高中数学 挖掘数学新教材的教育功能 全面推进素质教育论文

时间:2019-05-14 14:13:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 挖掘数学新教材的教育功能 全面推进素质教育论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 挖掘数学新教材的教育功能 全面推进素质教育论文》。

第一篇:高中数学 挖掘数学新教材的教育功能 全面推进素质教育论文

利用高中数学新教材全面推进素质教育

一、问题的提出:

在课程改革的大潮中,高中数学新教材应运而生并试用几年了。它那综合编排的体系、富有一定弹性的教材结构、注重从实际问题引入等特点更符合高中学生的年龄特征和认知规律,更适合一线教师进行教学改革、全面推进素质教育,博得了教师们的好评。但在高考选拔制度未改变的情况下,也有很多教师无视新教材的这些变化,在教法、学法上没有作相应的调整,甚至只是浏览一下新教材中删除、补充了哪些内容,然后按照自己多年归纳、总结好了的知识体系进行轻车熟路的灌输,与素质教育、课程改革的指导思想背道而驰。因此,如何科学、合理、正确地使用好新教材,优化教学结构、提高课堂效率、培养学生能力是每一个基层教育工作者急需解决的问题。

二、充分利用新教材是课程改革的重要一环

现在,我们所说的课程已经不再只是教学计划、教学大纲、教科书等文件(即课程不再只是特定知识的载体),而且包括教师和学生共同探求知识的过程。因此,教材改革只是课程改革的突破口,而课程改革的核心环节是课程实施,是如何充分利用新教材进行教法、学法的改革。实际上,课程方案一旦确定,教学改革就成了课程改革的重头戏。如果教学观念不更新,教学方式不转变,新编教材得不到充分利用,课程改革就会流于形式,事倍功半甚至劳而无功。因此,如何挖掘新教材的教育功能,充分体现课程改革的指导思想,是我们基层教育工作者的一项持久、复杂而艰巨的任务,它的好坏关系着我国课程改革的成败。

三、高中数学新教材的很多特点更适合实施素质教育

现在的高中数学新教材是根据教育部颁布的新课程计划和新教学大纲,在两省一市试验教材的基础上进行修订的,它以全面推进素质教育为宗旨,具有许多适合实施素质教育的特点:

a)综合编排的知识体系,便于学生自主学习

用心爱心专心 1

教材打破了原来分科安排内容(分为代数、立体几何、解析几何)的编写体系;安排知识顺序时注意处理好与初中数学的衔接;符合逻辑上基本规则;在深浅上注意坡度的设计;工具性内容靠前安排;相关内容适当集中。这些特点更加符合高中学生的年龄特征和认知规律,更适合学生的自主学习和课前预习,也有利于我们展开素质教育、培养学生能力。

b)渗透数学思想方法,突出培养思维能力.数学教学不应仅仅是单纯的知识传授,而应在讲知识内容的同时注意对其中的数学思想方法加以提炼总结,使之能逐步被学生掌握并对他们发挥指导作用。因此,新教材在各章的内容安排上,十分注意对数学思想方法的体现。

c)采用实际问题引入,强调数学应用意识

新教材突出了数学与实际问题的联系,意在培养学生的数学应用意识。在教材编排上:章前图的设计为了说明数学来源于实际;章前引言从实际问题导出;阅读材料很多是介绍数学模型及应用方法;习题也适当地增加了联系实际的题目,所有这些都是为了创设联系实际问题的氛围,培养应用数学的意识。

d)增加实习作业和研究性课题培养学生实践能力及创新精神

增加“实习作业”和“研究性课题”是高中数学新教材的又一大特色,它强调学生的动手能力,把数学学习从教室走向了社会,使学生在充满合作机会的群体交往中,学会沟通、学会互助、学会分享,学会合作,实现知识、情感、态度和价值观的完善。

四、如何挖掘新教材的教育功能,全面推进素质教育

由以上分析可知,我国新一轮课程改革的成败关键在于教学一线的教师如何充分挖掘、利用新教材的这些特征,转变教学观念、优化教学结构、培养学生的各种能力,全面推进素质教育。以下是本人在使用新教材过程的一点体会:

a)科学指导学生阅读教材,在预习中自主探索、获取知识

高中数学新教材是一个综合编排的知识体系,知识编排顺序符合高中学生的年龄特征和认知规律,更适合学生自主学习和课前预习。而一个善于提前阅读教材、自我探索知识的学生,通过阅读,对知识有了一定的理性认识,逐步提高了学习数学的兴趣,学习更加积极主动,学习成绩也比较好。因此教师要鼓励学生提前预习、阅读教材,主动探索数学知识。我在教学过程中,抓住新教材的这一特征,每节课都拿出十至十五分钟的时间给学生阅读教材,让其知道知识的来龙去脉,形成自己的知识体系。在阅读的过程中要注意:

(1)设置出适合本节课内容的学习方法和学习目标,激发起学生的兴趣和

动机,让学生带着问题和强烈的求知欲去阅读。

(2)

(3)在阅读的过程中,要鼓励学生提出自己的问题、观点。对于有争议问题,鼓励学生积极讨论,尝试在小组中得出答案,即使

错了,也要给予积极的肯定。

在课堂阅读的同时,我积极鼓励学习成绩很好的学生超前预习、阅读教材,有些学生总是比我的教学进度提前一章的内容,并把问我尚未讲过的问题作为一种兴趣、乐趣,甚至同学之间进行相互竞争。通过鼓励学生阅读教材、提前预习,实现了数学学习的良性循环,取得了很好的教学效果。一些原来学习成绩较差的同学,经过一段时间的努力,学习成绩也有了飞速的提高。

b)创设问题情景,调动学生学习数学的积极性

创设适当的问题情景可以激发学生的学习兴趣和动机,使学生产生“疑而未解,又欲解之”的强烈愿望,进而转化为一种对知识的渴求,从而调动学生的学习积极性和主动性,达到提高课堂教学效果的目的。

利用高中数学新教材创设问题情景、调动学生的学习兴趣,与原来的教材相比可以说是信手拈来、得心应手。章前图的解说;章前引言的实际问题;与之相关的阅读材料;甚至有些联系实际的例题、习题均可作为创设问题情景的材料。当然,如果你把这些素材用现代教学手段进行适当的加工,效果就会更好。

例如:我在讲解三角函数中《函数yAsin(x)的图像》这节课时,就是利用课后习题中求弹簧振子的振幅、周期、频率这个题目引入本节课,把它做成一个FLASH课件,创设问题的情景,促使学生积极参与活动,把学生的学置于问题之中,使整个教学过程转化为学生“发现问题、提出问题、解决问题、发现新问题”的能力培养过程。这样通过创设问题情景,使教学活动在知识和情感两条主线的相互作用下完成,知识通过情感功能更好地被学生接受、内化。取得了意想不到的教学效果。(本节课详细内容限于篇幅不再赘述,该课件荣获青岛市课件比赛一等奖,已经上传到k12网站)

c)传授知识的过程中要注重结论与过程的统一

抛弃“高分低能”,讲求知识与能力并重,是素质教育的根本出发点。因此,在传授知识的过程中注重结论与过程的统一,是数学教学的一条基本原则。

从教学的角度讲,重结论、轻过程的教学只是一种“形式上的走捷径”的教学,把形成结论的生动过程变成了单调刻板的背诵条文,剥离了知识与智力的内在联系。它排斥学生的思考与个性发展,把教学过程庸俗化到无需智慧努力,而只需听讲和记忆就能掌握知识的程度。这实际上是对学生智慧的扼杀和个性的摧残。强调过程,就是强调学生探索知识的经历和获得知识的体验。它不但使学生在获取知识的过程中培养了各种能力,而且也使所学的知识更加牢固。

例如:在讲高中新教材 &4。11节《已知三角函数值求角》时,我做过这样一个可控性对比试验:

在我所教的两个平行班级中,其中一个班级直接告诉这种题目的求解方法,并总结出解题的规律:先求在第一象限的正角,然后判断:若所求角在第二象限,则为;若所求角在第三象限,则为;若所求角在第四象限,则为2。在做课后练习的过程中,非常顺利,即便是学习比较差的同学也能掌握规律,迅速得出正确答案。而另一班级,在其他条件均未改变的条件下让学生自己利用前面所学知识,通过正弦函数的图像得出结论,在这一活动中,很多学生感到困难。在作课后练习的过程中,许多同学通过与其他同学讨论才得出结果,而且只做了三道题就到了下课时间,远未完成本节课的要求。但一周以后我重新拿出这节课的一道题目,第一个班级中只有几个善于复习的同学记住了规律,做出了题目,而第二个班级有一半多的同学做出了此题。一个月后,把这道题稍加深化重新考察,第一个班级中已经没有同学会作这道题了,而第二个班级中仍有很多同学能够做出。可见,通过学生自我探索知识的过程,实际是学生获得各种能力的过程。

当然强调探索过程,也要处理好时间问题,因为强调探索过程,也就意味着学生可能花了很多时间和精力,结果却一无所获。但是,这却是一个人的学习、发展、创新所必须经历的过程,也是一个人的能力、智慧发展的内在需要,是一种不可量化的“长期效应”,而眼前耗费的时间和精力应该说是值得付出的代价。

d)利用“实习作业、研究性课题” 培养学生的实践能力及创新精神

“实习作业”和“研究性课题”是为培养学生的实践能力、创新能力而设置的,它是我国教材改革的一个重大举措,也是高中数学新教材的一大特色。但由于受功利主义的影响,也是最容易被教师遗忘的角落。

在教学过程中,我把这一部分内容采用课堂与课外相结合的原则,充分利用学生的星期天、寒暑假,鼓励学生在学习相关内容时,就做好自己假期的研究性学习计划,并安排课时进行交流,论证计划的可实施性。节假日进行社会实践,鼓励学生走向社会。学生写出了一些比较象样的学习报告、小论文等。

为了不削弱这部分内容,我把这一研究思想方法运用到平时作业的布置上,例如:找出求定义域的不同题型并解答;

综上所述,课程改革不应只是停留在观念游戏上,而应该深入到我们教学工作的实际中,真正做到通过课程改革引发实际教育教学中思想、观念、方法等的改变,把学生综合素质培养贯彻于教学过程中,使素质教育落到实处。

第二篇:高中数学教学论文 挖掘数学新教材中的美学因素及其教育功能

挖掘数学新教材中的美学因素及其教育功能

摘要:数学美是高中新课程教学中极具挖掘潜力的内容之一。本文通过对高中数学新教材中教学内容的美学因素的挖掘,阐述了数学美在培养学生的审美能力、激发学生的学习兴趣和热情、启迪学生思维,开发学生智力和创造力、提高学生分析解决问题的能力和效率等方面的作用。

关键词:数学美;简洁性;对称性;和谐性;奇异性

数学美源于人们的生产与生活中,是自然美的客观反应。普通高中《数学课程标准》指出课程目标之一是“开阔数学视野,认识数学的科学价值、应用价值和文化价值,体会数学的美学意义”。数学是人类文化的重要组成部分,数学素质是公民所备必的一种基本素质,对数学的进一步认识和了解,可以使人获得美的感受,数学的美不仅有生活中的美,更有思维领域的美,它体现在数学的简洁性、和谐性、称性性、奇异性等方面。

一,挖掘新教材中的美学因素

新教材中有丰富多彩的数学美学因素,下面主要从四个方面来挖掘教材中的美学内容。

1、简洁性

简洁性是数学美的一个基本特征。它反映出自然的简单性,是自然内在的属性,而不是人为的简单规定。数学的简洁性并不是指数学内容本身简单而主要表现在数学的逻辑结构、方法和表达式的简单性。如:5个12相乘,可以写为12×12×12×12×12,但是法却要简单得多了,的表示方

以同样的简洁表示了更复杂的内容;勾股定理,正弦正理,余弦定理等这些定理形式简洁、内容深刻、作用很大;平面的基本性质之一:“不在同一条直线上的三点确定一个平面”体现了“三点定面”的简单特性。在证明与自然数有关的问题时,数学归纳法不失为一种简洁的方法;等差、等比数列的通项、前项n和可以用公式来表示,曲线和点的轨迹可以用方程来表示等等都表现了数学的简洁美。

1、对称性

对称性是数学美的主要表现形式之一。数学中的中心对称、轴对称和镜面对称,都给人以美感,这就是数学中的对称美。例如:几何中的许多图形,圆、球、圆柱、圆锥、长方体、圆锥曲线等都体现了对称美;代数中,偶函数的图像关于y轴对称,奇函数图像的关于原点对称,反函数与原函数的图像关于直线y=x对称都给人以赏心悦目之感;二项展开式

等公式也显示一种对称美。

2、和谐性

数学的和谐性是指数学中部分与部分,部分与整体之间的和谐平衡与一致。通常表现为数学概念、规律、方法的统一,数学与其它学科的统一。例如:平面几何中梯形、三角形、平行四边形、矩形的面积公式,可以统一为;立体几何中柱体、锥体、台体的体积公式可以统一为;解析几何中,椭圆、双线、抛物线的定义可以简单地统一为圆锥曲线的第二定义;引入负数,有了相反数的概念后,有理数的加法和减法得到了统一,它们可以统一为代数和的形式;数、形本是数学研究的两个独立的对象,通过坐标系的建立,使点与数对建立了一一对应,从而把它们统一为解析几何。

3、奇异性

数学的奇异性是指数学结论或解决问题方法的新颖、奇巧、出乎意料,往往勾起思想上的震动,引起人们的赞赏与叹服。在这种意义上奇异也是一种美,奇异到极点更是一种美。例如:用数形结合法,反证法,转化法思想方法解题,用极限思想将循环小数化为分数都给人以奇特之美感;复数中,向量将复数运算与几何统一起来;原函数与反函数之间的定义域与值域的相互变换,平面图像与空间图形之间的内在联系,三角形中三条高线、三条边的中线、三个角的平分线交一点等都体现了奇异美。

此外,高中数学中有很多平滑曲线,如椭圆、双曲线、抛物线,指数函数、对数函数、幂函数的图象,这些曲线画起来流畅自然,无一不给人以美感的享受;正、余玄曲线、象波浪一样滚滚前进,给我们运动的感觉,体验到动感的美。

二、挖掘数学美在教学中的作用

高中数学新教材中,简洁美、对称美、和谐美、奇异美比比皆是。数学教学过程中,挖掘教材中的美学因素,引导学生发现数学美,体验数学美,培养学生的审美观,充分发挥数学美在教学中的作用,将是非常有意义的工作。

1、利用数学美激发学生的学习兴趣和热情

正确的学习目的对学生学好数学固然重要,但所学材料的情趣和审美价值却是学习的最佳剌激。数学教师应当充分挖掘教材的美学因素,把数学教学组织成为发现,鉴赏,创造数学的过程。

1、在“椭圆的定义和标准方程”一节的教学中,应始终抓住椭圆具有和谐美,对称美的基本特征,从定义到建系设点;从列式到布列方程;从化简到得出标准方程,无一不可以组织成为具有美学结构,使学生在积极思考状态中完成学习的一堂优质课。我认为这节课的教学应该这样处理: 由|MF1|+|MF2|=2a得

教师:方程★能不能作为椭圆的方程?(稍后)完全可以!但是你满意吗?(稍后)不满意!它不符合数学美的简洁特征,有继续化简的必要。

学生:(此时,求简的意识油然而生)经两次平方(根式化简的常规方法)整理得

教师:此方程比方程★简单多了,但它不完全符合数学美的要求。我们从椭圆的对称性,期望它的方程也应具有对称性。设得

--------椭圆的标准方程。

教师最后指出:引进的字母b纯粹是由对美的追求人为制造出来的。通过后面的学习,我们将会发现有着鲜明的几何意义,并且果真符合对称美的要求。

教师通过精心设计,生动语言、精辟的分析、严密的推理、有机的联系,定能使学生在美的熏陶中,体会到数学美的力量,从“学习数学枯燥无味”中解脱出来,进入其乐无穷的境地。这种心理上得到满足,能不使学生喜爱数学吗?

2、利用数学美培养学生的审美能力

首先教师要引导学生感知数学美,体验数学美。通过具体数学知识的学习和问题的解决,点拔蕴含其中美的因素和美的方法,加深学生对美的认识与理解。这就要求教师在平时的教学中不断地挖掘教材中的数学美的内容。

2、对六组诱导公式的记忆,可以利用它们之间的和谐关系,把它们统一于式子,得到记忆法则只要用两句简洁的话“奇变偶不变,符号看象限”,就可以了。这创造性的语言,体现了数学的统一美。三角恒等变换中需要记忆的公式很多,我们可以从这些公式的内在联系入手,首先推导公式,然后从,得到两角和与差的三角函数公式,令,又可得到两倍角公式、、,作角与式的变换,又可得到降幂公式、半角公式以及积化和差、和差化积公式。

其次,教师要引导学生评判数学美,数学教育应使学生获得对数学美的分辨能力。在数学活动中,善于了解和掌握各种数学信息,指导学生能快速,敏捷地找出数学信息的不同之处,辩出真伪,使数学信息有序化,统一化。

例3:一元二次方程的求根公式:,这一解无论从哪方面看都不对称,不和谐、不美观。但是,当我们了解它、运用它,就会感到它的价值,它的“内秀”。这一公式会告诉我们许多信息:±表示它的2个根,会显示根的数目及方程的性质。所以当你和它熟悉了,就会觉得它形式上不很漂亮,本质却是美好的。通过数学美对学生审美能力的培养,学生能在数学美享受中启迪心灵,引起精神升华,陶冶情操,提高思想品德修养,潜移默化地培养科学世界观,形成高尚的情操和对真理的执着追求。

3、利用数学美启迪学生思维,开发学生智力和创造力

简单性可寻求问题的最优解答或简缩思维过程;统一性可对命题作出类比,推广和引伸,从而发现新问题;对称性可培养学生对立统一的思维方式,提供集中思维和发散思维的思路;奇异性可激发学生探索,发现,创新等精神。

4、正方体、等边圆柱、球的表面积相同,其体积分别为_____________。

推证:设正方体的棱长为a,等边圆柱底面半径为r。球半径为R,则大小关系为则所以

所以 因为,所以

这个例题,基础好的同学可以推导出结论,但感觉很繁。基础较差的同学基本上就放弃了推证。若我就此只教会学生推证过程,所有同学都会感到数学枯燥无味,会失去对数学的积极情感,以致失去信心。于是我从问题与自然相互联系的统一美、和谐美思考,提出两个问题: 1)、气球为什么呈球形,而不是呈正方形、圆柱形? 2)、人从瘦变胖,脸形怎样变化?

这时同学们活跃起来,先是不明白这与例题有何关系,再经过讨论又觉得真实可信,渐渐得以明白:表面积(表皮)一定时,以呈球形的容积最大。再推广:表面积(表皮)一定时,表面越光滑的几何体体积越大。这时,我再让学生做如下例题: 例题:正四面体和等边圆锥表面积相等,体积哪个大? 学生很快答出:等边圆锥的体积较大。

至此学生已经在不自觉中接受了这种思维,但我没有结束问题,而又提出上述问题伴随的问题。使学生领略到思维中的奇异美。

5、正方体、等边圆柱、球的体积相等,其表面积分别为S1,S2,S3,则S1,S2,S3的大小关系为__________。

这次,学生很快就得出结论:S1S2S3。

并总结:体积一定的几何体,以球的表面积最小。

这样,学生对这个数学问题的掌握、理解就比较透,也有利增强学生的学习兴趣,培养其创新意识。也正是在这样的教与学中,蕴含着数学思维的对称美、奇异美、和谐美,让人有返璞归真的感觉。

4、利用数学美提高学生分析解决问题的能力和效率 出于数学美的考虑而导致解题思路的设计与发现,叫做以美启真,这种解题策略将数学的简洁美、对称美、和谐美、奇异美与问题的条件或结论相结合,再凭借知识、经验与审美直觉,从而确定解题总体思路或入手方向。于是,美的启示就帮助学生提高分析解决问题的能力,从而形成了数学中的美学方法。

6、设x+y+z=0,分析:由已知可看出,条件具有对称性,字母x,y,z分别作轮换,作为整体在轮换下保持不变,为追求欲求式中三项的和谐统一,审美直觉心理倾向于每个括号里各添一项,美化成关于的统一式

解:原式=x+y+z

=(x+y+z)-3=-3 通过数学美的指引,获得了解题的突破口,问题得到了完美的解决,使学生体会到数学美的作用。当学生真正领悟数学中的美学因素,所带来的快感莫过问题的解适合心灵的需要,我们在解题教学中若能充分注意到这一点,将会大大促进学生逻辑思维的发展。如此的问题要 4 靠我们教师在教学中挖掘并总结。我们应充分利用数学的美学因素进行教学分析和解题研究,以便提高学生分析问题的能力和效率。

以上观点及论证,足以说明数学美学因素所起的作用,它在不知不觉中充当了目标取舍、方向确定、方式选择的重要决策因素(这是审美能力的体现)。我们数学的教与学,若能更多地挖掘数学新教材中的美学因素,就会使学生灵活运用数学知识,活跃数学思维,进而增强学生对数学的积极情感,提高学生分析数学问题的能力和效率。使我们的课堂展现出现更强的活力和魅力。

参考文献:

[1]肖柏荣潘娉姣主编,数学思想方法及其教学示例,江苏教育出版社,2000 [2]梁俊奇徐华伟,审判直觉与数学解题,数学通报,10,26-28,2002 [3]谭本远,数学审美信息六要素,数学通报,4,8-10,2002 [4]徐素平,中学数学思维中的美学因素,数学通报,3,20-22,2003 [5]中华人民共和国教育部制订,数学课程标准,人民教育出版社,2005

第三篇:高中数学教学论文:深化数学美的探究,全面推进素质教育

高中数学教学论文:深化数学美的探究,全面推进素质教育

一、本课题研究的背景和依据

综观当前的教育形势,举国上下正在全力推进素质教育,培养德智体美劳全面发展,具有创新意识和实践能力的人才已成为教育者关注的焦点。德育已得到高度的重视,教育界高举“德育领先”旗帜;智育在传统教学中有着深厚的根基,重视程度不言而喻;体育本着全民健身的宗旨,活动有声有势;劳动教育或许与生活实践比较密切,也相应受到越来载多的人的关注;然而,美育?„„美育没有受到相应的重视!此外,我们在谈论人文精神的时候,常常把人文精神定位在追求“真、善、美”和人的全面自由的发展之最高层面上,在讨论艺术美的理论中,也常常谈到“真、善、美”三位一体的问题。怀特海曾经指出,数学是真、善、美的辩证统一。一个正确的数学理论,反映客观事物的本质和规律,这就是真;数学理论不管离现实多远,最后总能找到它的实际用途,体现其为人类服务的价值取向,这是数学的善;数学理论本身的奇特、微妙、简洁有力以及建立这些理论时人的创造性思维这就是数学的美。

而这些观点在数学过程中是否得到充分的体现吗?没有!苏霍姆林斯基曾说:“没有审美教育就没有任何教育”。在此,不想夸大美育的作用,但是,作用素质教育的重要组成部分,未能得到充分重视,确是深感遗憾。值得高兴的是,高中数学课程标准(讨论稿)已提出了数学教育必须注意培养学生的科学精神和人文精神,特别是“数学与文化”这一单元体现了数学文化的一个重要功能是在美学方面,这种功能是鼓舞人们对数学的追求化为一种对完善的追求。基于此,提出本课题的研究,或许对中学数学教学中加强美育提供有益的启示。

二、研究目标和内容

<一>数学美的表现

美,作为现实事物和现象,物质产品和精神产品,艺术作品等属性总和,具有匀称性、比例性、和谐,色彩变幻。鲜明性和新颖性,作为精神产品的数学就具有上述美的特征。我们知道,数学的世界,是一个充满了美的世界:数的美、式的美、形的美„„,在那里,我们可以感受到和谐、比例、整体和对称,我们可以感受到布局的合理,结构的严谨、关系的和谐以及形式的简洁。

数学美的表现形式是多种多样的,从数学内容看,有概念之美、公式之美、体系之美等;从数学的方法及思维看,有简约之美、类比之美、抽象之美、无限之美等;从狭义美学意义上看,有对称之美、和谐之美、奇异之美等。

经通过对数学美表现的研究,我们可以肯定的回答,数学中含有美的因素,数学发展受美育思想的影响,在此,可以借助古代哲学家、数学家普洛克拉斯断言:“哪里有数,哪里就有美。”

<二>数学美的功能:

审美教育的范围正日益广泛地渗透到人类社会的各个领域之中。人们不仅通过音乐,艺术,而且通过自然美、社会美、科学美,得到美的熏陶,美化精神的境界。美育,对使学生树立正确的审美观,提高学生的审美能力和审美创造能力,塑造学生完善的人格,促进学生的全面发展,有着非常重要和积极的作用。

数学美的功能,主要体现在下面几个方面:

(1)数学美能够培养人们创造、发明数学的激情。

(2)数学美能启发人们探求真理的思路。

(3)数学美感有检验真理的作用。

(4)寓美于教,能激发学生的学习兴趣。

(5)数学美感能达到以美启智,提高学生解决问题的能力。

<三>数学美之教育途径

在科学美层次上,提高学生的科学素养。科学和艺术一样,都有自己的美学特征,起着陶冶情操,完善思维品质的作用。其中包括:科学发现中的美学感悟,探索科学规律获得的愉悦,科学思维方法的美妙等诸多方面。科学美的发掘,可以通过种种渠道进行,包括视觉上的美,情理之中意料之外的“惊讶美”,证明技巧运用中的“机智美”,解决生活实际问题时的“实用美”,撰写小论文时的感受到的“创造美”。在中学数学教学过程中,我们可以从中学数学教材内容的美,如概念之美、证明之美、体系之美、无限之美、平衡之美等方面加以探讨,带领学生进入数学美的乐园,陶冶精神情操,激发他们的学兴趣,提高学生的审美能力,培养创造性思维能力。

提高学生的审美能力,教师应当作为必要的审美示范,引导学生感知,欣赏数学美。另一方面,“从实践中来,到实践中去”,只有将美知识应用于实践,审能教育才有意义,学生的审美能力才能得到进一步提高,因此,数学美之教育途径主要有二:一是展示美,二是应用美。其具体探究途径如下:

1.展示隐含的美

2.挖掘数学美

3.创造数学美

4.将美学原理应用于解题实践

本文是作者参加数学骨干教师国家级培训班的研究课题,只是从宏观上对数学美育的探究,期望同仁共同探究。

第四篇:高中数学教学论文 数学美的教学功能

数学美的教学功能

摘要:本文通过数学的简洁美、对称美、和谐之美等论述了数学美在数学中的一些功能,以次激发学生学习数学的兴趣。

关键词:数学;教学;美;熏陶

中图分类号:G642.42文献标识码:A

TheTeachingFunctionsoftheBeautyinMath

BAIYong-li,NIUYong-li

(1.PingdingshanIndustrialCollegeofTechnology,Pingdingshan,Henan,467001

(2.No.4MiddleSchoolofPingdingshanCoalIndustry(Group)Co,Ltd,Pingdingshan,Henan,467000)

Abstract:Thearticlewitnessessomefunctionsofthebeautyinmathteachingthoughmath’sbeautiesofcompact,symmetryandaccordanceforthepurposeofarousingthestudents’interestsinstudyingMath Keywords:math;teaching;beautyfunction;cultivation

大数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。”

美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。作为精神产品的数学就具有上述美的功能。当今,审美教育的范围正日益广泛地渗透到人类社会的各个领域之中。人们不仅通过音乐、艺术,而且也通过自然美、社会美、科学美,得到美的熏陶,美化精神境界。数学教学的目的之一,应当是让学生对数学美具有一定的审美能力,这不仅有利于激发他们对数学科学的爱好,也有助于他们的创造发明能力。

基于上面数学美的论述,下面就谈谈数学美的功能。

(1)追求数学美,深刻理解知识

我们说,数学的发明和创造,除了反映客观世界的数量关系和空间形式,还来源于对美的追求。衡量一个理论是否成功,不仅有实践标准,逻辑标准,还有美的标准。当一种理论尚未达到美的境界时,就必须继续改进发展,“按照美的规律来制造”。我们来看解析几何中的一个例子。

众所周知,圆锥曲线的标准方程形式是十分优美、匀称,它给人以一种美的享受。就双曲线而言,平面内与两个定点F1、F2的距离之差的绝对值是常数(小于│F1F2│)的点的轨迹叫做双曲线。如图1,取过焦点F1、F2的直线为x轴,线段F1,F2的垂直平分线为y轴建立直角坐标系,设M(x,y)是双曲线上的任意一点,焦距是2c,M与

F1,F2两点距离之差绝对值等于常数2a,则得其标准方程为=1。

在数学过程中,可以提出为什么要取“2c”与“2a”,而不取“c”与“a”呢?为什么要引进b呢?为何叫标准方程呢?

按照双曲线的定义得p={M││MF1│-│MF2│=±2a,此可作为双曲线方程。但它不符合简单性原则。故方程可化为(c2-a2)x2-a2y2=a2(c2-a2)即

我们说,此方程简单多了。但是,双曲线具有对称性,它所表示方程也该有对称性。于是,由于c2-a2>0,故令c2-a2=b2,即得

=1,此式是如此简洁优美。至此,我们清楚知道,一开始选择“2c”、“2a”正是为了追求简单性,而产生b是人为制造的,但实践证明,b正好是双曲线虚半轴,又具有鲜明几何意义。为何称为标准方程呢?应该说,对于同一个双曲线,建立不同的坐标系就可得到不同方程,1

其中若不规定一个作为标准的,那人们就没有共同的语言。如此教学,通过深挖教材中数学美之因素,既能阐明问题的本质,又能提高学生的完美能力,增强创造意识。

(2)寓美于教,培养学习兴趣

首先,我们可以看一看如下例子。据说,古希腊数学家帕普斯是丢番图最得意的一个学生,他很小的时候就跟随丢番图学习数学。有一天他向老师请教一个问题:有四个数,把其中每3个相加,其和分别为22、24、27、20,求这四个数。这个问题看起来很简单,但具体做起来却有一定的复杂性。帕普斯请教丢番图有没有什么巧妙的方法可以解答这个问题。丢番图提出了一个巧妙的解法,他不是分别设四个未知数,而是设四个数之和为x,那么四个数就分别为x-22,x-24,x-27和x-20,于是有方程x=(x-22)+(x-24)+(x-27)+(x-20)。解之得x=31。从而得到四个数分别为9、7、4、11。对老师漂亮的解法帕普斯非常佩服,从而坚定了毕生研究数学的意愿,后来成了一位著名的数学家。

另外,我们知道,对数学的学习是比较机械的、枯燥的。如在本章学习之前,先提出一个问题,“一张0.01mm厚的纸折叠十次以后,有多厚”学生是可以计算得了。再此,又提出问题,若是折了100次呢?有的学生或许可以算得,估算即为2100层纸厚,为2100=(210)10≈(103)10=1030即为103×0.01×0.01×0.01km=1022km,这有1022公里长度。学生都为之惊叹。这一数字,只是估算,学生有趣、好奇,它的新颖奇特在学生的心灵中引起了一种愉快的惊异,趣中孕育着“美感”。进一步为了解决这一繁而惊人的计算,因而追求计算的“简单性”──数学美的表现形式之一,导致了对数计算方法的产生。学生带着兴趣、美感、追求,开始学习对数运算。又如,在学习完黄金数x=W以引申出,建筑物的窗口,宽与高度的比一般为W;人们的膝盖骨是大腿与小腿的黄金分割点,人的肘关节是手臂的黄金分割点,肚脐是人身高的黄金分割点;当气温为23摄氏度时,人感到最舒服,此时23:37(体温)=0.618;名画的主题,大都画在画面的0.618处,弦乐器的声码放在琴弦的0.618处,会使声音更甜美。建筑设计的精巧、人体科学的奥秘、美术作品的高雅风格,音乐作品的优美节奏,交融于数的对称美与和谐美之中。

(3)具有和谐美、对称美的例题,能达到以美启智,提高学生探索问题和解决问题的能力。解析几何是用数研究形的数学分科,形数结合是研究解析几何的基本观点,运动变化是解析几何的主导思想。若能注意点拨这一优美、和谐的知识结构,将可以增强学生的“美的意识”。例如,抛物线x2=8y的焦点为F,点M(-2,4),P为抛物线上一点,求P点坐标,使得│PM│+│PF│最小。

若以常规方法,设P(x,y)为抛物线上一点,则│MP│+│PF│=

它来自于解析几何知识结构以及“美的意识力”的思考。它来自于解析几何知识结构以及“美的意识力”的思考。

证明三角形三内角的平分线小于三边的连乘积。

如果记三角形的三边分别为a,b,c,它们上的平分线相应为ta,tb,tc,如图所示。那么要证明的结论是tatbtc

在这个式中,无论是对ta,tb,tc来说,还是对a,b,c来说都是对称的。要证的结论也是对称的,但一般的不可能有ta

因为S△ABC=s△ABD+S△ADC,从该题看出,审美帮助我们进行猜测,为解题指出了方向。事实上,为了满足某些条件,满足某种和谐关系,事物必须是完美的。这反映了数学解题中美与真的统一。

第五篇:数学教育论文初中数学素质教育论文

数学教育论文范文初中数学素质教育论文

如何让学生在数学教学中受到创造素质的教育

摘要:“创新教育”是以培养人的创新能力为基本价值取向的教育,其核心是创新能力的培养。培养创造性思维能力,发展学生的创新精神,是教学教育的重要任务。在数学教学中,通过对中小学生施于教育和影响,促使他们去认识数学领域的新发现、新思想、新方法等,掌握其一般规律,培养他们具有一定的数学能力,为将来成为创新型人才奠定数学素质基础。即在全面实施教学素质教育的过程中,着重研究和解决如何培养中小学生对数学的创新意识、创新思维、创新技能以及创新个性的问题。我们要正确认识数学中的创新教育。

关键词:数学;教学;素质;兴趣

过去教育由于受到应试教育观念的影响,未能充分发挥数学教育在培养学生创造方面的作用,这种以应试为主的教育严重阻碍了学生创造力的发展。数学教育改革,应把现在所提出的学生几大能力的培养提高到培养创造性思维能力的高度上来认识,用以指导数学教学实践。我们广大教师要充分利用数学教育的阵地,要更新观念,不断改进方法,使学生受到创造素质的教育,为培养跨世纪的合格人才作贡献。本文就数学创造教育在当前应当确立和强化的几种观念,作些探讨。

一、激发学生学习数学的兴趣

数学教学激发学生学习兴趣的重要的一环,如果抓住了学生的某些心理特征,对教学将有一个巨大的推动作用。兴趣是学习的最佳营养剂和催化剂。培养学生学习数学兴趣的途径是多种多样的,除了和谐,融洽的师生关系外,更重要的是选择适当的教学方法,作为数学老师应努力使学生热爱数学,才能对学习有兴趣,只要有兴趣,才能学好数学。好奇心对知识的学习有重要的作用,对于理论性强的数学学科,学生的好奇心对知识的学习掌握具有不可小视的作用。教学不断激发学生的好奇,又不断创造条件和机会满足这种好奇心,增强学生学习数学的兴趣,学好数学知识,培养数学能力,发挥学生的自主性,启发学生的思维、激发学生创新、培养学生的数学综合能力,完成教学任务。

二、和谐师生关系,营造宽松的教学环境

良好的师生关系是培养学生创新能力较适宜的“气候”和“土壤”。以“升学率”为教育目标的应该教育,使得教师和学生都处于高度紧张的机械的知识传授中,很难形成创新意识,这些严重阻碍了创新能力的培养。因此,在数学教学中,应转变过去提倡的教师“教”和学生“学”并重的模式,实现由“教”向“学”过渡,创造适宜于学生主动参与、主动学习的活跃的课堂气氛,从而形成有利于学生主体精神、创新意识、创新能力健康发展的宽松的教学环境。

三、让学生自主地学习知识、培养能力

新课标是时代的产物。新课标要求改变过去的教学模式,把学生被动的完成教学任务转化为主动地学习知识、培养能力,让学生自己的事情自己做主,给学生做主的机会,让他们独立处理事情,让学生自己努力把事情做好,增强他们的成就感、自信心,发挥学生的主观能动性,培养学生主人翁责任感。这样,学生不是被动接受知识的容器,而是有着很强的主观能动性的独特个体。因此,在数学教育教学过程中,我们一定要把学生作为学习的主人,让学生自己主宰自己,我们只能为学生创设情境及学习的条件,给学生一个学习的处方。

四、设计好的教学方法

教学方法既有科学性,又有艺术性。它必须符合学生的认识规律和心理特点。教学是一种复杂、细致、创造性的劳动,需要比较高的教学技巧。同一种教学方法,由于教师运用的技巧不同,往往产生不同的教学效果,教师只有深入研究,博采众长,才能设计出自己好的教学方法。只有不断提高自己的艺术水平,才能很好地完成教学任务。教学方法的设计可以从多方面来考虑。可以针对一堂课或一个知识单元的教学总体设计,也可从整个学期的目标来设计,设计的主要任务是根据前面所说的几条依据和评价标准,选取最合适的元素,进行最优的结合。

下载高中数学 挖掘数学新教材的教育功能 全面推进素质教育论文word格式文档
下载高中数学 挖掘数学新教材的教育功能 全面推进素质教育论文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐