试析综合物探在水利枢纽工程坝址勘探中的应用和意义(合集)

时间:2019-05-14 20:29:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《试析综合物探在水利枢纽工程坝址勘探中的应用和意义》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《试析综合物探在水利枢纽工程坝址勘探中的应用和意义》。

第一篇:试析综合物探在水利枢纽工程坝址勘探中的应用和意义

试析综合物探在水利枢纽工程坝址勘探中的应用和意义

陈林

湖南省地质矿产勘查开发局四零七队湖南 怀化 418000

摘要:本文从综合物探技术在某水利枢纽工程坝址区勘探中的实际应用来论述,分析了经济、合理地应用综合物探,对提高物探成果的解释精度和取得最佳的经济效益和社会效益的作用。根据地质、地球物理特征选择合适的方法和工作参数,阐述了用高密度电阻率法、地震映像法等,有效的查明坝址区覆盖层厚度、基岩风化分带和断裂构造的位置和产状等工程地质情况,为选址提供科学依据。事实也证明了综合物探的有效性和优越性。关键词:综合物探;地震勘探;电测深法;工程勘察。

中图分类号:P315文献标识码:A文章编号:

物探是地球物理勘探的简称。因为所要探测的地质对象与周围介质存在某种物性差异,而这种物性差异可影响被寻找地质体周围某种天然或人工物理场的分布特征,所以物探能够解决或查明有关地质和工程问题。物探技术通过利用先进的物探仪器来摄取这些物理场的分布并与均质条件下的物理场相比较,找出两者有差异的部分来研究与勘探对象之间的关系,从而达到解决地质问题的目的。

物探方法的门类众多,它们所依据的原理和使用的仪器设备也各有千秋,随着科学技术的日益进步,物探技术发展迅速,并且日趋成熟,新的方法技术不断涌现,几年前还被认为是无法解决的问题,几年后由于某种新技术、新方法、新仪器的出现迎刃而解,这种实例是很常见的。物探技术是地质科学中一门新兴的、充满活力并且发展迅速的学科,它是工程勘察的重要方法之一,从某种程度上来说,它的应用与发展已经成为衡量地质勘察现代化水平的重要标志。由于水利水电工程物探技术实际应用时是测量地质体或者探测对象与周围介质的某一物理特征参数(如弹性波速、电磁波速、密度、电阻率、放射性等),所以根据其测试参数的不同,可以将物探技术大致分为以下几种探测方法:①电法勘探;②地震勘探;③弹性波测试;④物探测井;⑤层析成像;⑥地质雷达技术;⑦放射性勘探;⑧水声勘探;⑨综合测井等。由于不同物探方法的应用都依据不同的物理前提,并且地质、地球物理条件和边界特征的差异对测试成果具有较大的影响,使得这些方法技术存在着一定的条件性和局限,加上大部分大中型重点工程都具有比较复杂的地质和工程问题,所以

如果采用单一的物探方法一般是难以查明或解决有关地质和工程问题,那么此时就应考虑采取综合物探进行施测,从而提高物探成果的地质解释精度和成果分析质量,满足工程勘察的需要。

1工程概况

某水利枢纽工程是叶河干流山区下游河段的控制性水利枢纽工程,具有防洪、灌溉、改善生态和发电等综合效益。工程位于新疆阿克陶县库斯拉甫乡,坝址区河床部位有深厚覆盖层存在,并且覆盖层内有胶结与半胶结地层及砂层存在,地质情况比较复杂,为查明坝址区河床内覆盖层厚度和分层情况,并获取各地层动力学参数,同时查明覆盖层内胶结砂砾石层的埋藏深度、厚度和分布范围,物探开展了以电测深法、地震折射波法、地震反射波法、面波法、地震单孔测井和地震跨孔对穿测试法等多种方法的综合物探技术工作。

主河道在坝址区偏向河床右岸,河水面宽度60~100m,水深1~3m,河床主要为含漂石砂卵砾石层,坝址区右岸山体陡峻,坡度在700~800,左岸山体相对平缓,两岸山体基岩裸露,出露岩体以灰岩、白云质灰岩为主,岩石坚硬,岩性由石英砂岩、泥页岩和层状灰岩等构成。

根据测试结果,河床表层松散砂卵砾石层纵波速度600~1200m/s,横波速度小于400m/s,含水较密实砂卵砾石层纵波速度1900~2400m/s,横波速度600~1200m/s,胶结砂卵砾石层纵波速度2600~3800m/s,横波速度800~1200m/s,砂卵砾石层电阻率260~6000Ω•m,较完整岩体纵波速度4500~5200m/s,完整岩体纵波速度5200~6200m/s,电阻率400~900Ω•m。从岩土之间存在较明显的波速和电阻率差异来看,该区域具备地震和电法勘探的应用条件。

2工作方法选用与工作布置

2.1工作方法选用

为了排除和减少物探资料的多解性,提高勘探精度,在工作中选用了多种勘探方法进行综合勘探,具体工作布置及方法选用如下:

2.1.1电测深法

陆地采用对称四极装置,水上采用三极对称装置,MN/2:AB/2=1:10,最小AB/2为2m,最大AB/2以可充分反映目的层和曲线完整为原则,工作目的为结合地震反射波法查明河床内覆盖层厚度。

2.1.2地震反射波法

采用2m道间距,60Hz检测器12道接收,使用6次覆盖技术滚动采集,陆地使用锤

击、水面采用爆炸的激发方式,工作目的为配合电测深法查明河床内覆盖层厚度。

2.1.3地震折射波法

采用追逐相遇观测系统,5m道间距,38Hz检波器24道接收,锤击震源,工作目的为查明河床覆盖层内胶结层的埋深和分布范围。

2.1.4面波法

采用1~2m道间距,4Hz检波器接收,24道采集,偏移距为5m和10m等距离,锤击震源,工作目的为配合地震折射波法查明河床覆盖层内胶结层的埋深、厚度、分布范围及获取地层横波速度。

2.1.5地震单孔竖井波速测试

单孔测试采用地面锤击,孔中接收,浅部地层测试偏移距1~2m,较深部地层测试偏移距3~5m,测试点距1~2m,采用三分量检波器接收,竖井测试采用地面扣板法激发,在竖井内接收的方式,测试点距1.0m,工作目的为获取河床内覆盖层纵波速度。

2.1.6跨孔对穿CT测试

钻孔间地震跨孔对穿CT测试采用一个孔内爆炸激发,另一个孔内使用12道检波器串接收的方式,自孔底向上呈扇形连续测试,激发点距1.0~2.0m,接收点距2.0m,工作目的为获取河床覆盖层内纵波速度及胶结层的埋深、厚度和分布范围。

2.2工作布置

为了能够全面查明坝址区河床内覆盖层厚度,胶结层埋深、厚度分布情况,以及获取覆盖层内纵波速度等,物探工作布置如下:

2.2.1地面工作布置

在坝址区河床内上游围堰至下游辅助剖面共布置了6条跨河剖面,即I一I趾板线剖面,长度300m;Ⅱ一Ⅱ心墙坝轴线剖面,长度256m;Ⅲ一Ⅲ面板坝轴线剖面,长度347m;Ⅳ一Ⅳ下游辅助剖面,长度347m;V一V下游辅助剖面,剖面长度397m,剖面方向1660;Ⅷ一Ⅷ上游围堰剖面,长度445m。两条近平行河流方向剖面,即顺河Ⅵ一Ⅵ剖面,长度775m;顺河Ⅶ一Ⅶ剖面,长度593m。

2.2.2钻孔波速测试

对河床内所有的钻孔中进行了覆盖层波速测试,并对ZK29与ZK29—1,ZK25与ZK26两对孔间覆盖层内进行了跨孔对穿CT测试。测试成果

3.1坝址区河床内地面工作成果

3.1.1I—I址板线剖面测试成果

表层松散砂卵砾石层厚度6~12m,地震纵波速度620~2300m/s,横波速度小于400m/s,胶结层顶板埋藏深度6~12m,地震纵波速度2700~3800m/s,胶结层以下砂卵砾石层纵波速度1900~2600m/s,横波速度400~650m/s。左岸基岩埋深相对较浅,基岩埋深20~50m,右岸基岩埋深60~96m,基岩纵波速度4000~6000m/s。

3.1.2Ⅱ一Ⅱ心墙坝轴线剖面测试成果

表层松散砂卵砾石层厚度6~16m,地震纵波速度450~1600m/s,横波速度小于400m/s,胶结层顶板埋藏深度6~16m,地震纵波速度2900~3300m/s,胶结层以下砂卵砾石层纵波速度2100~2800m/s,横波速度400~550m/s。左岸基岩埋深15~60m,右岸基岩埋深70~97m,基岩纵波速度4000~6000m/s。

3.1.3Ⅲ一Ⅲ面板坝轴线剖面测试成果

表层松散砂卵砾石层厚度5~12m,地震纵波速度620~2400m/s,横波速度小于400m/s,胶结层顶板埋藏深度5~12m,地震纵波速度3000~3800m/s,胶结层以下砂卵砾石层纵波速度1900~2800m/s,横波速度400~600m/s。左、右岸基岩埋深30~60m,中部基岩埋深70~98m,基岩纵波速度5000~6000m/s。·

3.1.4Ⅳ一Ⅳ下游辅助剖面测试成果

表层松散砂卵砾石层厚度一般8m,地震纵波速度1060~1800m/s,横波速度小于400m/s,胶结层顶板埋藏深度一般8m,地震纵波速度2500~3700m/s,胶结层以下砂卵砾石层纵波速度1900~2800m/s,横波速度600~760m/s。左、右岸基岩埋深20~58m,中部基岩埋深70~100m,基岩纵波速度5000m/s以上。

3.1.5V一V下游辅助剖面测试成果

表层松散砂卵砾石层厚度6~15m,地震纵波速度670~1700m/s,横波速度小于400m/s,胶结层顶板埋藏深度6~15m,地震纵波速度3000~3600m/s,胶结层以下砂卵砾石层纵波速度1900~2600m/s,横波速度600~900m/s。左、右岸基岩埋深20~56m,中部基岩埋深70~95m,基岩纵波速度5500m/s以上。

3.1.6Ⅷ一Ⅷ上游围堰剖面测试成果左岸基岩埋深20~36m,右岸基岩埋深70~94m,砂卵砾石层纵波速度900~1200m/s,基岩纵波速度4900~6000m/s。

3.1.7Ⅵ一Ⅵ顺河剖面测试成果

表层松散砂卵砾石层厚度8~12m,地震纵波速度690~1100m/s,横波速度小于400m/s,胶结层顶板埋藏深度8~12m,地震纵波速度2400~3400m/s,胶结层以下砂卵砾石

层纵波速度1900~2300m/s,横波速度460~860m/s。基岩埋深56~68m,基岩纵波速度5600~6000m/s。

3.1.8Ⅶ一Ⅶ顺河剖面测试成果

表层松散砂卵砾石层厚度6~11m,地震纵波速度900~1200m/s,横波速度小于400m/s,胶结层顶板埋藏深度6~11m,地震纵波速度2400~3700m/s,胶结层以下砂卵砾石层纵波速度1900~2300m/s,横波速度500~990m/s。基岩埋深72~80m,基岩纵波速度4600~6000m/s。

3.2跨孔对穿CT测试成果

3.2.1ZK25~ZK26CT对穿测试成果

孔深0~6m为松散砂卵砾石层,地震纵波速度1860~2140m/s,6~19m反映为胶结层,地震纵波速度2900~3800m/s,由ZK26向ZK25方向逐渐变深,深度19~50m为较密实、均一砂卵砾石地层,地震纵波速度2150~2450rn/s。

3.2.2ZK29~ZK29—1CT对穿测试成果

孔深0~6m为松散砂卵砾石层,地震纵波速度760~2300m/s,6~17m为胶结层,地震纵波速度3000m/s左右。胶结层中夹有一连续低速地层,厚度1m左右地震纵波速度1100~1900m/s,胶结层以下砂卵砾石层为均一砂卵砾石层,地震纵波速度1600~2700m/s。

4结论与分析

坝址区河床内松散砂卵砾石层厚度6~12m,局部厚度达16m,地层纵波速度600~1200m/s,横波速度小于400m/s,胶结层在河床砂卵砾石层内均有分布且比较连续,胶结层顶板埋藏深度6~12m,厚度3~8m,地震纵波速度速度2700~3400m/s,胶结层以下砂卵砾石层密度均一,地震纵波速度速度1900~2600m/s。坝址区左右岸基岩埋深相对较浅,坝址区上游偏右岸至下游中部有一深槽贯通,最深处可达100m。5结束语

随着电子和数据处理技术的发展,水利水电工程物探技术也随之提高和拓宽,许多新技术、新方法在生产实践中显示出强大的生命力而不断的发展完善,应用范围也不断拓宽;如地质雷达技术、面波勘探技术、电阻率层析成像和地震(声波)CT技术等都在工程实践中取得了良好地应用效果,发挥着愈来愈重要的作用;其中由于遥感技术不仅能克服地面点、线调查的局限性及视野的阻隔,使人们能从整体上宏观地进行地质研究,而且还能提供各种电磁波的地质信息,其中微波能穿透植被和第四纪地层,提供一定深度范围的地质

信息。此外,还可以对一个地区反复成像,以取得最新的精确的地质动态资料的原因,最近应用很多。

然而就某种物探技术方法的作用而言,应视其解决具体地质或工程问题的适宜性和效果进行评判,无论哪一种先进的物探技术方法,由于它们所测试的物性特征参数各异,往往也只是其它方法的补充和印证,而不是对常规物探方法的取代或覆盖。许多常规的物探方法,如电测深法、联合剖面法、地震折射法等,其作用和效果仍不可忽视和低估,事实表明,采用综合物探技术和综合分析解释,使各方法成果相互佐证,取长补短是提高物探资料解释精度和可靠性的必由之路。综合物探决不是多种方法和手段的任意罗列,也不是投入的方法和手段越多越好,而应是最佳方法或手段的优化组合,使其达到“技术可靠、经济合理”,达不到这一要求的物理勘探,决不能说是真正的综合物探。

总之,随着国民经济建设的飞速发展,工程建设场地(尤其是水利水电工程)的选址和开发也向纵深处发展,其场地的各种自然条件(包括地质、交通、环境等)大多较为复杂,给前期勘察工作带来诸多困难,此时均要求采用物探技术解决或了解地质和工程中遇到的难题。而作为物探技术人员应在详细分析已有勘察资料(区域性和地区性)的基础上,经过实地踏勘和现场方法试验来选择多种物探方法投入施测,以达到最佳的测试成果,多快好省地进行工程建设,发挥物探技术的先进作用。

第二篇:浅谈工程测量在水利枢纽工程中的应用

浅谈工程测量在水利枢纽工程中的应用

魏焰展(福建省漳州市水利水电勘测设计研究院,邮编363000)

摘要:随着测绘技术的迅猛发展,工程测量的方法和技术也在不断地进步和更新。结合工程测量在水利枢纽工程中的应用,本文概括了工程测量的相关理论,并阐述了工程测量在水利枢纽工程应用中的特点。关键词:工程测量;水利枢纽工程

1概述

水利工程源远流长。公元前21世纪禹奉命治理洪水,已有“左准绳,右规矩”,用以测定远近高低。20世纪50年代以后,测量工作吸收各种新兴技术,发展更加迅速,出现许多先进的测量仪器,为工程测量在水利枢纽工程中提供了先进的技术和工具,向现代化、自动化、数字化方向发展创造了有利条件。2流域规划阶段的测量

由于流域规划是在整个流域地区进行,因此,不仅要对河流中径流的水利资源进行规划,同时也要对该区域地下水源进行规划。流域规划的主要内容之一是制定河流的梯级开发方案,合理地选择枢纽的位置和分布。在进行梯级布置时,不仅需要在地形图上确定合适的位置,而且还应确定各水库的正常高水位。为此,测量人员应提供该流域内的地形图、河流纵横断面图以及河谷地形图。可收集国家基本图或其他勘测单位的现有图提供设计使用。在收集资料时,除具体成果、成图外,还应收集下列资料:施测单位、时间、作业规范,标石耐久程度和保存情况,实测结果所达到的各项精度指标,所采用的坐标系统等。根据需要有时还要测定河流水面高程,测定局部地区河流的横断面及水下地形图。

2.1河流水面高程的测定

尽管在河流上每隔一定的间距设有水文站,但要详细了解河流水面的变化特征,仅靠水文站的观测是不够的。因此,还必须沿河流布设一定数量的水位点,以测定水面高程及其变化,水位点应尽可能位于河流水面变化的特征处。水位点的密度应根据河流的比降、落差、横断面形态变化等来确定,同时也要考虑各设计阶段的要求。为了测定水面高程,首先沿河流建立统一的高程控制,然后再设立水位点进行水位观测。建立高程控制时,通常是在河流沿线布设一定数量的高程控制点,它们应尽可能布设在靠近河岸但又不致被洪水淹没、较为稳定的地点,且最好与待测水位点位于同岸;它们的分布尽量与水位点的位置相对应。控制点的高程一般采用等级几何水准法测定,其精度要求要视地形条件、水面比降和路线长度而定。

2.2横断面测量

对垂直于路线中线方向的地面高低所进行的测量工作称为横断面测量。横断面的位置一般可根据设计用途由设计人员会同测量人员先在地形图上选定,然后再现场确定。横断面应尽量选在水流比较平缓且能控制河床变化的地方。为方便于水深测量,横断面应尽可能避开急流、险滩、悬崖、峭壁,断面方向应垂直于河槽。横断面的间距视河流大小和设计要求而定,一般在重要的城镇附近、支流入口,水工建筑物上、下游和河道大转弯处等都应加设横断面;而对于河流比降变化和河槽形态变化小、人口稀少和经济价值低的地区,可适当放宽黄断面的间距。横断面的位置在实地确定后,应在断面两端设立断面基点或在一端设立一个基点并同时确定断面线的方位角。断面基点应埋设在最高洪水位以上,并与控制点联测,以确定其平面位置和高程。断面基点平面位置的测定精度不低于编制纵断面图使用的图根控制精度;高程一般应以等外水准测定。当地形条件限制无法测定断面点的平面位置和高程时,可布设成平面基点和高程基点,分别确定其平面和高程。横断面的编号可以从某一建筑物的轴线或支流入口处由上游向下游或下游向上游的顺序统一编号,并在序号前冠以河流名称或代号,还应注出横断面的里程桩号。横断面常用的方法有:断面索法、交会法、GPS(RTK)法等。

横断面测量的精度要求:横断面地形点的精度,包括地形点对中心线桩的平面位置中误差:平地、丘陵地应≤±1.5m,山地、高地应≤±2.0m;地形点对邻近基本高程控制点的高程中误差应≤±0.3m。

横断面测量的测设要求:

1、中心线与河道、沟渠、道路等交*时,应测出中心线与其交角。当交角大于85°、小于95°时,可只沿中心线施测一条所交渠、路的的横断面;当交角小于85°或大于95°时,应垂直于所交渠、路和沿中心线方向各测一条断面。2横断面通过居民地时,一侧测至居民地边缘,并注记村名,另一侧应适当延长。横断面遇到山坡时,一侧可测至山坡上1~2点,另一侧适当延长。3横断面上地形点密度,在平坦地区最大点距不得大于30m。地形变化处应增加测点,提高横断面的精度。

外业工作结束后,应对观测成果进行整理,检查和计算各测点的起点距,由观测时的工作水位和水深计算各测点的高程,然后将河道横断面图按一定的比例通过cass等软件在计算机上绘制并打印。

2.3纵断面编绘

河道纵断面是指沿着河流深泓点(即河床最低点)剖开的断面。用横坐标表示河长,纵坐标表示高程,将这些深泓点连接起来,就得到河底的纵断面形状。在河流纵断面图上应表示出河底线、水位线以及沿河主要居民地、工矿企业、铁路、公路、桥梁、水文站等的位置和高程。

河流纵断面图一般是利用已有的水下地形图、河流横断面图及有关水文资料进行编绘的,其基本步骤如下:

1、量取河道里程

2、换算同时水位,按距离成正比计算各点水位改正数的方法(由上游水位计算:△Hm=△HA-(△HA-△HB)/L*l1,由下游水位计算:△Hm=△HB+(△HA-△HB)/L*l2,hm= Hm-△Hm。式中△Hm中间点的水位改正数、Hm中间点处的观测水位、hm中间点处的同时水位、△HA上游水位改正数、△HB下游水位改正数、L上下游间水平距离、l1上游到中间点的水平距离、l2下游到中间点的水平距离)

3、编制河道纵断面表

4、绘制河道纵断面图

3水利枢纽工程设计阶段的测量

水利枢纽工程设计阶段的测量工作主要包括:各种比例尺的地形图测绘、水库淹没界线测量、地质勘察测量和控制测量等。

3.1控制测量

为保证工程设计阶段各项测绘工作的顺利进行,需在工程设计区域建立精度适当的控制网。控制测量的目的就是为了地形图测绘和各种工程测量提供控制基础和起算基准。控制网具有控制全局、限制测量误差累积的作用,是各项测量工作的依据。控制测量应遵循从高级到低级、由整体到局部、逐级控制、逐级加密的原则。控制测量分为平面控制测量和高程控制测量。平面控制网常用三角测量、导线测量、三边测量和边角测量等方法建立,目前,由于GPS技术的推广应用,利用GPS建立平面控制网已成为主要方法。高程控制网主要用水准测量和三角高程测量方法建立。

3.2数字化测图

3.2.1 数字化地形测量的仪器设备硬件条件数字化地形测量的仪器设备从控制测量到成果成图输出大致需要GPS接收机、全站仪、计算机、绘图仪以及与之相关的平差计算成图软件、数据传输、交换附件、通讯器材等。仪器设备配置水平较常规地形测量是一个质的飞跃。

3.2.2 数字化地形测量工作的人员素质条件数字化地形测量的技术人员应当熟练掌握测量专业技术、熟练掌握计算机及测绘软件的应用技术,这对测量人员的技术素质提出了更高的要求。

3.2.3 作业方法

在生产工序上,数字化地形测量不一定要遵守“先控制、后测图”的原则,控制测量、碎部测图可以同时进行,甚至可以是先测图后控制,只是后者需将碎部成图以控制点为基准借助成图软件进行测站(图形)纠正。在控制点点之记的制作上,数字化地形测量不一定要将其作为一个专门工作来进行,可依据最终成图编绘点之记。碎部测图在数字化地形测量中只是个数据采集的过程,成图大量的工作量从外业转移到了内业,目前,碎部成图作业方法较多,因人而异。笔者认为较为成熟的方法是简码法,特点是成图数学精度好、地物地貌要素详尽、作业效率较高。

3.2.4 简码法数字化地形测量及其作业流程

简码法是数字化地形测量过程中,观测员给每一个碎部测点赋于一个自定义编码,并依据这种自定义编

码编图成图的一种数字化地形测量方法。

简码法数字化测图作业流程为:外业数据采集(自定义编码)→内业概略编图→草图外业补充调绘→内业详细编图→外业巡回检查→最终成果成图。分述如下:

外业数据采集:该环节重点是碎部点三维坐标与自定义编码采集,强调碎部点的数学精度、采集数量和自定义编码的可自我识别程度、强调测站与棱镜之间通讯联系,而不必过分关注碎部点间的连接关系。在同一个测站上,只要能看到而视线又不是过长,宜及时采集,不必频繁搬站。自定义编码不必过于严格,只要编图时作业员自己能够识别即可,完全根据作业员的习惯和自我条件决定。值得注意的是:由于自定义编码具有一定的随便性,在增加了自我识别难度的同时,也使其具有相当的灵活性和可开发性。

内业概略编图:既然是概略编图,其原则应该定为能识别多少就编多少,能编到什么程度就编到什么程度,不能识别的在外业补充调绘时处理。这一环节只需要编出有基本轮廓的平面草图,该草图只作为外业补充调绘的工作底图,绘图输出时应包括碎部点的简码信息,最好先不要绘出等高线。

草图外业补充调绘:该环节以带简码的基本平面图为工作底图,对照实地补充绘图,加上必要的量测,应理清地物、地貌要素的属性、各种线条间的连接关系等。外业补充调绘成果图在内容上已经是详细的平面图了。

内业详细编图:根据外业补充调绘成果图修编概略草图,在此基础上构高程模型三角网绘等高线生成初步地形图。绘图输出时最好将高程模型三角网和等高线一并绘出,作为外业巡回检查的工作底图。外业巡回检查:重点是高程模型三角网的检查与修编,以及植被、境界类符号补充调绘与检查、初步成果地形图外业最终检查等。

最终成果成图:根据外业巡回检查成果图再次修编初步成果地形图,以及图面整饰图帼分幅等。人员组织:数字化地形测量的一个作业组采用简码法时宜按一名技术员+一名测量工人编制,一个项目由多个作业组施测时需专设一名核心技术人员负责质量检查、成果资料汇总、电脑维护等。

3.3水库淹没界线测量

测设移民线、土地征用线、土地利用线、水库清理线等各种水库淹没、防护、利用界线的工作称为水库淹没界线测量。这些界线以设计正常蓄水位为基础,结合浸没、塌岸、风浪影响等因素综合确定,根据需要测设其中的一种、几种或全部。边界线的测设工作通常由测量人员配合水工设计人员和地方政府机关共同进行,其中测量人员的主要任务是用一系列的高程标志点将水库的设计边界线在实地标定下来,并委托当地有关部门或村民保管。界桩分为永久桩和临时桩两类。界线通过厂矿区或居民点时,在进出处各设一各永久桩,内部若干米测设一个临时桩,主要街道标出界线通过的实际位置。大片农田及经济价值较高的林区,一般每隔2~3km测设一个永久桩,再以临时桩加密到能互相通视。只有少量庄稼的山地,可只测设临时桩显示界线通过的位置。经查勘确定不予利用的永久冻土地、大片沼泽地、陡峭坡地等经济价值很低的地区,可不测设界桩。在通常情况下,一般采用几何水准法和经纬仪高程导线法进行,目前随着空间技术的迅速发展,RTK技术定位得到广泛应用。

3.4地质勘察测量

配合水利工程地质勘察所进行的测量工作称为地质勘察测量。其基本任务:

1、为坝址、厂址、引水洞、水库、堤线、料场、渠道、排灌区的地质勘察工作提供基本测量资料;

2、主要地质勘探点的放样;

3、联测地质勘探点的平面位置、高程和展绘上图。具体工作包括:钻孔测量、井峒测量、坑槽测量、地质点测量、剖面测量等。

3.5河道测量

河道测量主要内容包括:平面、高程控制测量;河道地形测量;河道纵、横断面测量;测时水位和历史洪水位的联测;某一河段瞬时水面线的测量;沿河重要地物调查或测量。

4水利枢纽工程的施工阶段测量

水利枢纽的技术设计批准以后,即可着手编制各项工程的施工详图。水利枢纽工程施工阶段的测量工作主要包括:施工控制测量、大坝的施工放样、水工隧洞施工测量、水电站厂房施工测量、金属结构安装测量等

4.1施工控制测量

建立施工控制网的主要目的是为建筑物的施工放样提供依据,所以必须根据施工总体布置图和有关测绘资料来布设。另外,施工控制网业可为工程的维护保养、扩建改建提供依据。施工控制测量分为:平面控制网的建立,一般按两级布设,即基本网和定线网;高程控制网的建立,由于勘测期间建立的高程控制点在点位分布和密度方面往往不能满足施工的要求,因此必须进行适当的加密,也分两级布设基本网和临时性作业水准点。

4.2大坝的施工放样

大坝施工放样的主要步骤有:坝轴线的测设、清基中的放样工作、坝体分块控制线的测设、坝体浇筑中的放样工作

4.3水工隧洞施工测量

水工隧洞按其作用可分为:引水发电洞、输水洞、支洞、泄洪洞、导流洞等,其中测量精度要求最高的是发电洞及其支洞。隧洞施工测量的主要内容包括:洞外控制测量、洞内控制测量、联系测量、隧洞中心线放样、开挖断面和衬砌断面的放样等

4.4水电站施工测量

水电站厂房施工测量的主要内容包括:厂房施工控制网的建立、基础开挖测量、厂房建筑放样测量等。在建立厂房控制网时,其点位精度和点位分布都应考虑机组的安装测量。

4.5金属结构安装测量

在水电工程中,闸门、压力管道、机组设备等都是金属构件,其安装测量的精度一般较高,要建立独立的控制网,须与轴线关系保持一致。

5水利枢纽工程的变形监测

变形监测的主要观测项目:水平位移观测、垂直位移观测、挠度观测、裂缝观测、应力/应变观测、分层沉降观测、倾斜观测、渗流观测、温度观测、检查观测、滑坡崩岸观测。

变形观测的精度和周期——在制定变形观测方案时,首先要确定精度要求。对于不同的监测目的所要求的观测精度不同。观测周期与工程的大小、测点所在位置的重要性、观测目的以及观测一次所需时间的长短有关。及时进行第一周期的观测有重要的意义。

观测资料的整编和分析——资料整编的主要内容包括:收集资料、审核资料、填表和绘图、编写整编成果说明。观测资料分析其目的是对水利工程系统和各项水工建筑物的工作状态做出评估、判断和预测,达到有效地监视建筑物安全运行的目的。常用的分析方法有:作图分析、统计分析、对比分析、建模分析。结语

伴随着测绘新技术的不断进步,现代水利枢纽工程测量必将朝着测量内外作业一体化、数据获取及处理自动化、测量过程控制和系统行为智能化、测量成果和产品数字化、测量信息管理可视化、信息共享和传播网络化的趋势发展。

参考文献

[1]张正禄,李广云,潘国荣等.工程测量学[M].武汉:武汉大学出版社,2005.[2] 高井祥,肖本林,付培义等.数字测图原理与方法[M].江苏:中国矿业大学出版社,2005.

第三篇:工程物探技术在岩土工程中的应用

工程物探技术在岩土工程中的应用

工程物探技术在岩土工程中的应用 补家炎(湖南化工地质工程勘察院,湖南长沙410004)摘 要:随着岩土工程的发展,物探技术在岩土工程勘察中的应用也越来越广泛,提高了岩土工程的施工效率。在岩土工程中,常用的工程物探技术有电法勘探、浅层地震法以及高密度磁法等,在不同的岩土工程中需要根据工程的实际情况,选择合适的物探技术。本文结合笔者多年工作经验,阐述了工程物探技术原理及其在岩土工程中的应用。关键词:工程物探技术;岩土工程;实际应用 1 工程物探技术简介 工程物探技术全称是工程地球物理探测技术,在建筑领域应用十分广泛,根据原理及技术特点,可以将工程物探技术分为以下几种。1.1 电法勘探 地壳中不同物质的成分不同,电磁学性质也存在差异。电法勘探就是利用这一特性,通过检测地壳中不同区域的电磁学性质,地壳结构进行勘探。电法勘探是以介质的电性差异为基础,通过分析地壳磁场特性以及分布规律来实现当地地质结构的勘探。在工程勘察中,需根据当地的地质特征选择不同的电法勘探方法,常用的电法勘探方法有瞬变电磁法、可控源音频大地电磁法以及高密度电法等。其中高密度电阻率法勘探的系统结构示意图如图1所示。图1 高密度电阻率法勘探系统结构示意图 1.2 浅层地震法 浅层地震法是一种常用的地面探测技术,对工程的现场条件要求较高,因此更多的是应用于施工条件较好的地面探测工程中。浅层地震法具有探测精度高、勘探效果好的优点。近年来,高分辨率地震反射波法在煤矿采空区勘探中的应用十分广泛,在勘探中是利用煤炭层对发射波的反射来确定采空区的分布,勘探人员通过追踪反射波来定位采空区,确定采空区的边界。1.3 高精度磁法 高精度磁法是利用不同物质成分不同磁性不同的特性进行地质勘探。在勘探过程中,需分析磁场的结构特征,总结地质构造以及矿产资源分布对当地磁场的影响规律。地下结构具有明显的磁性特点,因此在进行地下探测时,利用高精度磁法能提高勘察精度。在工程勘察中,磁法勘探广泛应用在地面勘探、空中勘探、海洋勘探以及地下勘探中,需根据工程的特点选择合适的勘探方法,以确保勘探精度。2 物探技术在岩土工程中的应用 物探技术在岩土工程中的应用十分广泛,主要应用在以下几个方面: 2.1 界面划分 应用物探技术划分界面能确定勘探区域的地质构造,并准确划分一些不良体的地质界面。例如在某桥梁工程选址时,为了探明当地的地质构造,选用了浅孔小药量炸药震源,利用多道瞬态瑞雷波法来勘察地质构造,准确探明当地的地质构造,为桥梁的选址提供地质信息。2.2 形态判断 在岩土工程中,利用工程物探技术能准确判断地下形态,主要包括地下物体形态、地下界面形态以及地下物体埋藏深度的判断等。在某长江岸边工程勘察中,勘察人员利用探地雷达法勘察当地的地质构造,探地雷达主要是利用不同地质结构反射的雷达波形式不同实现对地质结构的勘察,在该工程勘察的过程中,底层上部以砂土层为主,砂土层下面是杂填土,在探测的过程中检测到雷达波同相轴存在间断,说明填土层中存在大量的碎石。下部的软土层在填土挤压作用下,导致了软土的分布极不均匀,反射的雷达波形也十分不均匀。2.3 参数测试 在岩土工程勘察中,利用物探技术能够全面勘察工程区域,从而为工程的施工提供地质资料,为项目的施工提供大量的数据,有效地确保施工的顺利进行。2.4 质量检测 在岩土工程施工过程中,很多项目都属于隐蔽工程,在完工以后很难通过常规的方法来检测工程施工质量,而工程物探技术能对隐蔽工程的施工质量进行全面的检测,以保证工程的施工质量。在某电厂扩建施工的过程中,项目所在地原始地貌为丘陵、沙滩以及海积阶地,地基进行了夯击加固,为了确保项目的施工质量,需要检测工程地基的稳定性。对此,综合应用了瑞雷波法与平板载荷试验法,利用夯前夯后的瑞雷波速度对比,夯后瑞雷波速度提高约30%,瑞雷波频散曲线表明,该区不同部位回填厚度不同。在岩土工程施工的过程中,应用单一的勘探技术存在不足,综合应用工程物探技术能够实现技术互补,提高岩土工程的勘察质量。综合工程物探技术的处理流程如图2所示。图2 综合工程物探技术的流程图 3 工程物探技术在岩土工程中的应用前景 工程物探技术在岩土工程中的应用前景十分广泛,具有勘察精度高、成本低以及效率高等一系列优点。近年来,随着计算机技术的进步,工程物探技术的应用得到了进一步的发展,目前,工程物探技术在岩土工中主要具有以下应用前景。3.1 地震波层析成像技术 地震波层析成像技术是一种先进的工程物探技术,主要是通过浅层地震仪对工程地质进行全面勘察。地震波层析成像技术不仅能够准确排除地表的障碍,还能全面分析地层中风化层。勘察人员可以利用地质钻探技术实现对地层的深层次剖面探测。一是电缆长度的限制,另一方面是钻井深度,限制了地震波层析成像技术的发展,对地层进行深层次的勘察,就必须要进行深部钻井,这就要求较深的钻井以及较长的电缆,而一旦钻井深度过大就无法保证电缆传输的稳定,会影响到成像的清晰度,影响勘察精度。近年来,随着钻井施工技术以及远距离输电技术的发展,制约地震波层析成像技术发展的因素影响也越来越小,地震波层析成像技术的应用前景也越来越广阔。3.2 地质雷达 地质雷达广泛应用在隧道工程的岩土勘察中。地质雷达技术提高了工程的勘察效率和精度。但在多年的应用中发现,地质雷达技术首先是探测的深度不够深,其次是在探测的过程中容易受到金属物体的干扰。3.3 隧道地震勘探法 TSP测量系统是一个优化包括硬件和软件的测量系统,它利用高灵敏度的地震检波接收器,收集由布置在隧道单侧壁上多个地震激发点产生的地震波,及其在围岩传播中遇到不同反射界面时的反射波,对经过反射界面的数据进行全面的处理和解译,结合具体的地质情况,预测影响施工的断层、岩石破碎带,系统探测原理如图3所示。图3 TSP203系统探测原理图 隧道地震勘探法是一种近几年来发展起来的新技术,广泛应用在隧道工程中,近年来逐渐地应用到了煤矿井下断层的探测中,勘察效果良好。4 结语 本文分析了工程物探技术的应用,进一步明确了岩土工程中物探技术的应用价值与发展前景。应加强工程物探技术的研究,不断地更新技术,完善现有的工程物探技术体系,提高工程的施工质量。参考文献: [1] 高英龙,宋 亮.试述工程物探技术在岩土工程中的应用及前景[J].工程技术:引文版,2016(4):139.[2] 李江昌.工程物探技术在岩土工程中的应用及前景[J].技术与市场,2015(5):72-73.[3] 杨富治,陶礼春,张锡忠.工程物探技术在岩土工程勘察中的应用[J].有色金属文摘,2016(3):111.中图分类号:TU195 文献标识码:A 文章编号:2096-2339(2017)05-0104-02 作者简介:补家炎(1982-),男,湖南长沙人,本科,工程师,主要从事岩土工程勘察,岩土实验,基桩检测工作。

第四篇:工程物探新技术在岩土工程中的应用发展

岩土工程与勘察第16卷第1期(总第26期)2005年5月

工程物探新技术在岩土工程中的应用及发展

徐燕军1戴志祥2

【摘要】本文主要介绍了浅层地震法、瑞利面波法等工程物探新技术、方法、设备及其在岩 土工程勘察、测试、检测中的应用及发展情况。

1前言

工程物探是在原地球物理勘探基础上发展而来,五、六十年代服务于水文地质、工程地质,成为工程勘察的一个组成部分。上世纪八十年代,随着国民经济的高速发展,推动了电子技术的发展,计算机技术开始广泛应用于各个技术领域,从而带动了工程物探技术的发展。工程物探紧随工程勘察向岩土工程延伸、向岩土工程测试、监测、检测转化,已成为岩土工程的一个组成部分。工程物探技术,周期短,成本低,信息量大,服务面广,是无损检测,其作用和地位得到了肯定。

2工程物探技术方法与设备

在中国,工程物探始建于上世纪50年代,近二十年来有了较大发展,目前主要开展的方法有:浅层地震(反射波法、折射波法)、面波法、地震映象法、高密度电法、地质雷达、瞬变电磁法(TEM法)、工程CT(层析成象技术)、桩基无损检测技术、地下管线探测技术、工程测井、声波探测和常时微动测试等。

2.1 浅层地震法

浅层地震法是根据地下介质的波阻抗差异,利用纵波勘探的一种人工地震探测方法,可以用于研究与岩土工程有关的地质、构造、岩土体的物理力学特性,测定覆盖层厚度,确定基岩埋深起伏情况,查找构造追索断层等。

2.2 瑞利面波法

瑞利面波法是根据地下介质的物性差异,利用瑞利面波勘探的一种人工地震探测方法。该方法具有能量大,衰减慢,在不同介质中传播进程中遇到密度变化时会出现频散现象,速度突然变化,在频散曲线上出现异常。可用于探测地下异常体及密度变化情况。

2.3 地质雷达

地质雷达是根据地下介质的电性差异,利用电磁波检测地下异常体或地层分层的一种检测方法,天线中心频率不同,探测深度及分辨率,随之改变,可根据具体情况选择不同天线。该方法可用于基础处理的质量监理,地下异物,地下洞室开挖的预报测深。

2.4 高密度电法

高密度电法原理与普通电法相同,是利用地下介质的电性差异,人工供电测量一次场分布的探测方法,但它集中了剖面法和测深法的功能,施工效率高,信息量大。可用于管线调查,物探找水,采空区、岩溶、滑坡等灾害的物探调查。

1、2:中国兵器工业北方勘察设计研究院

2.5 瞬变电磁法

瞬变电磁法是观测二次场,具有体积小,受地形影响小,纵向分辨率高,工作效率高等优点,可用于判断地质体的电性、产状、规模。

2.6 工程测井

是利用钻孔作地下物探的一种方法。在孔内放置各种传感器,接收采集孔内地球物理信息,进而分析推断孔壁的地质特征,可划分地层,地质剖面,区分岩性;确定岩石的物理参数,研究孔壁及孔内技术情况(裂隙、岩溶、孔径、孔斜等地质问题,以及砼离析、空洞等施工问题)。目前常用的测井方法有:电测井、波速测井、声波测井、电磁波测井、放射性测井,井中电视;井径、流量测井等。

2.7 工程CT

工程CT是在其它方法获取大量信息基础上,利用代数重现,联合迭代,反褶积等计算方法,重视被测体的二维或三维图象。可用于多种物理探测的资料处理。

2.8 设备

改革开放前,我国物探设备相对较简陋,主要是来自前苏联及东欧以及国内仿制设备。20世纪八十年代后,引进了欧美等西方国家的先进设备,以及随着我国经济及科技水平的高速发展,涌现出的大量的高性能国产物探设备。国产设备在数据采集记录,处理分析等方面有了突破性进展,极大地促进了物探技术的发展与进步。目前我们使用较多的仪器有北京水电物探所生产SWS多波工程勘探仪;武汉岩海生产的桩基检测仪,声波仪,载荷仪;重庆地质仪器厂生产的地震仪高密度电法仪;徐州建工所生产的载荷仪,还有中科院岩土所、物化探所、力学所生产的各种仪器和传感器等,这些设备的性能已接近或达到国外仪器的水平,为物探技术的继续发展铺设了道路。

3应用及发展

3.1 应用

工程物探的服务对象已从过去的工程地质、水文地质发展到现今的岩土工程。如今已作为岩土工程勘察、施工、检测过程中的一种手段,为勘察、设计施工、检测提供数据。

工程物探相对于其它勘察手段来说,探测速度快,信息量大(测点连续),在成本上有较大优势,和其它勘察方法结合起来解释可以达到较高的解释精度,勘察中常用到高密度电阻率法,浅层地震法,瞬态面波法,井中电磁波法检层波速测试等,有效地协助岩土工程师圈定岩溶,追索构造,划分岩性,确定基岩埋深,查找各类不良地质体,提供岩土层物理力学参数等,且成果直观,易于非专业人员判读。

在施工中,可以帮助监理工程师控制施工质量,如:基础处理效果的实时测试,基桩灌注前入岩深度,沉渣厚度以及垂直度的确定,有了物探技术的支撑,工期及施工质量将得以保证。

在施工质量检测方面,工程物探检测技术是主要手段。地基加固可以用瞬态面波法,地质雷达进行施工前后的对比分析,结合其它手段判定处理效果。桩基检测中,无损检测技术则作

为主要检测手段,主要是因为动测成本低、周期短,可以加大检测比例,更全面的了解施工的质量。

3.2 今后物探技术的应用及发展主要表现在以下几个方面:

3.2.1 工程物探技术要适应岩土工程勘察不断发展的要求,进一步提高物探技术人员的素质,特别是针对不同工程条件合理选用综合物探方法和对各种物理参数的解释能力。

3.2.2 进一步研究各种物探技术方法对不同地球物理前提的适用性,避免滥用。针对一般情况下岩土工程勘察勘探深度不大,但分辨和定量解释精度要求高的特点,推广使用面波、多道瞬态面波技术与高密度电法、地下管线探测等方法,并加强电磁、地震波成像技术的研究和工程应用。

3.2.3 开展综合物探技术在岩土工程勘察勘察中的应用,研究提高各种物探手段勘察精度的方法。

3.2.4 研究开发适合城市和城市周边建筑区勘探要求的、具有较大勘探深度和较高精度物探方法,加强适合城市环境背景条件(高噪声、多其它干扰)下有效的水、油、气管网测漏仪器的研制及准确定位方法的研究。

3.2.5 进一步加强对基桩动测技术的研究,在基桩完整性检测中,由定性向定量发展;在基桩承载力检测中,通过动、静试验的对比研究,提高对承载力的测试技术和数据处理水平。

3.2.6 进一步加强工程物探中计算机技术的应用,并注意软硬件的适用性和采用的数学模型、物理力学参数的准确性和代表性。提高技术人员的应用水平和成果的可信度。

综上所述,由于电子技术,计算机技术的广泛应用,工程物探技术在勘察精度和勘察能力方面有了较大提高,已经从定性分析发展为定量、半定量分析,另外加上工程物探技术本身探测速度快,检测点密度大,成本低,所以工程物探技术已成为解决工程建设问题必不可少的非常有效的高科技手段。

由于工程物探是无损检测、间接探测。在工作中,我们要充分考虑到岩土体的不均匀性、不可视性、被测物体分布的复杂性以及测试资料的多解性。要本着从已知到未知的原则,用已知资料解释未知资料,未知资料经验证后成为新的已知,如此往复,积累经验,不断提高。只要我们物探工作者长期努力探索,实践下去物探技术会在更多的领域占有一席之地。

第五篇:浅谈地球物理勘探技术在石油开采中的应用

浅谈地球物理勘探技术在石油开采中的应用

由于近几十年我国工业的持续高速发展,我国石油消耗量很大,原本储量十分丰富的石油资源慢慢变少。丰厚油层将很快开采耗尽,贫瘠的油层将成为将来发掘和开采的重点。因此,较高的石油勘探技术越来越受到关注和发展[1]。地球物理勘探(简称“物探”)是通过物理的方法勘探地质的机构和处理矿物开采问题的一种措施。它的研究基础是地下岩石的各种物理性质,如密度、导电性、弹性模量、放射性等参数。它利用不同的方法和设备,检测地下某些物理场的不同特点,分析、研究所获得的资料数据,分析地质的结构和矿产在地下的分布等状况[2]。本文将通过文献检索分析的方法阐述物探技术的发展、目前存在的问题和寻找解决相应问题的方案。

1、物探技术的发展历程

地球物理学是上个世纪前期发展起来的一门交叉学科,涉及物理、数学、力学与地质学等学科[3]。上个世纪四十年代,我国的翁文波与赵仁寿等最早使用物探方法勘探石油。四十年代中期翁文波建立了我国第一个使用重力测量石油的勘探队,赵仁寿在五十年代初建立我国第一个用地震方法探测石油的勘探队。五十年代后期到六十年代,继西部地区之后,我国东部也相继创建了一些地震勘探队伍。六十到七十年代我国成功研制自主开发的模拟磁带仪,并发展了多次覆盖技术。七十年代研制出我国第一台数字化的地震仪。九十年代,我国已经成功利用三维资料连片技术提高资料的品质,从而发现了塔里木盆地和准葛尔盆地中的一些油田。随着计算机技术和信息技术的发展,各种软硬件日渐成熟,本世纪物探技术发展相当迅猛,高精度三维地震技术、VSP地震技术、多波勘测等已经在实际应用中发挥了很大的作用。

2、石油勘探中存在的问题

为了满足国民经济发展的需求,有些公司提出应该大力开展开发高原地区油田、二次开发油田、开发海外油田等项目。这是未来发展的尝试,但也同时存在较多问题。

2.1 复杂陡坡结构

复杂陡坡结构主要存在于新疆库车和塔里木盆地的西南地区,沿着准噶尔盆地的南部边缘,在四川的大巴山地域和柴达木盆地的北部等地方存在。这些区域是“稳定西部和促进海外业务”战略的关键地方。这里主要的问题是地形复杂,海拔变化大,岩石比较复杂,低电阻间隔。此外,地下构造的复杂性,构造反转、走滑断层组合等造成地震波传播很难把握。尽管技术研究已经完成了好几年,地震剖面材料和地质模型经常很难很好地匹配。

2.2 复杂的地形地貌、地层圈闭

层位困储备出现在浅地层和中级深度渤海湾、部分松辽、鄂尔多斯、塔里木、准噶尔、吐哈、柴达木、三湖、四川盆地,以及其它区域的中亚、亚太、非洲大陆。在这些地区进行开采对我国石油资源的储备增长是必要的。这里要解决的问题是厚层砂表面和黄土、厚风化带、复杂和异构的沉积层、低孔隙度、低渗透率的薄储集层。高分辨率地震数据不能识别单个储层厚度小于3m的薄层。地球物理勘探技术在这里的挑战是在中国西部地区提高地震资料主频10赫兹和在东部地区增加10到15赫兹,从而达到增加地层圈闭的钻井成功率20%目的。

2.3 其他问题

除了上述存在的问题外,由于老油区岩性复杂、深层勘探比较困难,在这里发现新的石油储备难度比较大。此外,由于老油区剩余的石油分布比较杂乱,油藏勘探比较困难,提高老油田的采收率也非一件易事。由于种种问题的存在,对物探技术有了更多的要求。首先要求新的物探技术有对更复杂地区的探测能力,其次需要仪器的构造要有更高的精度和分辨率,此外,要对所收集的信息有较强的处理能力,对剩余的石油分布可以进行动态的检测。

3、解决复杂问题的物探技术介绍

3.1 海域物探技术

海底储存着丰富的石油资源,但由于海底地形比较复杂,在海底得到的数据往往比较糟糕。信噪比很低、相位的连续往往中断、能量阻尼比较大、反射差等一系列问题一直以来很难得到完满解决。

要解决这一问题,需要从数据的来源和信号的处理两方面着手。先前使用的海底测量电缆往往比较短,大部分不足5000m。由于长度不足,海底的信号往往不能很充分的接收。加上数据的处理技术不好,造成所形成的模拟形态发生变形,不能真实反映相应地区的地质状态。如果采用长度较大的电缆,便可以获得质量更高的信号,信噪比比较大。在处理数据时,采用分频去噪的方法,并采取措施消除海底因不平造成的影响。这样,便可以得到更好的结果,更能反映真实的地质形态[4]。

3.2 油区高精度地震技术

在油区,由于已经存在的油田对地震技术往往造成干扰。此外,由于不停地开采作用,地下的石油分布也相应发生动态变化。这就造成了油区开采难度比较大。

要解决油区石油勘探问题,有公司提出如下措施:(1)延时三维数据采集;(2)小接收器地面测量;(3)基于岩性和油藏动力学的安放位置设计;(4)高精度静态修正;(5)区域联合处理;(6)叠前数据储层特征描述;(7)考虑地层倾角,适当扩大面元,合成统一剖面,提高地震分辨率。这些措施取得了比较好的效果。

3.3 复杂地区地震技术

在地形复杂地区,如我国柴达木盆地附近,石油储存量比较丰富,比较有希望探测出石油分布。然而,由于地势起伏比较大,地表受到比较高的侵蚀,施工非常困难。此外,即使测得数据,信号处理也比较困难。为解决复杂地区的石油勘探问题,可考虑采取以下措施。(1)利用精度较高的卫星遥感数据,更好地设计探测系统;(2)更详细地勘察地表的形态;(3)根据不同的地表形态使用不同的激发参数;(4)采用宽线技术,更好的采集数据,提高信噪比。利用本项技术可以大大提高数据质量,基本模拟真实的面貌。

4、结语

在石油勘探过程中存在如复杂陡坡结构、复杂的地形地貌、地层圈闭、油区探测困难等问题和挑战。这些问题可以通过数据的发展找到一些相应的方式去解决。如加长测量电缆的长度,利用延时三维数据采集信息,利用三维技术对数据进行高精度修正,采用宽线技术,用各种方式进行数据处理,提高信噪比等,最终合成贴合实际的图像。

参考文献

[1]周涛.浅谈油气地球物理勘探技术进展[J].中国科技纵横,2011(14).[2]牛欢,胡涵等.地球物理勘探在油气开采技术中的应用及发展[J].科技创新导报,2009(1):1.[3]滕吉文.石油地球物理勘探的发展空间与自主创新[J].石油物探,2007:46(3):13.[4]张春贺,乔德武等.复杂地区油气地球物理勘探技术集成[J].地球物理学报,201154(2).

下载试析综合物探在水利枢纽工程坝址勘探中的应用和意义(合集)word格式文档
下载试析综合物探在水利枢纽工程坝址勘探中的应用和意义(合集).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈统计学在工程中的应用

    浅谈统计学在工程中的应用 统计学在数学,工程,物理科学,投资等领域都有着重要的作用,我们现在的工程中也有统计学应用的例子。这篇文章将从我们都很熟悉的《公路桥涵施工技术规......

    矿产普查与勘探读书报告-现代勘查技术、方法在现代矿产勘查中的综合应用

    《矿产普查与勘探 》课程读书报告 ----现代勘查技术、方法在现代矿产勘查中的综合应用 一、地质勘查技术体系的构成现状 勘查技术根据其研究对象、工作目的、技术实质及......

    矿产普查与勘探读书报告-现代勘查技术方法在现代矿产勘查中的综合应用

    《矿产普查与勘探 》课程读书报告 ----现代勘查技术、方法在现代矿产勘查中的综合应用一、地质勘查技术体系的构成现状 勘查技术根据其研究对象、工作目的、技术实质及管......

    教育技术装备在教学中综合应用

    阳泉市平定县编号: 教育技术装备在教学中综合应用 作者:赵亿芬单位:阳泉市平定县宁艾学校 性别:女邮编:045200 手机*** 新课程为信息技术提供了全新的理念,信息技术课程标......

    膨润土注浆材料在注浆工程中的应用

    膨润土注浆材料在注浆工程中的应用 2006-11-30 摘要: 以北京地铁 5 号线某区间隧道为例, 介绍了膨润土注浆材料的性能及其在工程中的注浆施工工艺。 关键词: 膨润土; 注浆;......

    浅谈新技术在工程中的应用5篇

    浅谈新技术在工程中的应用 摘 要:新材料和新技术在节约能源,缓解能源危机,提高人民的生活质量和提高环境质量方面都发挥着重要的作用。近年来,随着新技术新材料在建筑工程中推广......

    微信在语文教育中的应用及意义

    微信在语文教学中的应用及意义 随着新媒体技术的发展,手机已经成为现代人生活中不可或缺的工具,而手机“微信”作为一种新型的社交软件,更为大众普遍使用。微信具有的短信、图......

    口译训练在高中英语教学中的应用意义

    口译训练在高中英语教学中的应用意义 0.引 言口译是指将一种语言当场准确地、及时地用另一种语言表示出来,作为一种有着很强的即时性的转换语言符号的活动,口译要求“准、顺、......