已所剩无几,为激发突触反应需要更多的突触前纤维参与,需中止实验。在活性较好的脑片中,FV峰几乎探测不到,或远远小于突触后反应。

有时会莫名其妙地出现一些问题,突触标本中突触后神经元看上去状态良好,但做了很多天甚至几周都没有得到有用的数据。在这种情况下,须要耐心地思考失败的原因,并设法解决。首先,应该检查溶液,用其它实验室制备的标本或更换实验动物。对于脑片的制备而言,切片机出现的机械故障会损坏脑片的质量。总之,在实验的全过程中能尽量注意每一个细节问题,出现问题后反复尝试,实验就会容易起来。

二、海马脑片的膜片钳记录

1、将刺激电极放置在含突触前纤维脑片区域附近

在突触传递的研究中,应该同时记录突触前和突触后神经元的电信号,虽然,并不是所有突触前神经元胞体的动作电位均可传导至突触(Vincent, 1996)。由于在突触前和突触后两个神经元上同时做膜片钳记录较困难,因此,需要用其它的方法来诱发突触前动作电位的发放。用刺激电极可在单个或多个突触前细胞或轴突诱发动作电位。另外,还可以用局部施加神经 递质的方法来诱导动作电位,如用短促的压力、离子电泳或笼锁谷氨酸光解等方法将谷氨酸加到突触前胞体或轴突上,可以诱导出多个动作电位。

用电极刺激 在神经元培养皿中,可以用连接了电源(通常是膜片钳放大器)的微电极直接刺激突触前神经元。在这种情况下,通常需要用负压吸引使突触前的细胞贴紧刺激电极,防止刺激电流的逸出。通过膜片钳放大器给脉冲刺激的优点是,它可以记录到突触前细胞被激活的胞外电信号(Role, 1987)。从培养的神经元和脑片上找到有突触联系的一对神经元是很困难的,但在神经元培养中有单个神经元的Autapic突触就会方便许多。

可以用膜片钳电极或尖端较细的一对钨电极给突触前轴突纤维施加电压脉冲。用电极刺激可将Ag/AgCl电极置于孵育槽中与其构成一电流回路。刺激电流一定要与膜片钳放大器记录电路隔离开,以防止刺激电流漏入记录电极中,而使刺激尾迹变得很大。为此,施加刺激需要一个未接地的隔离器。隔离器可以用外界脉冲刺激或计算机来控制。另外,还需要将刺激尾迹缩小到最小,以排除其对突触信号起始段的干扰。为达到该目的,需将刺激电路的回路电极置于合适的位置或用膜片钳放大器提高串联电阻补偿的效率。

刺激电极的位置 通常将刺激微电极或刺激电极置于突触前轴突通过的部位。但有时突触前轴突在制备脑片时即被去除。如果脑片制备时局部神经环路被破坏,实验中就很难成功地记录到突触后电流。实际上,切脑片的角度是保存局部神经环路最重要的因素之一,合适的角度既可使突触后神经元保存完好,也可保留部分较长的突触前纤维用于电刺激。用胞外电极刺激激活的神经纤维较多,而且,每次刺激激活的纤维数目也会不同。如果实验目的是将不同的传导通路分开,那么,必须要证明两个刺激电极激活的纤维各不相同。

2、全细胞记录

用可视化膜片钳寻找清楚、且表面光滑、折光性较好的突触后神经元。在加了正压后,将记录电极移入脑片视野中,并接近事先选好的神经元,然后,调整电极与神经元的相对位置,利用负压形成稳定的高阻封接。用短簇的脉冲负压使细胞破膜,稳定2~3分钟,观察封接测试波形起始段与基线间的差值是否在100pA以内,封接电阻是否大于200M,如果是,且较 稳定,再迅速补偿串联电阻和慢电容,舍弃串联电阻大于30M的细胞,且在记录过程中监测串联电阻的变化,当变化大于20%时,中止记录。如果细胞状态不好,就马上重新制备脑片,以提高实验效率。

3、判断突触前纤维

在记录电刺激的突触反应时,可以验证刺激电极是否放置在突触前神经元或轴突上,在实验中,如果记录不到突触反应,说明刺激电极位置不正确,这时可以稍微移动刺激电极的位置。如果还记录不到,这可能还与组织片活性较差有关,可以更换组织片或改进切片角度加以解决。电刺激方波时程一般设定为0.1~0.2ms,恒流条件下刺激强度一般为0.1~3mA,恒压 条件下刺激强度为5~40V.4、突触反应的判断及其波幅稳定性的评价

突触信号的判断 突触信号样的假象波有三个来源。第一、邻近纤维的活动使静止细胞产生电压波动第二、如果恒流刺激强度过大,电流就可被注入突触后神经元,使其产生失活时间类似EPSP或EPSC的信号,其信号幅度随刺激强度的变化而变化第三、直接刺激突触后神经元诱导出突触样的动作电位,这种反应紧接着刺激尾迹发生,没有翻转电位,使突触后 神经元膜电位超极化和向记录电极内液中加入10mM的QX-314,均可避免突触后神经元产生动作电位。但QX-314可阻断多种突触激活的通道(Otis, 1993),在某些情况下它还可以增加漏电流。

多突触激活 通常情况下,刺激电流可激活多个突触前纤维,在突触后可记录到多种突触信号。因此,有必要用一些选择性阻断剂阻断一些不在研究范围内的突触活动。而且,刺激一束纤维,通常可激活多个同种的突触前纤维。不同的刺激强度下,被激活的突触前纤维数目不同,从而引起的突触反应也会不同。因此,要仔细调节刺激部位和刺激强度以便能刺激到单一的轴突(Stevens, 1995;Zhang, 1994a)。

胞内刺激突触前细胞是刺激单个轴突最好且最稳定的方法。甚至在单个突触前神经元被激活后,在突触后记录到的反应也是由多种神经递质共同作用的结果。多突触活动是突触活动的叠加效应,这包括去极化和超级化反应。在一些标本中,这是不可避免的。通常可用药物阻断不在研究范围内的突触活动。提高灌流液中钙镁等二价阳离子的浓度至5mM,以增加动作电位的阈值,就可以有效地减少多突触活动。通常情况下,突触反应是否来自单突触可以根据如下条件来判断潜伏时在0.5~1.5ms的范围内,高频刺激时突触反应立即消失,突触 反应的上升支和下降支较平滑,且无长潜伏时成份(Berry, 1976)。

电刺激引起的突触反应波幅在一定范围内的波动是一种正常现象,但记录过程中有电流衰减发生,当记录过程中电流衰减大于10~15%,就必须中止实验。如果电流衰减不可避免,就需记录较长时间确定电流衰减的速度。低频刺激(0.1~1Hz)下,记录几分钟,观察突触反应波幅的相对稳定性。

电极内液成份与受体敏感性 在形成全细胞记录后,胞内成份会被电极内液成份所稀释而发生改变,但在10分钟内即可达到平衡。因此,要记录G蛋白耦联受体的活性时,应向电极内液中加入10~100uM 的GTP(Trussell, 1987)。离子通道耦联的NMDA和GABAA受体的特性在全细胞记录过程中也会随时间的变化而衰减。在记录时可用多种方法来避免或减小其衰减,如提高电极内液EGTA的浓度或用BAPTA等快速络合剂代替EGTA,使胞内钙浓度远远低于1μM;向电极内液中加入mM级的ATP;采用穿孔膜片钳记录等。另外,电极的串联电阻小于10MΩ或突触距胞体较近时受体的敏感性会很快下降。

电压钳制是否准确 在电压钳制不足的情况下,记录突触后电流,虽然,可以为突触药理学和突触效能的活动依赖性的改变提供很有用的信息,但这些数据不能用于突触后电流幅度和时程的准确估计。那么,我们如何判断每次记录时电压钳制的质量呢?如果突触后电流来自树突远端,那么,该突触后电流的钳制质量就较低(Silver, 1996)。另外,还有一些判断钳制质量的方法,如突触电流的上升时间较长(如AMPA受体电流的上升时间大于1ms);在某一突触后电流的翻转电位下可见到双相的突触后电流等。

评价电压钳制质量最常用的方法就是在一次记录后,绘制上升时间对下降时间曲线图。如果上升和下降时间被树突过滤过,则该曲线呈正相关关系,上升或下降时间与幅度间就会呈负相关关系。总之,上升时间受树突过滤的影响要远远大于下降时间。因此,如果随上升时间的变化,下降时间变化较小,这种情况下的下降时间是可靠(Hestrin, 1990)。需要注意的是,上升时间与下降时间相关性较差并不足以判断电压钳制的质量。Johnston等对树突上突触反应的钳制效果做了深入的讨论(Brown and Johnston, 1983;Spruston, 1993)。Husser(1997)等建议用突触电导随钳制电位的变化来检测树突突触反应的幅度和动力学特性。

在突触后电流较大时也存在钳制的偏差。这时,由电极串联电阻引起的电压降会影响到突触后电流的幅度和形状。若想验证是否存在这个问题,可以向灌流液中加入少许受体的高亲和力的阻断剂,观察突触后电流的时程是否会随其峰值的下降而变化,因为,受体的阻断不会改变其动力学特性(Otis, 1996;Zhang, 1994b)另外,可以改变串联电阻补偿的水平,观 察在不同的补偿水平下突触后电流会不会改变(Llano, 1991;Takahashi, 1995)。在许多情况下,有可能在发现偏差后更正突触后电流的下降时间。值得注意的是,串联电阻可以带来其它的偏差,如对波形的滤波效应。盲法膜片钳记录中,串联电阻通常要大于10MΩ,因此,这种影响是不可避免的。但可以用公式1/(2pRseriesCM)计算记录系统的过滤水平,确定突触后电流峰值和形状受影响的程度。

5、突触反应的记录

现在许多实验室都开始应用膜片钳技术记录培养神经元间、组织片中和异体移植组织中的突触传递。与尖电极记录相比,它具有明显的优势。如,记录的成功率较高,较高的信噪比,能较准确地钳制胞电位等。膜片钳甚至可以应用于在位突触活动的记录(Covey, 1996)。

记录自发突触后反应 自发的突触后反应有两个来源。一是局部神经环路中动作电位发放引起的递质释放,另一个是突触囊泡中递质的自发释放,后者被称为微突触反应(miniature synaptic event)。由于动作电位依赖性的自发突触反应幅度与微突触反应差别并不大,因此没有必要将两者区分开来。为记录到很纯的微突触反应,可以用TTX来阻断动作电位依赖性 自发突触反应,另外,去除灌流液中的钙或向其中加入钙通道阻断剂镉,即可以阻断电刺激诱发的递质释放。但如果多个囊泡在同一个突触末梢中同步释放,则以上两种方法的效果就不同了(Korn, 1994)。

自发性突触活动的发放频率通常小于几Hz。发育期标本上,自发性突触活动的频率就非常低(Edwards, 1990),因此,需要记录较长时间才能获得足够用于分析的突触反应。如果自发性突触反应的频率很高,多个突触的反应就会重叠在一起,就不能通过上升或下降支的时间来判断是单个突触反应或是多个突触反应的叠加,从而,给数据分析带来许多麻烦。突触反应的频率受温度的影响较大(Fatt, 1952),因此,在特定的实验中,可以通过调节灌流液的温度来调整合适的突触反应频率。局部施加去极化或超极化溶液也可以诱发自发突触活动(Bekkers, 1992;Tang, 1994)。在一些标本中,在刺激诱发的突触反应之后,自发性突触反应的频率会显著增高,在含有锶的灌流液中尤其如此(Dodge, 1969;Goda, 1994)。这一事实可用于检测与特定突触活动相关的量子大小(Otis, 1996)。

数据采集 突触反应可用计算机软件通过特定的采集卡采集到计算机硬盘上。记录电刺激的突触活动时,还须用计算机产生一个TTL脉冲以激活刺激器,并由隔离器经刺激电极刺激突触前纤维。

所需的数据量 电刺激所诱导的突触信号的记录中,其数据量取决于信噪比和信号的变异度。对电刺激诱导的全细胞电流记录而言,高信噪比不是问题,但在记录自发突触信号时,信噪比就变得比较重要了。实验前最好做预实验,估计获得准确的均数所需记录的信号数。当然,也应了解给定的刺激频率下突触信号的稳定性。对于电刺激诱导的突触信号,其峰值的变异 系数较小,因此,以0.1Hz的刺激频率记录5~10次就足够了。对于自发性突触信号来说,信号峰值的变异度较大,通常大于20%,为得到较可靠的结果往往需要记录100个以上的信号。实际上,要得出准确的变异,往往需要记录成百上千次信号,这也是得到较可靠的信号峰值分布规律的必要条件。在低频刺激下记录突触信号时,要控制系统误差,使记录保持稳定,须要制备活性较好的标本,并要有配套的稳定的实验条件。精确的测量控制是保证实验数据可靠性的基础,而且,每次实验都要对其进行严格的评价。

6、突触反应的分析

(1)刺激诱发的突触反应的分析

突触反应的大小和形状 突触电流和电位的检测指标有潜伏时(latency)、峰值(amplitude)、10~90%上升时间(10~90% rise time)、1/2峰值时的波宽(half width)、失活的指数拟合时间常数(exponential decay curve)(图1)。潜伏时是刺激尾迹(stimulus artifact)的起始时间到突触电流或电位峰值的5%间的时间间隔(Zhang, 1994a),潜伏时包括几部分的延迟突触前轴突发放和传播动作电位的时间、神经末梢去极化到递质释放的突触延迟、递质扩散到突触后并引起受体激活的时间。由于递质扩散和受体激活的速度相当快,因此,突触延迟是突触前神经末梢发放动作电位和出现突触后反应间的时间间隔(Isaacson, 1995;Katz, 1965;Zhang, 1994a)。

突触反应的幅度是其峰值与反应前基线间的差值。信噪比较低时,须要计算突触反应前多个点和突触反应峰值前后多个点的均值,然后,以它们间的差值作为突触反应的幅度。上升时间用从峰值的10%到90%的时间描述较为准确。由于潜伏时的存在,很难判断突触反应开始的时间和到达峰值的时间。当刺激尾迹严重地干扰了突触反应起始的判断时,也可以用20 ~80%上升段的时间来描述上升时间。突触反应时程可以用以下几种方法来描述:

1、1/2峰值间的时间,它包括了上升时间和下降时间;

2、突触反应的下降支经多种指数拟合(如单指数拟合、双指数拟合和多指数拟合)产生一个或多个时间常数(decay time constant)。

图2自发突触反应的分析。A将膜电位钳制于-70 mV时记录的微小兴奋性突触后电流B 多个微小兴奋性突触后电流升支相重合的叠加图及其波幅的直方图。

双脉冲易化(paired pulse facilitation, PPF),即以较短的间隔重复刺激突触前纤维两次,第二次刺激诱发的突触反应大于第一次刺激的现象,这是一种突触前现象,它可反映突触前递质释放概率的变化。

最小刺激诱发的突触反应 记录最小刺激(仅能激活一个或少数几个突触前纤维的刺激)诱发的突触反应可用于估计量子的大小,这种刺激有时可以诱发突触反应(success),而有时则不能(failure),其诱导出的突触反应的均值可用于估计单个量子的大小。

可分析电刺激诱发的突触反应的软件 有许多常规软件均可用于突触反应的分析,如Axon公司开发的pClAMP软件包,WaveMetrics公司开发的Igor Pro等,均可用于电刺激诱发的突触反应的分析。

(2)自发性突触反应的分析

突触反应的检测 目前有三种方法判断自发性突触反应(Hwang,1999)。第一、峰值超过即定阈值,该方法受基线波动的影响较大,这可以通过基线加以弥补第二、峰值相对于基线的变化量超过阈值,它受高频噪声的干扰较大,而且,很难设定一个合适的阈值,为克服这些不足,可以在处理时对原始数据进行滤波处理,除去高频噪声第三、与即定的波形模板进行比较,然后,判断是否突触反应,该方法对符合模板的突触反应具有很高的敏感性,但在设定模板前,必须知道所要研究的突触反应的一系列参数的范围,如果模板设计不合理,将大大降低探测的敏感性,而且这种方式尤其不适于有信号重叠或多个突触成份数据的分析。

PCLAMP 9.0对自发突触反应的分析基于波形模板,只要模板设计得当,探测概率也较高。另外,Copenhagen等用Igor Pro开发了一个分析程序minifit.ipf。该程序对第二种方法做了一些改进,分三步探测突触反应。第一步,粗筛可能的突触反应,包括它们的起始时间和峰值时间第二步,用突触反应起始与峰值间的差值计算可能的突触反应的波幅,去除波幅 小于阈值的波形第三步,对起始点之前数点和峰值时间后的多个点取平均值,以排除噪声的影响,并计算两者间的差值对突触反应的峰值做更精确的估计,如果该波幅低于阈值,与会从数据库中被删除。除波幅阈值的判断标准外,该程序还还引入了上升时间、下降时间和波形时程范围等描述波形模板的参数来进一步判断突触反应。该程序还可用于测量突触反应的生物物理学特征。它可计算10~90%上升时间,描述突触反应的上升相的动力学。该程序调用了Levenberg-Marquardt非线性曲线拟合函数对突触反应的下降相做单指数或双指数拟合,通过双指数拟合与单指数拟合的比较检验,计算其失活时间常数。该程序还提供了一个非常有用的功能,就是将所有记录到的非连续的突触反应以上升支的中点为基础相叠加,做逐点平均,这样,既可以降低噪声,也可以计算其动力学特征参数。

总之,脑片膜片钳记录成功的前提是制备活性较好的脑片,记录条件优化后,实验的稳定性、可重复性和准确性均较高,在神经科学领域应用较为广泛。许多神经毒物可影响中枢神经系统的突触传递功能,脑片膜片钳技术将为实时、准确、高效地研究这些毒物作用的机制提供可靠的技术支持。

脑片技术(1)准备样品。

(2)取大鼠,断头,在60s内快速将脑取出并置于含95%氧和5%二氧化碳的冰冷生理盐水中冷却3-5min用清洁、锋利的解剖刀清除软膜等组织,在此过程中避免挤压和使脑变形的动作。(3)用氰丙烯酸盐胶(Cynoacrylate glue)将其按所需方向固定于切片装置的皿槽中,并放一块琼脂。即刻用冰水倾倒其上直到浸埋为止。保持脑组织在低温状态下以减小由于缺氧而损伤是至关重要的,并持续通气。

(4)用振动切片机切成400μm厚的切片,将切片移至内含32-35℃生理盐水的记录槽内,水中持续通以95%氧和5%二氧化碳气

(5)脑片放于5% CO2和95%O2饱和的Krebs碱性缓冲液5ml,在37℃下孵育5-15min平衡。(6)在35℃生理盐水中孵育30-60min后开始记录电活动(也有不进入这步,而直接在SS中孵育30min以上。

不用任何消化酶、避免酶损伤离子通道。一般脑片多用于膜片钳记录和脑片在位的原位分子杂交。

(1)膜片钳技术 常用方式有:吹打清洁后封接;盲插封接。第一种方法是用带有正压记录的记录微电极吹掉靶细胞周围的神经纤维网之后,再与细胞膜进行封接。这一过程是在红外微分干涉相差显微镜直视下进行。这种方法可在较大神经元上记录,也可在较小的神经元上记录,甚至可在一个神经元的不同部位插上不同电极。可以选择不同的细胞类型进行封接。但盲插法只要一般解剖显微镜即可,不需清洁,又可免去吹打对细胞及突触结构的伤害。但它不能选择细胞。目前已将膜片钳技术发展到与碳纤电极相结合的优点。可以检测到单个囊泡的释放。而膜电容监测方法难以测到胞吐和胞饮的过程。而碳纤电极原理是电化学方法,检测碳纤电极的前端加上可使被检测物质快速氧化的电压(如600-800mV),使电极端面周围产生很强的电场,当可被氧化的物质接近这个电场时,就会被氧化释放电子到碳纤电极从而产生电流。

根据测量的需要,通常在碳纤电极上加上恒 定电压和周期电压。采用恒定电压的安培测量法具有最高的时间分辨率,而采用周期电压的快循环电压测定法(如采用周期三角波)则可区分被氧化物质类别。一般碳纤电极为5-10μm,电极一端与放大器相连,周围部分的浴液必需绝缘。碳纤电极必需牢固固定,以保持刚性减小振动。而且碳纤电极的电流放大器必需要有足够的带宽(3-5KHz),一般膜片钳放大器能满足要求。普通的碳纤电极主要插于玻璃毛细管中用玻璃电极拉制器搠制。可用胶粘接碳纤维和玻璃管以保证二者紧密结合。但碳纤电极也有一个缺点即是记录的是细胞局部活动而非全细胞。

(2)脑片杂交。

(3)脑片标记,使突触摄入放射性标记神经递质或前体,然后神经脑片摄入,使神经末梢递质贮存库被选择性标记。在37℃孵育30-60min,然后用灌流液冲洗脑片,将脑片移入小室中灌流。灌流小室由直径5mm的玻管制面,两 端用塞子,调整塞子位置,使小室内的体积为0.25-0.3ml。两头为流入管和流出管,为使脑片去极化,可加入一根铂金丝作为刺激电极。每小室中移入2-5片脑片,用37℃灌流液灌流小室,速度为0.25-0.3ml/min,收集灌流液(每2-5min收集一次,共20-30min),测定基础释放量。然后用电极刺激或加入不同物质,使之去极化,测定流出液的放射性活性。用液体闪烁记数仪或HPLC电化学检测。℃℃

(4)举例

海马脑片神经元中的K+浓度测定法 先准备好振动切片机,并将所有器械将要接触大鼠脑部位的部分放于4℃的细胞外液中。切片机切片刀先放一块琼脂,后脑组织可用502胶水或其它的胶张贴)成年大鼠,体重120-200g,乙醚麻醉下切开头皮,暴露颅骨,断头取脑。(幼年大鼠更好,则不必切开头皮和麻醉,可直接断头取脑,取脑过程中,不断地加4℃SS,并将枕叶和额叶切除,放于切片机通气的4℃的SS液体中)。取脑后放置于4℃,95%O2,5%CO2混合气体饱和ACSF中净血降温,然后将脑置于用人工脑脊髓液预先湿润的滤纸上,沿正中线分开大脑半球,由脑腹内侧沿皮层边缘剥离双侧海马,在4℃供氧条件下,用刀片垂直于海马长轴,用手切将其切成400-500μm的脑片,将全部脑片置于36℃ACSF中,并不断通入混合气,孵育2h,ACSF pH调节7.3-7.4。(或将脑组织放于振动切片机上,基本控制大致的位置。用切片机切成8片左右,再取其 中较好的几片进行实验,将脑片在SS中将丘脑部分去除,保留皮层和海马,取海马CA1区,可以皮层的嗅沟作为标记。再的取出切片放于孵育液中,通气的孵育30min以上,再打碎所要部分的细胞,进行实验。)

实验时,将孵育脑片置于36℃恒温浴槽内的尼龙网上,液面略高于液气交界面,并不断通入混合气体供氧,气体流量控制在400/分钟,ACSF由蠕动泵以2-4ml/min速度持续灌流。双极不锈刚电极置于CA3区神经纤维 上,刺激电流0.3-1nA,时间为50-150ms,Ag-AgCl作参考电极,一端连碚灌槽,另一端与离子计、示波器接地相连。用多维手动微电极推进器分别将普通及K+选择性微电极刺入神经细胞内。两电极尾部均经Ag-AgCl丝与ISE-1型离子计探头相连,从离子计数字监控表测刺激前后细胞膜电位(Em)、离子电极电位(Ee)及反应离子活度的电位(Ek=Ee-Em),并将Em, Ee显示于示波器中,实验后将刺激前后电极电位换算成相应神经元K+活度,并加以校正。

在测量时,理想的配置方案是让离子选择性微电极和普通微电极两者同时都在同一神经元中。那么两电极的Em值相同。若不能在同一神经元,则多测几次求其增均值。不过,用双管微电极,则必须用两个放大器。活度测定一般采取校正曲线法。

注意(1)拉制微电极时,颈部不能太长,以便于液膜和内充液的灌注。

(2)电极硅化时,防止硅化层太厚而阻塞尖端。(3)选择电极前,一定要先测量电极的稳定性,选择好的电极。(4)灌注离子交换剂时,若内有气泡,可用手拉伸玻璃针把它引出,但要在放大100倍显微镜下观察进行.(5)钾离子选择性电极使用前,应将电极下端浸入0.1mol/L KCl溶液内,静置1-2h,否则电极可能会出现明显 的电位漂移。(6)为避免电极污染,制成后不宜久放,宜于当天使用。(7)脑薄片制作时,要在冰浴中进行,以减少术中出血。且以快而不损伤组织为原则。注意尽可能剥净脑膜,切片避免薄片变形,破裂或卷曲。(8)人工配制脑脊髓时,溶液用ddH2O及化学试剂新鲜配制。灌流液灌注速度以每分钟灌注更新率达6-10次不宜。

附 离子选择性微电极,即离子敏感性微电极(ISME),其特点对细胞损伤小,可制成双管微电极。当钾离子选择性微电极插入神经元内,产生电位Ee是反应细胞内K+的电位和细胞膜电位Em之和,即Ee=E+Em。另一普通微电极插入神经元内,可记录到细胞膜电位Em,通过减法器,可得到E=Ee=Em,再通过校正双曲线法,可求得细胞内K+离子活度。

1单管选择性微电极的制作(1)微电极处理 选用硬度高(GG-17)、管壁厚、或电阻率较高的玻璃毛坯,经1:1浓硫酸和浓硝酸浸泡,自来水冲洗,蒸馏水煮沸后烤干备用。用微电极拉制仪拉成小于1μm的微电极。直流电阻为50±10MΩ。

(2)电极尖端疏水化 洁净玻璃表面具有亲水性,故充灌的非水溶性离子交换剂将很快被水相物质所取代。因而,在灌注离子交换剂前,需对电极尖端进行疏水化处理。即硅化。在直径约15cm,高约3cm玻璃盘内放入约10根玻璃微电极。上面加盖,盖上有一小孔。加温到150℃,维持15-30min以烘干电极,在小孔中滴入六甲基二硅烷约300μl,维持在150℃约40-60min,用其蒸气硅烷化。还可将少量15%六甲基二硅烷注射到微电极转窄处。由于存在微丝,硅化溶液会自然充入微电极顶部。注入硅化液的微电极应在室温下静置1h,然后置250℃烘箱同烤1h。加热蒸去未与玻璃键合的硅化液组分。

(3)离子交换剂和内部电解质溶液的灌注 将玻璃电极倒置在金属框中,并放在250℃烘箱烘1h。冷却后,用毛细玻璃管自尾部向硅烷化后的电极尖端注入相应的0.5mol/L KCl,至电极肩部为止。然后将玻璃管自尾部向硅烷化后的电极尖端注入相应的0.5mol/L KCl,至电极肩部为止。然后将玻璃微电极尖端1-2mm浸入Fluka K+-Cocktil 60031 10min左右,树脂可在电极尖端形成100μm左右液柱,最后作尾部灌注时,如果硅化处理良好,树脂注入后略加引导,会自动流向尖端,且树脂与玻璃封接稳定。

(4)尾端处理 为防止水分蒸发,在尾部封以矿物油,然后将Ag-AgCl丝导入。现在一般有固定的玻璃管,不必进行特殊处理了。一般拉微电极,分两步,拉出的微电极尖端细,但尖端不长。一般第一步温度为60.2℃,第二步为37℃。玻管应放直,否则可能拉出的玻管不正。

2双管微电极制作。(1)将两单管毛坯粘在一起或火焰中封在一起。(2)拉成双管微电极(3)在加压下用蒸馏水充注一管,使其防止硅烷化。(4)将别一管顶端于硅酮溶液中浸5-10s,使其从顶端起200-500μm内硅化。(5)加热干燥整个双管电极,从20℃开始至200℃至少烤1h。(6)借助显微镜操纵器将其顶端顶着的瓷物撕开,通常使尖端为2-3μm。(7)用直接注射法,以0.15mol/L NaCl水溶液充注非离子选择管。(8)将电极浸入离子交换树剂内约10-15s,以便液体离子交换剂灌入硅化管顶端。(9)用注射法以0.5mol/L KCl灌注此管的其余部分。(10)尾端封以矿物油。然后将Ag-AgCl丝导入。

3钾离子选择性微电极的保存。经硅化后电极未充液前可保存数天,最好在干燥空气中保存。微电极保存待用时,需将其顶端浸在0.5mol/L KCl中。

4K+选择性微电极校准。每次测定前,要在各种不同浓度KCl(3-300mmol/L)溶液(150mmol/L NaCl作背景)测试各电极的灵敏度。KCl溶液浓度每变10倍,钾离子选择性微电极反映出电位斜率为50-55mV,斜率过低时,弃去不用。

注(1)微电极多次插入和拔出细胞,其尖端可能受损或污染上杂质,使其输出电位变得不稳定。因而每次测量时,都要检查插入细胞前和拔出细胞后的电位值是否一致,若不一致,则测量数据无效,应更换微电极。(2)离子选择性微电机有测量的是离子活度,而不是离子浓度。离子活度(a)与离子浓度(c)之间关系:a=f•c。f为活度系数,主要决定于溶液的离子强度和离子电荷数,同时也在某种程度上决定于溶液的组分。因而在生物介质高离子强度下,不能再用离子浓度代替活度。(3)整个测量应在恒温和屏蔽下进行。(4)应维持细胞的正常生理状况。

下载供电技术心得体会word格式文档
下载供电技术心得体会.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    风电技术总结

    1、寿命 2、可靠性高 3、轴承强制润滑 4、传动类型圆柱齿轮箱,行星齿轮箱,多采用混合方式,形式又可分为展开式、分流式和同轴式以及混合式等等,多数为一级或两级行星+两级斜齿轮......

    风电节能技术监督制度

    风电节能技术监督制度 1. 总 则 1.1节能技术监督是为了贯彻我国“资源开发和节约并举、把节约放在首位”的能源方针。为了加强本公司,以下简称公司的节能监督管理促进节能降......

    风电管理技术论文

    项目策划在风力发电建设中的运用研究 刘小云 华电宁夏宁东风电有限公司(银川市新昌西路时代之星1#楼 邮编 750002) 摘要近年来我国的新能源开发政策和风力发电市场蓬勃发......

    电测技术监督实施细则[最终定稿]

    风电场电测监督实施细则 北方龙源辉腾锡勒风电场 2012.05 风电场电测监督实施细则 1 范围 为加强内蒙古电力系统电测(以下简称电测)技术监督工作,提高电测装置计量水平,从而成......

    电地暖技术协议

    东方希望农业有限公司(保育舍电地暖项目)发热线缆技术协议买方:汉阴东方希望畜牧有限公司卖方:二零二零年月经买、卖双方技术交流、协商,就买方(汉阴东方希望畜牧有限公司)生猪保......

    电液控制技术题目

    参考书 1.电液控制技术,易孟林,曹树平,刘银水主编,华中科技大学出版社 ,2010 2.液压控制系统及设计,作者:张利平,图书出版社:化学工业出版社,2007 3.液压控制系统的分析与设计, 卢......

    搞电心得体会

    搞 电 心得 张志国 1.搞电只能犯一次错误,不会犯第二次错误为什么?答案在背面。 2.电“看不见,摸得着”。所以无电当有电看待。聪明人当傻瓜看待,互相多沟通,多提醒,不要怕麻......

    数电心得体会

    参考文献:数字电子技术(第二版),电子电工技术实验与实训教程(郭振民),电路及电子实验 心得体会 在这个星期,我们电子091的同学对专业课《数字电路技术》进行了为期几天的实训。我们......