第一篇:2014年中国LED技术行业发展机遇
2014年中国LED技术行业发展机遇
智研数据研究中心网讯:
内容提要:随着LED照明技术的不断进步,LED逐渐被应用于汽车照明领域。针对汽车应用的LED研发厂商积极性很高,而LED也确实以它的独特性吸引着车用市场。
LED照明具有节能、环保、长寿、抗震、体积小、响应速度快等优点。目前,LED应用领域主要包括背光、一般照明和车用照明三大市场。随着LED灯价格下降,舒适性和安全性成为半导体照明的技术方向。另外,半导体照明将开启照明智能化时代。智能照明具有灯光亮度调节、色温调节、灯光软启动、定时控制、场景设置等功能,并达到个性化、舒适性、二次节能、安全高效的要求。
1、机遇和挑战
LED照明具有很多突出的优点:节能——直流驱动,电光功率转换接近100%,相同照明效果比传统光源节能80%以上;寿命长——使用寿命可达6万~10万小时,比传统光源寿命长10倍以上;色彩变化多——利用红、绿、蓝三基色原理,在计算机技术控制下使三种颜色具有256级灰度并任意混合,可产生256×256×256—16777216种颜色;环保——既没有热量,也没有辐射,眩光小,可回收,不含汞元素,冷光源,可以安全触摸;高科技——低压微电子产品,融合计算机技术、网络通信技术、图像处理技术、嵌入式控制技术等,是半导体光电器件的数字信息化产品,具有在线编程、无限升级、灵活多变的特点。LED照明的价格相对高于传统光源,这成为LED进入市场的障碍之一。另外,产能过剩也导致LED市场的竞争激烈。推动LED照明市场发展的关键推动力是高亮度LED和智能LED控制器的出现。采用高亮度LED的产品设计师面临许多设计挑战,包括散热管理、驱动方案、拓扑架构和基础设施。
2、市场趋势
就当前行业发展的水准来看,LED照明还没有足够的能力打破传统照明观念,依然停留在取代型路线上;而在取代型路线里面,LED照明还必须依赖政府政策指引。也就是说,虽然LED照明某些领取发展到足够成熟的程度,但是相对于整个市场而言,其还处在一个起步阶段的雏形层面上。
2.1汽车
随着LED照明技术的不断进步,LED逐渐被应用于汽车照明领域。针对汽车应用的LED研发厂商积极性很高,而LED也确实以它的独特性吸引着车用市场。I.ED光源在汽车中应用具有很多优势:能耗低,寿命长,形式多样,识别度高,抗冲击性好,便于布置和造型设计,响应速度快,亮度高,光线亮度衰减远低于卤素灯,低压直流电即可驱动LED,负载小,干扰弱,对使用环境要求
低。这些因素对节能和行车安全显然大有裨益。LED车灯在向着平民化的车型蔓延。对于要求更高的车前灯,也会随着LED亮度的提高、价格的逐渐下降而获得普遍应用。智能化应用也是LED一个潜在的优势。未来的LED照明不是带来更高的光效,而是更好的光线。在汽车中,智能化照明是未来一个流行趋势,比如按需调节灯光的明暗程度、车内灯光随外界光线而自动调整等等。利用LED照明的汽车不仅仅是在欧洲等市场成长。在中国,新能源汽车已经进入中国十二五计划,属于国家低碳、节能、环保产业的一部分,符合国家产业支持政策,属于LED产业延伸的领域之一。
2.2物联网与智能照明
除了高光效外,光的质量、尺寸的轻薄以及智能控制系统等将会是未来LED照明发展的重点。如果有一个增长非常显著的LED领域,那一定是智能照明市场。智能照明是指利用计算机、无线数据传输、扩频电力载波通信技术、计算机智能化信息处理及节能型电器控制等技术组成的分布式无线遥测、遥控、遥讯控制系统,来实现对照明设备的智能化控制,具有灯光亮度的强弱调节、灯光软启动、定时控制、场景设置等功能,达到安全、节能、舒适、高效的特点。它要求进行高级控制,包括可编程性能、频谱控制和环境集成等。目前,这大概是LED照明市场20亿美元总额的13%,但有望在2014年翻倍。
智能LED照明控制要求对灯光亮度进行精确控制。可编程智能控制内核普遍用于架构系统,接收来自灯源和运动传感器以及面板的输入。这种系统一般可以由用户进行编程,在一天中规划不同的时间及区域,提供不同的照明等级,并可能按照一周不同的日期进行变化。
这种控制的关键在于利用最佳光输出范围和稳定性的机制调节LED的明暗度,同时在调光范围上使得每瓦流明实现最优化,并提供高功率因数和低交流线路谐波。要实现真正的“智能”,照明灯必须能感应周边环境并对环境变化作出局部的反应。驱动器本身并不“智能”,照明灯具目前也不能实现局部感应,所以,它们都不能算实现了“智能”。整个行业都仅仅把LED灯当作产生光子的替代品,但现实是LED控制装置越来越多,它们都为LED照明带来全新的方法。未来的发展趋势是,在生产备用灯具时将传感器和智能的决策方案包含进去,通过调整操作方式来满足用户的需求,而照明开关将不复存在。
在物联网世界里,联网照明等系统将形成楼宇管理系统的通信中枢,包括照明、安防、火灾探测、温度控制和人员检测。这些功能可以连接到使用个人电脑和便携设备的互联网,实现基于云控制、数据采集以及处理和存储。到2020年,家庭和楼宇相关设备的市场价值可能达到6650亿美元,在更加广泛的互连设备市场中占据29%的份额。高级控制功能可提供低成本和个性化的便利照明体验。通过i0S或Android系统,系统可提供家庭局域网与远程网络应用之间的低成本连接,以及安装在楼宇内的智能照明设备的近距离实时控制能力。
未来照明行业将会朝着“智能化”的趋势发展,LED照明最终的表现形式会朝着智能化、模组化、专业化发展,这更有利于产品的生产和维护。智能技术与
照明的结合使照明更进一步地满足不同个体、不同层次群体的需求。这也应该是智能照明的发展方向。
3、技术趋势
3.1高压LED
高压LED是一种全新的LED品种,具有很多优点。VF值为3.2V左右的光源早已应用到不计其数的灯具里面,多只LED串联的做法也是第一种高压LED的应用。第二种,就是LED上游芯片厂家通过特殊工艺制程,将多颗VF值在3.2V左右的LED芯片以串联方式做在一片基片上,引出“+”“一”两个PAD,又叫做高压LED芯片。封装厂家拿芯片后,制做成高压LED光源。
高压LED有高光效、电源要求低、线性电源结合省成本、减缓光衰等优点,同时也存在成本、功率耗散和散热器等问题。总之,高压LED不失为一种具有特点的LED,向人们提供了一种选择,对于不同场合可选择最适合的技术。
3.2中功率LED
随着LED照明市场起飞,加上背光用LED规格的改变,中功率市场一跃而成2013年LED产业主流规格,产值首度超越高功率市场。其中,采用EMC支架材料LED驱动电流可以达1~2W,可同时供应中功率与中高功率市场,LED封装厂积极扩增EMC产能,而PCT支架材料改良后,LED封装厂也积极以PCT产品切入中功率市场。此外,flip—chip产品也在2014年进军中功率市场。EMC产品随着中功率市场兴起而成为2013年的闪亮之星,其中日亚化EMC产品757系列2013年在市场热卖打响EMC名号,EMC产品具有同时供应直下式背光与照明市场的高共用性特性,加上跌幅加速,LED封装厂皆积极投入EMC产品开发与产能扩充。
而PCT支架材料经过厂商改良后,驱动功率由过去的0.7W拉升至1~
1.2W,除了一举拉开与PPA支架的距离,也切进原先EMC产品中0.7~1.2W的市场。高性价比的PCT产品也是部分LED封装厂2014年中功率重要产品线。
中功率市场2013年产值首度超越高功率,原先专注于高功率市场的飞利浦也在2013年积极切人中功率市场。除了已经推出的中功率产品以外,飞利浦也计划在2014年将具有体积更小、单位面积发光效率更佳,以及有五面发光、发光角度大的flip—chip产品导人中功率市场,显见其对中功率市场的看中程度。
3.3太阳能LED照明
太阳能LED照明集成了太阳能与LED的优点。系统由太阳能电池组件部分(包括支架)、LED灯头、控制箱(内有控制器及蓄电池)和灯杆几部分构成。太阳能电池板光效率较高,对系统的抗风设计非常有利;灯头部分以1W白光
LED和1W黄光LED集成于印刷电路板上排列为一定间距的点阵作为平面发光源。
系统工作原理简单,利用光生伏特效应原理制成的太阳能电池白天太阳能电池板接收太阳辐射能并转化为电能输出,经过充放电控制器储存在蓄电池中,夜晚照度逐渐降低,充放电控制器侦测到这电压值,蓄电池对灯头放电。蓄电池放电8.5小时后,充放电控制器动作,蓄电池放电结束。充放电控制器的主要作用是保护蓄电池。
太阳能LED照明的初投资问题仍然是一个主要问题。但是,太阳能电池光效在逐渐提高,而价格会逐渐降低,同样地市场上LED光效在快速地提高,而价格却在降低。与太阳能的可再生、清洁无污染以及LED的环保节能相比,常规化石能源日趋紧张,并且对环境会造成污染。所以,太阳能LED照明作为一种方兴未艾的户外照明,展现给我们的将是无穷的生命力和广阔的前景。内容选自智研数据研究中心发布的《2012-2016年中国LED景观照明全景调查与投资战略咨询报告》
第二篇:我国LED行业发展现状
我国LED行业发展现状
LED产业链:上游磊晶及芯片制作约占LED产品制造成本7成,其发光颜色与亮度由磊晶材料决定;下游则封装晶粒,制成各式LED器件与应用产品。
LED芯片封装后可用于照明,由于LED采用半导体制程,LED照明也称半导体照明,半导体照明完全不同于传统的白炽灯、荧光灯照明原理,其具有节能(能耗为白炽灯的1/8~1/
10、节能荧光灯的1/3~1/2)、环保(可回收、无污染)、可数字化设计等优势,是下一代照明光源,可全面替代白炽灯、荧光灯、汽车灯及各种背光源。
目前白光LED的发光效率、可靠性、寿命以及大功率LED封装等技术等还需要进一步提高,成本需要降到到合理水平才能进入通用照明市场,从目前全球产业进程看,这一时间预计在2010年前后。但在特种照明市场,白光LED照明会提前导入
目前从全球来看,手机背光占领LED的大部分市场,在接下来的一波推进潮中,笔记本电脑、高端液晶电视背光及汽车灯将成为LED的新增长点;预计在2010年左右LED在通用照明应用将取得突破。从中国市场看,建筑装饰照明、室内外显示屏、交通指示是主要应用市场,随着国内技术水平提高与规模扩大,国内企业在手机背光、NB背光、特种白光照明(包括路灯)、车用LED光源市场的渗透率将持续提高。而当白光通用照明时代来临时,整个行业将步入爆发性增长的 发展阶段。
国内LED产业可简化为两个阶段,第一个阶段生产除高亮蓝绿以外的的各类光色芯片;目前是第二个阶段,即在高亮蓝绿芯片外延、制程产业化技术方面取得突破,这是企业在LED高亮蓝、绿、红芯片领域领先的重要标志。
由于白光LED靠蓝光芯片+YAG荧光粉封装出来的,突破蓝绿芯片意味着可以生产全色系芯片,意味着突破了产业发展的一个关键瓶颈。因此,国内部分企业蓝绿芯片的量产意味着国内产业发展到一个新的阶段,上中游产业发展进程会加快。
海外LED上市公司股价近一年呈现强劲走势,LED行业投资机会凸现,中国呢?国内几家优秀LED企业,如大连路明、厦门三安、晶能光电等都没有上市;上市公司中涉足LED的比较少,其LED产品销售大多低于10%(联创光电(10.31,-0.04,-0.39%)销售占比最多,30%,主要销售集中中下游领域),因此国内投资者暂时还不能分享到LED行业快速成长带来的好处。随着半导体照明产业的蓬勃发展,预计将有越来越多从事半导体照明的公司上市,行业投资价值值得持续关注。
从国内产业发展进程看,行业有五类企业具有高投资价值:一类 是具有核心知识产权的企业,这些企业具备全球核心技术专利竞争力;第二类企业是目前在芯片产业化及技术跟踪方面做得比较成功的企业,这些企业将具备全球产业竞争力;第三类企业是优秀的下游封装的企业;第四类企业将崛起于未来的LED通用照明领域;第五类企业在LED产业链外围电子材料领域,如硅片、硅树脂、封装用引线框架、散热模块等;以及LED驱动芯片领域。
目前全球初步形成以亚洲、北美、欧洲三大区域为中心的LED产业格局,以日本日亚、丰田合成、美国Cree、Lumileds和欧洲Osram为专利核心的技术竞争格局,这五大企业之间通过交互授权避免专利纠纷,其它企业则通过获得这些企业的单边授权避免专利纠纷,五大企业各具优势,但都专注于各自领域的高端市场,其它企业则角逐中高端、中低端乃至低端市场,构成产业的中心—外围格局。
作为朝阳产业,半导体照明产业的技术仍在处于不断进步过程中,特别是关系到全球近1000亿美元的通用照明市场的半导体照明白光技术还需进一步成熟,所以,尽管日本日亚及丰田合成、美国Cree与Lumileds、欧洲Orsram在世界半导体照明专利市场上暂时处于技术垄断地位,但全球半导体照明产业竞争格局还并未完全形成,这不仅指这五大巨头相互之间的竞争格局还未形成,也包括新的技术涌现会打破这五大巨头的技术垄断,还包括目前围绕这五大巨头的全球其它公司的竞争格局更不能说已经稳定,中国市场也不例外。
未来的产业竞争将取决于两方面,一是技术,这包括提高发光效率、降低成本的技术,提高器件功率的技术,方向上有现有技术路线的延伸,也有可能出现新的技术路线;也包括获得高质量产品的工艺技术,如提高可靠性、一致性和寿命,以及外围如照明系统设计及驱动芯片设计技术;二是规模,一方面是由于规模大可以降低成本,市场议价能力强;另一方面,化合物外延片与集成电路制造用的硅片很大不同在于即使同一片外延上制作出来的芯片性能也可能有较大差别,这对一致性要求比较高的应用领域(典型的如液晶面板背光)而言,一片外延上只有一部分符合要求,但对规模大的企业而言,其有多层次的市场结构,可以将不符合某一市场要求的芯片产品调配至另一市场,公司总的产出效率得到充分提高。
第一章、全球LED产业发展
1.1全球LED产业概况
目前,半导体照明产业形成以美国、亚洲、欧洲三大区域为主导的三足鼎立的产业分布与竞争格局,美国Cree、Lumileds,日本日亚(Nichia)、丰田合成(Toyoda Gosei),德国Osram等垄断高端产品市场。
五大企业在产品与市场方面各具特色,日亚化学和丰田合成在LED发展中占有重要地位,都形成了LED完整的产业链,其中日亚化学1994年第一个生产出蓝光芯片,并在专利技术方面具有垄断优势;Cree、GelCore等都有自己成熟的技术体系,但其在产业链上只集中在外延和芯片的制备上;Lumileds则关注于大功率LED的研发,在白光照明领域实力雄厚。
新加入业者的生产能力、技术能力与LED老将即将并驾齐驱。就像台湾已经是日美欧以外,白光LED的主要产地,更是蓝光LED芯片的重要量产地。例如部分台湾业者在高亮度蓝光LED芯片已开发出1700mcd,而1400mcd也达到了出货阶段。所以就产品产出能力与质量技术而言,已经不逊色于传统LED大厂。
全球LED市场第一波销售成长由手机带动,在白光LED在一般通用照明市场发力之前,恐需NB、液晶电视背光及汽车内饰与后灯市场扛起第二波销售成长大旗,而一旦成本降到并且质量达到一般通用照明水平,其增长不可限量。
国内LED设备产能状况
至于大陆LED产能方面,厦门三安MOCVD 12台,红黄芯片产能为1000KK/月,蓝绿200KK/月,国内最大,初步具备国际竞争规模; 上市公司中士兰微(11.29,0.04,0.36%)MOCVD目前2台,8月再进2台,明年进两台,总数达6台,产能达到高亮蓝、绿、红芯片300kk/月;联创光电MOCVD2台,LPE普亮红、绿机台4台,年产芯片100亿粒,其MOCVD机台目前主要用于研发;深圳方大MOCVD三台,年产外延2.5~3万片,年产蓝绿芯片约3亿粒,产能不大。
其它未上市LED企业,产能统计比较困难,缺乏准确性,初步了解信息大连路美产能为蓝绿芯片100kk/月,其主要产能可能在控股子公司美国AXT;上海蓝光被彩虹集团并购后2008年规划产能150kk/月蓝绿芯片,2010年达到250kk/月。
值得关注清华同方旗下“清芯光电”,该公司可自行研制LED生产线的核心设备MOCVD机台,这样其采购成本、维护成本大大低于原装进口设备,并且有助于公司提高产品研发能力(日本日亚就全部用自己改装的机台,由于熟悉设备性能,在外延制备上灵活性增强)。2006年7月,清芯光电的MOCVD设备调试一次通过,生产出合格产品;2006年8月外延片、芯片生产线落成投产。据称目前公司能够批量生产发光效率平均达到59lm/W的白光LED,该指标达到国际产业化先进水平。
2007年3月同方股份(36.44,1.82,5.26%)加大投入力度,通过增资取得控股地位。目前清芯光电有两台MOCVD设备,月产1000万 粒芯片。根据公告,通过同方股份向其提供的不高于2000万美元的担保或资金支持,清芯光电将分批添置13台MOCVD设备,总共形成15条生产线,最终形成年产16亿粒(12mil)高亮度LED管芯的产能,其产业化能力与市场开拓能力还需要观察。
1.2全球主要LED大厂
日亚化工日亚化工是GaN系的开拓者,在LED和激光领域居世界首位。在蓝色、白色LED市场遥遥领先于其他同类企业。它以蓝色LED的开发而闻名于全球,与此同时,它又是以荧光粉为主要产品的规模最大的精细化工厂商。它的荧光粉生产在日本国内市场占据70%的比例,在全球则占据36%的市场份额。荧光粉除了灯具专用的以外,还有CRT专用、PDP专用、X光专用等类型,这成为日亚化工扩大LED事业的坚实基础。除此以外,日亚化工还生产磁性材料、电池材料以及薄膜材料等精细化工制品,广泛地涉足于光的各个领域。
在该公司LED的生产当中,70%是白色LED,主要有单色芯片型和RGB三色型两大类型。
此外,该公司是世界上唯一一家可以同时量产蓝色LED和紫外线LED两种产品的厂商。以此为基础,日亚化工不断开发出新产品,特别是在SMD(表面封装)型的高能LED方面,新品层出不穷。
日亚以销售LED封装产品为主,并不对外销售外延或芯片产品,并通过对蓝光和白光LED专利的垄断来建构进入障碍,几乎垄断整个可携式产品的白光LED市场,并获取巨大利润。
以蓝色、白色LED市场的扩大为起爆剂,日亚化工的总销售额也呈现出逐年上升的势头,由1996年的290亿日元增长到2006年的2000亿日元。这期间,荧光粉的销售额每年基本稳定在300亿日元左右。2006年全球LED市场约为7335亿日元,因此,日亚化工占据了约27.3%的全球市场份额。
丰田合成(株)
如果将LED比喻为汽车,那么可以说,日亚化工提出了车轮和发动机的概念,而丰田合成则提出了车体和轮胎的概念。1986年,受名誉教授赤崎先生的委托,丰田合成利用自身在汽车零部件薄膜技术方面的积累,开始展开LED方面的研发工作。1987年,受科学技术振兴事业团的开发委托,丰田合成成功地在蓝宝石上形成了LED电极。因此,把丰田合成誉为“蓝色LED的先锋”并不为过。
丰田合成在近年来的发展速度也相当快。1998年,其销售额为63亿日元,但到2006年,已增长至276亿日元。
在应用方面,手机占了72%,此外应用较多的还有液晶背光、按键、背面液晶背光(3in1)等,信号设备、大型显示屏等方面的应用也比较多。此外,汽车导航系统和电脑专用液晶控制器、TV专用大型液晶的背光等也是丰田化合的目标市场。照明应用方面的设计开发也正在紧锣密鼓之中。丰田化合的生产据点除了爱知县平和町的工厂以外,还在佐贺县武雄市建立了生产蓝色LED等GaN LED的第二个生产据点,其设备投资总额达156亿日元,届时两个工厂的总生产能力可达到月产4.2亿个,其目标是2008年LED的销售额达到1200亿日元。
Cree
Cree公司建于1987年,位于美国加利福尼亚洲。主要从事SiC,GaN和Si衬底的开发,是美国宽禁带材料和器件的领导者,也是生产GaN材料的最大公司之一。最突出的还是他们对蓝光LED方面的贡献,公司在SiC衬底上生长GaN外延片制作蓝光上拥有专利,该专利不同于日亚以蓝宝石为衬底生长GaN外延制作蓝光的专利,而蓝光是生成白光的基础,因而在LED上游也占据核心地位。公司的产品包括绿光、蓝光和紫外光LEDs,近紫外激光、射频和微波半导体设备,电源转换设备和半导体集成芯片。这些产品的目标应用包括固态照明、光学存储、无线基础和电路转换等。公司的大部分利润来自于LED产品和SiC、GaN材料的生产,产品销往北美、欧洲和亚洲。
Lumileds
创建于1999年,Lumileds照明是世界著名的LED生产商,在包括自动照明、计算机显示、液晶电视、信号灯及通用照明在内的固态照明应用领域中居领先地位。公司获得专利的Luxeon是首次将传统照明与具有小针脚、长寿命等优点的LED相结合的高功率发光材料。
公司也提供核心LED材料和LED封装产品,每年LEDs的产品达数十亿只,是世界上最亮的红光、琥珀光、蓝光、绿光和白光LED生产商。公司总部在加利福尼亚州的圣荷塞,在荷兰、日本和马来西亚有分支机构,并且拥有遍及全球各地的销售网络。
Lumileds的前身是40年前惠普公司的光电子事业部,是惠普的专家们从无到有创建的。到了90年代后期,在意识固态发光的前景后,惠普和当时世界上最大的照明设备公司之一的飞利浦公司开始了如何一起发展最新的固态照明技术并引入市场的计划。1999年惠普公司一分为二,她的光电子事业部被安捷伦技术公司收购,同年11月,巨大的市场潜力促使安捷伦和飞利浦组成了Lumileds公司,赋予其开发世界上亮度最大的LED发光材料的使命,并向市场推广。今天的Lumileds,作为一个安捷伦科技和飞利浦照明的合资公司,继续领导着世界固态照明产业的发展。该公司的Luxeon功率光源专利 技术率先把传统照明的亮度与LED的小巧体积、超长寿命及其它优势结合了起来。Lumileds每年LED的产量达十亿只,并提供核心LED材料和LED封装。
近期,在收购Lumileds和TIR Systems之后,飞利浦电子又收购了LED照明系统供应商Color Kinetics,此举帮助这家荷兰电子巨头完成覆盖整个固态照明系统价值链的布局。
Lumination
GELcore是GE照明与EMCORE公司的合资公司,创建于1999年1月,总部位于美国新泽西州。2007年2月,GELcore改名Lumination,公司致力于高亮度LED产品的研发和生产。通过把GE先进的照明技术、品牌优势和全球渠道与EMCORE权威的半导体技术相结合,GELcore已经在转变人们对照明的认识过程中扮演了重要的角色。GELcore几乎涉足所有GaN LED相关产品,现有的产品包括大功率LED交通信号灯、大型景观灯、其他建筑、消费和特殊照明应用等。通过把电子、光学、机械和热能管理等各个领域的技术相结合,GELcore加快了LED技术的应用并创造了世界级的LED系统。另外,GELcore还利用独特的客户管理系统来和那些LED专家和产品应用客户保持长期的友好关系。
Osram
OSRAM是全世界最大的两个照明生厂商之一。建于1919年,最大的股东为Siemens AG,总部位于慕尼黑,在全世界拥有超过36,000的员工。OSRAM商标早在1906年注册,到目前为止是世界公认的历史最悠久的商标名称之一。
Osram拥有有别于日亚(蓝光+YAG荧光粉)的蓝光+TGA荧光粉白光专利技术,开发出采用SiC衬底的GaN型光电器件,采用蓝光LED芯片和黄荧光粉组合产生白光LED,在大尺寸LCD背光源、白光照明和车用LED产品上具有优势。Osram主要的经营领域在欧洲市场及汽车用白光LED市场,与日亚化学有明显市场区隔。
Color Kinetics(CK)
公司组建于1997年,总部位于马萨诸塞州的波士顿市,其在智能固态照明系统及技术设计、市场开发方面处于行业领先地位,并获得了相关技术的许可权。公司的获奖系列产品利用LED的实用及美观性能,在高性能灯具及OEM许可应用中,突破了传统光源的局限。其产品及技术优势使其在数码智能方面获得了一项称为Chromacore(R)的专利,这项专利可用来产生并控制数以百万计的LED灯光颜色及动态效果,应用于舞台照明和景观照明。
CK公司自诞生以来,智能特性一直是CK阵营的主要手段,合作伙伴的战略能够提供给新加入者卓越的范例。当将数字智能技术用于基于高亮度二极管的数百万颜色的产生与控制时,CK公司显然是该领域的驱动者,他们的智能文件夹包括32项已授专利和120多项正在申请的专利。CK公司采取公开、积极的方式与那些认识到智能固体照明的价值及其普遍深入的应用前景的制造商形成委托加工与许可的关系,以促进刚刚起步的固体照明工业的发展。目前CK公司在英国、中国都设有办事处,在日本还成立了一家合资公司。
第二章、全球LED专利布局
2.1全球LED专利概况
就技术而言,LED具有技术成长瓶颈高,学习门坎低特性;初始投资额也不大,资本门槛不高,为了保持技术竞争力,降低技术外溢风险,专利为最好的保护伞。而专利屏障,对于是领先厂商规避竞争的主要手段,因此专利成为LED产业发展过程中不能回避的重要课题。
庞大的市场潜力,刺激著全球LED业者积极抢进,面对市场成长快速的白光LED,在各方面都已经超越这些关键专利拥有的LED业者 控制的范围,所以拥有关键专利的业者也绞尽心力的利用专利保护伞,来维护市场利益与排除新挑战者的加入。
如日亚化学工业在1993年时成功地开发出蓝光LED,而该公司为了达完全垄断蓝光LED市场的企图霸心,即运用了坚守专利的策略,悍然拒绝将该专利授权给其它任何的厂商,设下进入市场的专利障碍。日亚挟其在化学工业领域长期研发的优势与专利保护策略,初期很顺利走向垄断蓝光LED市场之路,如同风云中的雄霸一般,野心想独吞天下。1998年竞争对手丰田合成(Toyoda Gosei)的氮化物(Nitride)高亮度LED产品在市场上一推出时,日亚就向东京地方法院提起诉讼,指控丰田合成侵害其蓝光LED专利。在1999年,日亚再转移目标对准美国的知名蓝光LED大厂Cree,向东京地方法院指控Cree在日本当地经销商住友商事侵害其产品专利。2000年12月12日,Cree和日本半导体制造商Rohm公司组成蓝光LED的技术联盟,并签订五年的专属专利授权合约。Rohm即于同年12月15日向美国宾州东区地方法院指控日亚因制造与销售氮化镓LED产品,而侵害其美国第6084899与第6115399号专利,最后日亚败给了Cree。而在2006年日亚发动9起专利诉讼,5起和解收场,三起未决,一起失败。
时至今日,五大公司Nichia、Osram、Toyoda Gosei、Cree和Lumileds几乎控制了整个白光LED产业,这里专利密集,可以说是雷区重重,使得想进驻这一领域的其他商家忧虑重重、望而却步。尽管 如此,很多公司还是极力争取在此领域占有一立足之地,白光LED的广泛、快速应用,以及各大公司在此领域的大力投入,专利侵权、交叉授权等法律事务不断发生。
国外大厂在LED的专利布局分为三大类:蓝光晶粒专利、白光荧光粉封装专利及高功率LED专利。由于白光荧光粉专利在举证时较为容易,过去厂商的侵权多来自于此,影响层面以LED下游封装厂为主。近来高功率LED应用于LCD面板背光的形式逐渐形成,高功率封装的专利极可能成为继白光荧光粉专利后专利诉讼的主要标的。
2.2全球LED专利发展变化特点
2.2.1专利集中度日降,大厂之间交互授权成为发展主流
在2002年以前,日亚凭借1991年至2001年间取得的74件基本专利,主要依靠构建专利壁垒及专利诉讼阻止其它厂商进入市场与其竞争,以获取高额的独占市场利益。
随着Osram、丰田合成(Toyoda Gosei)、Cree、Lumileds等公司在LED领域拥有的专利数不断增加,2001年起日亚在专利诉讼方面遭到挫败,使其不得不更改专利授权的态度,分别与上述公司达成了专利和解和授权协议。随着拥有核心专利的公司进一步增多,日亚、Osram、丰田合成、Cree等专利垄断公司都更加积极地通过专利授权扩大自身在LED市场的影响力,并通过台湾及韩国企业的授权代工来扩大产品的市场份额。
同时,技术的快速发展也迫使技术领先企业放弃了独自发展的念头,转而趋向多边技术合作。
最明显的是日亚化学,其在2002年还希望只靠自身的技术继续白色LED的开发,但现在为了进一步发展白色LED市场,转而趋向有效利用多方的专利合作,来提高技术和产品开发速度。日亚宣布放弃404专利,在很大程度上也是出于这种考虑,另一方面,随著专利期限的步步逼近,这些拥有关键技术专利的LED业者领悟到若继续采取诉讼策略,对日益薄弱的专利期限保护伞是无益的,因为在既有市场下,面临台湾与韩国业者的猛烈攻势,包括日亚化学、OSRAM等等的这些传统业者若坚持死守,势必会面临更艰巨的挑战,此外也因为繁复及冗长的诉讼程序,间接的弱化了开发新技术的力量。所以激烈的技术竞争环境下,出现欧美以及日本等等主要LED业者一改过去的市场策略,例如包括日亚、丰田合成、Cree、飞利浦、OSRAM等业者积极采取相互授权,来回避专利问题,平息彼此纠纷。而在截至2003年以前,这些业者为了维护本身的立场,而热中专利侵权诉讼,也因为如此,使得其它的业者,包括LED封装业者、LED应用业者等等也无端的被卷入诉讼洪潮之中。因此可以发现从2002-2003年开始,令 人注目的各诉讼案件,逐渐以交换授权等等的和解方式收场。
2.2.2新入业者带来诉讼风潮LED老将改变策略—扩大单边授权委托生产
与LED大厂相互之间交互授权“以和为贵”不同,新入业者在发展初期带来诉讼风潮。随著台湾与韩国LED厂商的成长,专利权的纷争更明显,甚至于本来并无直接纷争的传统LED大厂,也因此间接性被卷入诉讼案,例如OSRAM Opto控告接受日亚化学白光LED授权的CITIZEN电子、以及控告接受Cree白光LED相关授权的今台等业者。而日亚化学也针对白光LED封装的新技术,控告了亿光与Seoul Semiconductor等,而对宏齐则是提出了警告。日亚化学的诉讼起缘是因为,亿光与宏齐等获得OSRAM Opto的授权,SeoulSemiconductor则接受美国Cree的授权,所衍生出来的。
随着时间的流逝,当初各公司所建构的专利网,也逐渐面临薄弱化的情况,在跨越专利期限之后,这些技术将会成为新兴业者生产LED的捷径。与其因为花费巨大人力资金获得诉讼获胜的赔偿金(以美国为例,每一个专利诉讼基本花费达100万美元),不如与这些新兴业者结盟,在BRICs等地区收取授权金,不仅在成效上大幅度提升,甚至可以扩大新兴市场。
当这样的转变对于新兴LED生产、LED应用业者而言,也是一项好消息,因为对于新兴LED业者而言,如此可以提高产品的质量并且得以扩充新的销售通路,而在LED应用业者方面,除了避免被卷入专利纷争,还可以获得更低成本、高质量的LED。
各大LED业者从诉讼的漩涡中跳出,扩大授权范围、相互委托生产,就像朝授权收权利金、授权代工的营运模式发展。例如OSRAM采取“收权利金”方式,授权亿光、光宝、宏齐,OSRAM的操作方式是,首先收取一笔2亿新台币的授权金,然后每个产品抽4-7%的权利金;而日亚、丰田合成授权晶元光电代工,AVAGO、OSRAM授权宏齐生产,日亚、日立授权光磊代工生产等等。这种方式让LED应用业者可以获得更低价与质量更好的LED,同时也可以让LED领导业者集中火力的来开发下一代LED关键技术,来巩固原有的市场机会与利益。
这样,呈现欧美与日本等传统LED大厂与拥有高生产技术、制造能力强大的亚洲新兴业者协商委托生产及合作的新局面。如果持续发展下去,相信整体的变化不仅于此,更进一步所带来的是,这些新兴LED生产业者将会拉近与传统LED大厂的技术距离,以及在更多的单向授权与交叉授权下,生产机会将会流向低制造成本的地区,而这些的变化,却是传统LED大厂所不愿意乐见的;另一方面,这些新兴的LED业者,也必定持续的开发出新的技术来扩大专利伞,所带来影响 是,另一波新兴LED业者所带动的诉讼漩涡,又将展开,未来交叉授权的家数,相信也不再会是仅仅只有眼前的数家,而是会扩到大十多家,届时复杂程度比起今天,将是有过之而无不及。
相信在接下来数年间,将会采取扩大授权的策略。就这样的演变环境下,预计有强大制造能力的台湾与韩国的LED业者将会是第一波最大的受惠者。如台湾已经是欧、美、日市场上LED的主要产地,更是蓝光LED芯片的重要量产地,就全球整体的生产能力而言,台湾已经占全球40%左右,而在实际的产出与销售量方面,也拥有全球市场的25%。不但如此,在质量方面,也已经追上一些LED大厂。而中国大陆目前规模普遍比较小,产品整体技术水平还有待进一步提高,将成为继台湾和韩国之后的下一波获利者。
2.2.3专利纠纷重点向应用环节转移
以前的专利纠纷及授权等专利事件绝大多数集中在蓝光外延、芯片领域,再延伸至白光LED领域,日本日亚(Nichia)正是凭借在这些方面的绝对优势,并通过大量的专利侵权控告来维护其在LED方面的垄断地位。而现在,随着应用市场规模和应用领域的不断扩大,围绕照明应用系统的专利事件逐渐增多,预计在近几年仍将成为专利事件的主体。
2006年的专利事件也反映了这一趋势,如5月12日,美国法庭判Color Kinetics公司在与Super Vision International的专利诉讼中胜诉,这两个公司都是LED照明系统制造商,其专利纠纷也集中在LED照明应用产品领域;5月25日(Osram)与安华高科技(Avago)在专利纠纷收场后宣布进行专利交互授权,欧司朗将同意Avago以欧司朗专利进行白光LED的制造与销售,而Avago则授予欧司朗使用Avago专利,投入液晶面板背光用的LED系统制造等权利,是以应用产品专利交换LED器件基本专利的典型事件。
2.3专利保护模糊性与未来趋势
尽管相互授权的范围涵盖了固定发光晶体管技术的方方面面,但在此领域最重要也是最有意义的技术是使用磷光粉将蓝光和紫外光转化成白光的技术。
但是,这些协议对澄清IP位置、确定哪些专利有效、哪些有优先权等并没有多大帮助。阅读一下专利文献就可以发现一系列与美国专利重复甚至冲突的专利文件存在。目前,有关侵权的法令已逐渐颁布,虽然有一部分上诉存在侵权行为,但另一部分人却驳回此类上诉。到目前为止,真正有关专利有效性的法令还是十分有限的。
在很多实际案例当中,专利需要保护的主体不是很清晰。当时甚 至没有一份真正有效的专利对白光LED的发光原理进行保护,1970年那份保护用屏幕来转换颜色的美国专利也不例外,1991年Nichia通过利用荧光粉来将蓝LED转成白光的专利在美国申请专利而遭拒绝。至于拒绝的理由,不知道是否是因为先前美国专利局已经受理过相同性质的专利。
比较一下众多专利,其保护重点都集中在磷光体的使用上(交叉约定签订之前,Nichia上诉Osram公司侵权使用一份日本专利而遭到拒绝,拒绝理由就是Osram并没有使用石榴石磷光体)。因此,之后的专利就开始扩展保护范围,以至于保护的内容越来越广但同时也越来越不清晰。
2005年以来,半导体照明产品开发和应用范围不断扩大,更多公司拥有了相关专利,特别是随着半导体照明应用产品种类和生产厂商越来越多、市场规模急剧扩大,专利关系也越来越复杂。
在这种形势下,怎样保证一个公司的产品不会侵犯其他公司的专利权就是一个迫切需要解决的问题。从法律角度来看,单纯听信卖家的承诺显然不够,极有可能要冒侵权的风险;聘请专利律师进行调查可以解决这个问题,但要花费大量的时间和资金,并不是每个企业都有能力采用。
2006年5月美国固态照明公司Intematix及BridgeLux提出了一个解决方法:组成知识产权安全照明业联盟(IPSLA)。IPSLA为半导体照明的零配件供应商提供了一个网络平台,联盟成员的产品及工艺都经由资格专利律师检查证明其在任何方面都不侵权,以保证成员之间购买的零配件不会有违权行为。预计此类的知识产权联盟会在全球范围内得到发展,以保证半导体照明稳步发展成为一个成熟的行业,并促进其在各个相关领域的应用。
相信全球白光LED的市场与生产结构,将会从2010年出现重大改变,因为从1990年开始所提出的LED相关专利,到2010年时预计20年的有效专利期限将逐渐到期,因此伴随著产业专利结构被打破,紧接而来的是迈入混战时期的高亮度LED产业。
2.4白光LED主要美国专利状况
Nichia是在1996年首先将白光LED推向商业化,而白光LED的历史可以说是十分复杂。美国巨大的市场一直是商家必争之地,在美国,主要专利如下:
贝尔实验室将单个或多个磷光体用于荧光屏的发光,得到了美国专利(3691482)的保护,同时也建立起了光的波长转换原理,该专利受理时间是1970年1月17日;Nichia于1991年11月25日为“荧 光粉使用在树脂中并用来模塑成型”这一方法申请一项日本专利,该技术已于1993年6月18日公布,但是申请于1998年6月23日被拒绝,于1999年12月2日,Nichia收回此项申请;Cree拥有一项专利6600175所有权(该专利最初被授权给AMTI),受理日期是1996年3月26日,授权日期是2003年7月29日。该专利声称保护一项“由单颗LED通过降频变换的磷光体产生白光的设备”,并且该专利试图保护所有与之相关的技术和工艺。但是该专利提到的仅仅是白光之外的光源对磷光体的激励,似乎没有涵盖通常的蓝光LED对黄色磷光体的激励,Nichia在专利中提到了蓝光LED对黄色磷光体的激励,但是没有对之进行论述,也没有对基于石榴石的磷光体技术进行论述;Osram的专利6245259在美国专利受理是在2000年8月29日,授权日期是在2001年6月12日,但在此之前的1997年6月26日,其已经获得国际专利的保护。从那时起,就开始存在专利重叠问题了。最初的专利说明了蓝、绿和紫外线LED与掺铈、铽或硫代石榴石的磷光体,这一点在之前的Nichia白光LED和Nichia日本专利申请中都没有提到。这项技术保护的重点似乎在磷光体尺寸规格上(尺寸要在5微米之下)。HP(Agilent)专利5847507受理日期是1997年7月14日,授权日期是1998年12月8日,该专利的描述涉及到已经存在的Nichia产品并且保护的重点是磷光体的发光原理(方式),这就涵盖了较大范围的各种式样的磷光体。
在白光LED应用方面的第一个Nichia专利5998925在美国被授 权是在1999年12月7日,它的受理日期是1997年7月29日,它被整合到后来Nichia专利6069440和6614179中。此专利涉及到基于石榴石的GaN LED磷光体——描述了Nichia商业白光LED;Toyoda Gosei拥有专利6809347保护掺入铕的碱土正硅酸盐磷光体和蓝色或紫外线LED配合使用,此专利具有2000年12月28日的优先权日期,授权时间是2004年10月26日,它把保护重点集中在一种特别的磷光体设计上,它不象其它专利一样措词含糊,它的保护内容清楚明朗。
2.5白光专利核心——磷光体
众多专利的最大不同之处在于:磷光体的选择,主要磷光体有下面一些:
掺入铈元素的钇铝石榴石(YAG),此种化合材料在460纳闷米光波的照射下处于受激状态,能发出宽范围内的550纳米的光波;Osram公司授权给少数生产商的铽铝石榴石(TAG);硫化物构成的磷光体,如掺入铕元素的硫代锶酸盐,此种化合材料在460纳闷米光波的照射下处于受激状态,并能够发出波长为550钠米的绿光;或者掺入铕元素的锶的硫化物,在该条件下能产生红光;含硅酸盐基的磷光体,该用法已被Toyoda Gosei和Tridonic还有Intematix申请专利保护;有机磷光体或者染料(粉),荧光渲色是否包括了第一二项的做法,暂时还没有资料明确说明;毫微粒子磷光体,是其它专利使用最多的方 法,但该方法(工艺)在以上几条中均没有提到。
在可预见未来,专利仍将是LED产业发展关键议题,且专利诉讼的对象将不仅局限在LED厂商,范围也将扩大至应用产品上。
第三章、LED技术发展
3.1 LED发展历程
1907年Henry Joseph Round第一次在一块碳化硅里观察到电致发光现象,由于其发出的黄光太暗,不适合实际应用,更难处在于碳化硅与电致发光不能很好的适应,研究被摒弃了。
20世纪20年代晚期Bernhard Gudden和Robert Wichard在德国使用从锌硫化物与铜中提炼的的黄磷发光,再一次因发光暗淡而停止。
1936年,George Destiau出版了一个关于硫化锌粉末发射光的报告,随着电流的应用和广泛的认识,最终出现了“电致发光”这个术语。
20世纪50年代,英国科学家在电致发光的实验中使用半导体砷 化镓发明了第一个具有现代意义的LED,并于60年代面世。第一个商用LED仅仅只能发出不可视的红外光,但迅速应用于感应与光电领域。
60年代初,在砷化镓基体上使用磷化物发明了第一个可见的红光LED,磷化镓的改变使得LED更高效、发出的红光更亮,甚至产生出橙色的光。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。
到70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦;就在此时,俄国科学家利用金刚砂制造出发出黄光的LED,尽管它不如欧洲的LED高效;但在70年代末,它能发出纯绿色的光。
80年代早期到中期对砷化镓磷化铝的使用使得第一代高亮度的LED的诞生,先是红色,其LED的光效达到10流明/瓦接着就是黄色,最后为绿色。
到20世纪90年代早期,采用铟铝磷化镓生产出了桔红、橙、黄和绿光的LED。在很长的一段时间内都无法提供发射蓝光的LED,设计工程师仅能采用已有的色彩:红色、绿色和黄色,早期的“蓝光” 器件并不是真正的蓝光LED,而是包围有蓝色散射材料的白炽灯。第一个有历史意义的蓝光LED也出现在90年代早期(日亚公司1993宣布,中村修二博士发明),再一次利用金钢砂—早期的半导体光源的障碍物。依当今的技术标准去衡量,它与俄国以前的黄光LED一样光源暗淡。
90年代中期,出现了超亮度的氮化镓LED,当前制造蓝光LED的晶体外延材料是氮化铟镓(InGaN),发射波长的范围为450nm至470nm,氮化铟镓LED可以产生五倍于氮化镓LED的光强。超亮度蓝光芯片是白光LED的核心,在这个发光芯片上抹上荧光磷,然后荧光磷通过吸收来自芯片上的蓝色光源再转化为白光,利用这种技术可制造出任何可见颜色的光,今天在LED市场上就能看到生产出来的新奇颜色,如浅绿色和粉红色。
在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。
近期开发的LED不仅能发射出纯紫外光而且能发射出真实的“黑色”紫外光,LED发展史到底能走多远还不得而知,也许某天就能开发出能发X射线的LED。然而,LED的发展不单纯是它的颜色还有它的亮度,像计算机一样,遵守摩尔定律的发展,即每隔18个月它的 亮度就会增加一倍,曾经暗淡的发光二极管现在真正预示着LED新时代的来临。
3.2照明用LED高亮度白光是怎样生成的
白光LED基本上有两种方式,一种是多晶片型,一种是单晶片型。前者是将红绿蓝三种LED封装在一起,同时使其发光而产生白光,后者是把蓝光或者紫光、紫外光的LED作为光源,在配合使用荧光粉发出白光。前者的方式,必须将各种LED的特性组合起来,驱动电路比较复杂,后者单晶片型的话,LED只有1种,电路设计比较容易。
单晶片型进一步分成两类,一类是发光源使用蓝光LED,以460nm波长的蓝光晶粒涂上一层YAG萤光物质,利用蓝光LED照射此一萤光物质以产生与蓝光互补的555nm波长黄光,再利用透镜原理将互补的黄光、蓝光予以混合,便可得出所需的白光(日亚专利),生产较容易,其效率较高,成本较低,目前大部分白光LED采用此方法;另一类是使用近紫外和紫外光,丰田合成(Toyoda Gosei)与东芝所共同开发的白光LED,是采用紫外光LED与萤光体组合的方式,与一般蓝光LED与萤光体组合的方式做区隔。蓝光LED与萤光体的组合方式,当照在红色物体的时候,其红色的色泽效果比较不理想,紫外光LED与萤光体组合可以弥补这个缺点,但是,其发光效率却仍低于蓝光LED与萤光体组合的方式,至于价格与产品寿命,两者差距不大。
在过去,只有蓝光LED使用GaN做为基板材料,但是现在从绿光领域到近紫外光领用的LED,也都开始使用GaN化合物做为材料了。并且伴随着白光LED应用的扩大,市场对其效能的期待也逐渐增加。从单纯的角度来看,高效率的追求一直都是被市场与业者所期待的。
但是另一方面,演色也将会是一个重要的性能指标,如果只是做为显示用途的话,发光色为白色可能就已经足够了,但是从照明的用途来说,为了达到更高效率,如何实现与自然光接近的颜色就显得非常必要了。
3.3 LED发光效率影响因素
LED的发光强度及发光效率的提高主要取决于采用的半导体材料及其工艺技术的发展。早期的LED主要用GaAs、GaP(二元素半导体材料)和GaAsP(三元素半导体材料),1994年左右采用AlInGaP(四元素半导体材料)后,其发光强度及发光效率有很大的提高。另外,在工艺技术上采用在GaAs衬底上用AlInGaP材料生产的红光、黄光LED及在SiC衬底上用InGaN材料生产的绿光、蓝光LED,在发光强度及发光效率上有较大的改进。
LED的发光强度与正向电流IF几乎成线性关系,即增加正向电 流IF可增加发光强度。但LED有一个最大功耗PD值的限制,PD=VF×IF(VF为正向压降),若过大地增加IF而使PD超过最大值时,LED会过热而损坏。为了要提高发光强度,开发出中功率LED(一般为几百mW),其工作电流也提高到70mA。为进一步提高发光强度,业者开发出了大功率LED,其功率一般为1~10W(有一些还大于10W),它的工作电流一般为350~700mA,有些可达1A以上。
市场希望只需一颗就可达到相当亮度的LED,在这一方面的技术落在如何让LED能够支援更大的电流。通常30u㎡的LED最大可以驱动30mA的电流,但是这样的结果远远无法满足市场的期望,所以目标是需要将10倍以上的电流,导通到LED元件中。因此当LED的面积尺寸可以扩充到1m㎡时,那么紧接下来的工作便是如何让电流值能够达到350~500mA,因为驱动电压是3V多,所以就可以有1W的电力能被流进1m㎡的晶片面积。
而在发光演色的方面,虽然有这么大的功率输入到GaN LED中,但是所投入电力的四分之三都无法转换成光而形成热量,因此LED就会出现过热的现象,这也会直接影响到LED的演色结果。因为LED元件的基本特性是,如果温度上升,发光效率就会下降以及造成演色性偏差,所以如何有效的释放大量产生热量的放热技术成为了关键,因此将LED装在热传导率大、热容量大的材料上就成了相当重要的问题,目前大多是使用有价金属或者陶瓷。
在现有的发光效率下,如果需要一定程度高辉度,期望因为增加电流量来产生较大亮度的话,这就必须考量如何增加LED的面积来满足所增加的电流,或者利用将数颗小型LED封装在同一个模组之中,来实现封装模组对电流量容许值的提高。在目前的发光效率下,热效应也会成比例的上升,另外,大面积LED比小面积LED的电阻来得要高,使得大面积LED本身的效应也比较大,如果单纯以现有LED为基础来提高辉度的话,将会陷入一个因LED本身价格,和散热材料的成本过高而产生的恶性循环之中,这和以低成本化为基础的市场特性是背道而驰的,而且热效应量的上升会引起封装材料的热劣化,对其使用寿命也有很大的影响。
由于上述理由,为了扩大未来的白光LED市场,业者就必须提高LED的外部量子效率,如果实现了LED高外部量子效率来提高发光效率的话,所出现的连锁反应就会下降,例如因为减少电流透过而使得热效应比率降低,实现成本的下降和长寿命化。关于这一方面,目前因为透过局部制程的改变、使用不同的化合物半导体材料、各种白色发光方法的开发,以及新一代荧光粉的开发,已经使得LED的发光效率可以达到100lm/W。但现在使用白光LED的发光效率,除了一部分的制品之外,产业化的大多都在30~50lm/W左右。如果要代替节能灯就需要将亮度提升到80~100lm/W,如果要代替使用在汽车头灯上的HID的话,就更需要提高到120lm/W以上的发光效率。就技术上,如 果蓝光LED芯片的光输出效率如果达到360mW,配合高阶技术的封装能力,获得100lm/W的白光输出并不困难,包括Cree、日亚等的业者在2006年已开发出高亮度的蓝光LED芯片,紧接着之后的如何降低外部量子效率的损耗便是考验者封装业者的能力,如必须设法减少热阻抗、改善散热等等问题,目前的做法包括了:降低芯片的热阻抗、控制模块和印刷电路板的热阻抗、提高芯片的散热性等等。为了扩大LED特别是白光LED的用途,如何提高发光的效率、相应的辉度、延长使用寿命、降低热效应,以及降低每单位照明的成本等条件,这需要业界做出持续不断的努力。
在使用寿命的方面,目前已经都能够实现4万小时后才开始进入高峰衰退期的使用时间,但这却只能满足照明的最低要求,照明领域所需要的是更高的使用寿命,现在已经有客户要求LED业者提高寿命的要求,要求4万小时是达到高峰期的70%,也就是说高峰衰退期的使用时间是5.7万小时,而整体的使用寿命题将会提高到11.4万小时,比起目前的8万小时增加了近1/3。另一方面,LED的高峰衰退期是根据投入电量和点灯方法的不同有很大的变动,所以不可能明确定义,使得这一方面还是有一些问题存在。具体上白光LED的长寿命化,大多是透过封装材料的改变来达到,例如由目前的环氧树脂变为silicon来防止树脂黄变,在此同时还能够维持光通量,此外还有包括,采用D/B材料和反射结构的劣化防止技术,来达到改善热效应实现低温驱动。
4.2 LED光源主要优势
LED的发光原理是利用半导体中的电子和电洞结合而发出光子,不同于灯泡需要在3000度以上的高温下操作,也不必像日光灯需使用高电压激发电子束,LED和一般的电子组件相同,只需要2~4伏特(V)的电压,在常温下就可以正常动作,因此其寿命也比传统光源来得更长,可达10万小时以上(目前产业化的国外可达3~5万小时)。
白炽灯的发光效率是8--15 lm/ W左右,普通T-8卤素荧光灯光效可达40 lm/ W,T-5高效荧光灯可以达到80 lm/ W,LED光效可达200lm/w,LED还有毫秒级的通断时间,这也是一般应用光源无法达到的。
LED所发出的颜色,主要是取决于电子与电洞结合所释放出来的能量高低,也就是由所用的半导体材料的能隙所决定。同一种材料的波长都很接近,因此每一颗LED的光色都很纯正,与传统光源都混有多种颜色相比,LED可说是一种数字化的光源。
LED芯片大小可以因用途而随意切割,常用的大小为0.3~1mm 左右,跟传统的灯泡或日光灯相比,体积相对小得多。为了使用方便,LED通常都使用树脂包装,做成5mm左右的各种形状,十分坚固耐震。
4.3 LED手机市场前景
就手机上应用LED来说,主要可分为四大类,第一类为来电指示灯,约使用1颗;第二类是手机附数字相机可搭配闪光灯,约使用一颗;第三类为屏幕背光源约使用2-6颗,第四类为按键背光源约使用6-10颗,所以一共加起来最少约要10~12颗LED,而最高阶的机种可能会达到19~20颗LED,可见手机对LED产业的贡献度。
从全球销售额来看,2005年手机市场占比高达62%,从量上看,手机市场占比也达18%,手机市场当之无愧是推动LED产业的第一波浪潮。尽管手机市场仍在增长,但增长日趋缓慢;另一方面,各种新型具有多种附加功能的手机越来越多,手机功耗大,对手机节能的要求越来越强烈,这将推动能耗更低的OLED面板对TFT LCD面板的替代,而OLED是主动发光,不需要背光,对LED的需求趋降。
综合来看,手机市场目前仍是LED的主要市场,但手机市场的影响力在下降,LED成长需要新的应用市场的推动,白光LED进入一般通用照明市场预计2010后才会真正来临,现阶段有两个“整装”市场潜力大—笔记本、液晶显示器及液晶电视的背光与汽车内饰背光及 前后灯市场。
4.4 LED NB及液晶电视背光市场前景
4.4.1 LED背光技术领先优势
LED作为LCD的背光源,与传统背光技术相比,除了在色域范围的优势外,还有很多独特的优点,归纳为十个方面:
节能。目前,照明消耗约占整个电力消耗的20%,同样照明效果的情况下,耗电量是白炽灯泡的八分之一,荧光灯管的二分之一。美国、日本等国家和台湾地区对LED照明效益进行了预测,美国55%白炽灯及55%的日光灯被LED取代,每年节省350亿美元电费,每年减少7.55亿吨二氧化碳排放量;日本100%白炽灯换成LED,可减少1~2座核电厂发电量,每年节省10亿公升以上的原油消耗;台湾地区25%白炽灯及100%的日光灯被白光LED取代,每年节省110亿度电。
LED背光源有更好的色域。其色彩表现力强于CCFL背光源,可对显示色彩数量不足的液晶技术起到很好的弥补作用,色彩还原好;LED的使用寿命可长达10万小时。即使每天连续使用10个小时,也可以连续用上27年,大大延长了液晶电视的使用寿命,可获得对等离子技术压倒性的优势;亮度调整范围大。实现LED功率控制很容易,不像CCFL的最低亮度存在一个门槛。因此,无论在明亮的户外还是全黑的室内,用户都很容易把显示设备的亮度调整到最悦目的状态;完美的运动图像。传统CCFL灯管的闪烁发光频率较低,表现动态场景可能产生画面跳动。
LED背光可以灵活调整发光频率,而且频率大大高于CCFL,因此能完美地呈现运动画面;实时色彩管理。由于红绿蓝3色独立发光,容易精确控制目前的显示色彩特性;可以调整的背光白平衡,同时保证整体对比度。当用户的视频源在计算机和DVD机间切换时,可以轻松在9600K和6500K间调整白平衡,而且不会牺牲亮度和对比度;可以为大尺寸屏幕提供连续面阵光源。LED是一种平面状光源,最基本的发光单元是3~5mm边长的正方形封装后,极容易组合在一起成为既定面积的面光源,具有很好的亮度均匀性,如果作为液晶电视的背光源,所需的辅助光学组件可以做得非常简单,屏幕亮度均匀性更为出色;安全。LED使用的是5~24V的低压电源,十分安全,供电模块的设计也颇为简单;环保。LED光源没有任何射线产生,也没有水银之类的有毒物质,可谓是绿色环保光源;抗震。平面状结构让LED拥有稳固的内部结构,抗震性能很出色。
在液晶显示器已经成为主流显示器的今天,LED背光源凭借其独特、压倒性的优势,逐渐显示出强大的应用前景。
4.4.2 LED背光源现在存在的问题
LED背光技术就象许多新型技术一样拥有许多诱人的优点,但LED要想占据大尺寸LCD背光源的主流,目前还需要解决一些技术难点。通过表的对比,我们已经发现LED在功耗方面处于劣势,除此之外还存在成本高、一致性差等问题。
1)目前LED的发光效率较低,与同等尺寸CCFL背光源相比耗电量高。目前CCFL的输出光通量多在5000~7000lm范围,实际屏幕的输出光通量高于300lm,而多数LED背光都还无法达到这一指标。不过,现在全球有大量的企业从事相关研究,LED发光效率提升相当之快,目前光通量达到10000lm的高亮型LED背光也已经出现,相信离成熟仅是咫尺之遥;2)成本太高、价格昂贵,同等尺寸的背光源,LED是CCFL价格的4倍。对于目前价格竞争激烈的市场而言,让厂家有些望而却步,只有索尼为了图像质量不计成本。当然,随着工艺的成熟和生产规模的增加,LED背光的成本会逐步下降;3)用LED作为背光源存在白光的一致性问题,这比起CCFL是个劣势;4)LED在网点设计上较线性光源CCFL难,需考虑LED辐射状的光强衰减;5)RGB LED背光源时间一久会产生色移,波长会随温度变化,产生不同颜色。
此外,散热、光源均匀性、以及LED芯片发光效率也是目前液晶面板厂商不太采用的原因之一。目前,使用LED作为背照灯光源的大 尺寸液晶面板模块产品仅有少量。Displaybank表示,这是因为显示器领域的价格竞争激烈,必须把降低成本放在第一位。今后,LED背照灯的普及速度取决于何时能够解决目前LED背照灯所拥有的散热困难、均一性差和LED芯片发光效率低等问题。
4.4.3 LED液晶用背光前景
应用在液晶面板背光的LED,会依据点灯方式是直下还是侧光式,用途是电视还是电脑荧幕,都更有不同。对于辉度的要求方面,电视会比电脑荧幕高,侧光式背光的话就会使用白光LED,如果是要求高辉度、高演色性的电视就会使用直下式背光。电脑荧幕的话,一般都使用侧光方式的RGB点灯,但是电视的话,采用白色直下和RGB侧光的方式不同,就热门程度而言,现在在LED市场上备受关注的是使用白光LED侧光方式的液晶用背光领域。
使用白光LED侧光方式的背光,其优点是可以达到PC本体的薄型化、轻型化,延长电池寿命等等的特色,但现在的白光LED的红色spectre比较弱,有色再现性不足的缺点,但是对电脑荧幕画面,尤其是笔记型电脑,要求与电视同样高演色性的使用者不多,所以在这一方面色再现不会成为一个大问题,而且如果真有高演色性方面的需求,也可以使用RGB 3原色背光和在白光LED的Rail配列中,利用定点混合红色LED的方法等等来解决,相信在未来,电脑荧幕用光源 对于白光LED做为背光源的采用将会更加扩大。
另一方面,电视用RGB背光的市场化则相当被看好,目前已经有相当多的业者将RGB 3原色LED背光液晶电视商品化了,但是要将这些三原色的背光完全成为主流技术,需要解决的问题还很多,相信还需花费数年来解决这些问题。这是因为3原色背光的根本性问题在于成本,由于电视背光需要高辉度,所以使用的必须是1W以上的高辉度LED,而且因为是直下式的方式,所以在LED的使用数方面,也会因为面板面积而大幅度的增加,在加上为了色调同一,数百个LED全部都需根据发光波长严格选定,光是LED成本就很高。使用时还有冷却LED的散热鳍片和冷却风扇等解决热效应零件的成本,另外还需要调整各LED色差的RGB色度Sensor,以及将Sensor侦测出的内容送回LED的Sensing Algorithm等周边电路的成本,并且因为大量使用高辉度LED,导致的驱动电流的增加也是一大问题,所以以现今而言能够完成低价化还比较困难。
除了成本之外,也有一些问题需要克服,例如影像播放讯号的高解析度范围,现在的影像播放讯号只能发挥LED的3原色背光最基本演色解析度,因此要将3原色背光的潜能发挥出来,就必须强化内容高解析度,因此在目前的环境下,使用RGB 3原色的背光是有点大材小用。因此,未来如果期望将3原色背光面板完全市场化的话,前提是必须降低成本,并且提高品质,建立採用新的全彩高解析色资讯的 播放规格,并且基于这个规格来普及影像内容,所以现在说3原色背光已经市场化,其实还是言之过早,但是相信使用3原色背光的LCD面板,将来会达到实用化应该是毫无疑问的。
目前,使用LED作为背照灯光源的大尺寸液晶面板模块产品仅有少量。这是因为显示器领域的价格竞争激烈,必须把降低成本放在第一位。今后,LED背照灯的普及速度取决于何时能够解决目前LED背照灯所拥有的散热困难、均一性差和LED芯片发光效率低等问题。
目前的技术条件下,CCFL面板的售价要比LED面板的售价便宜2倍以上,笔记本制造商目前只能在高端的产品中采用LED面板,如果笔记本采用LED背光面板,那么它的整体售价将增加300美元。一般业者认为,当LED背光与CCFL背光价格拉近至1.5倍以内时,LED背光渗透率将快速拉高。
由于成本等问题,虽然目前大多数厂商目前不愿意在笔记本采用LED背光面板,2006年,面向大尺寸液晶面板制造的LED背照灯极少,在统计上几乎为零。但从2007年的第二季度开始,苹果和惠普等公司将推出采用LED背光面板的笔记本电脑,相信随着业界知名品牌的加入,LED背面面板在笔记本中的使用将会越来越普遍。台湾PIDA预测,在2007年年内,10英寸到12英寸笔记本中的的10%将采用LED背光面板,但尺寸更大的笔记本目前仍然不会大量采用LED背光 面板,价格昂贵是主要原因之一。
而韩国Displaybank发表了大尺寸液晶面板用发光二极管(LED)背照灯的全球市场预测,对象包括液晶显示器、笔记本电脑、液晶电视等。该公司预测到2007年,将达到约510万台,占整个背照灯市场的1.5%,2008年达到约1900万台和占市场的4.8%,2009年达到4210万台和9.6%,2010年将迅速增加到约6780万台和14.1%,2010年LED背照灯在金额上会达到45亿9900万美元,占总体的25.4%。
所以NB和液晶电视面板背光将成为推动全球LED产业成长的新的推动力,由于NB及液晶电视面板主产地在台湾地区、韩国和日本,这些地区LED产能强大,且不断有新的产能加入,如台湾鸿海、佳总、联茂这些电子产业大厂将进入LED产业,大陆面板产能较低,在这一波推进潮中获益估计有限。但如果国内下游液晶电视整机厂自建面板模组厂的话,将推动国内背光对LED新的需求,长远需求前景看好,目前国内只有TCL有自建液晶模组厂的规划,产能为250万台/年,2009年投产。
4.5 LED在汽车领域的应用前景
在车用数量方面,每台车分别需要100颗(内部)、200颗(外部)。内部应用如仪表板、阅读灯,外部应用则为尾灯、煞车灯、方向灯、头灯等。目前全车内部采用LED的车厂家几乎全为欧洲的公司;而在外部照明使用LED方面,欧系及日系汽车将第三刹车灯改成LED的比率已超过80%。
车用领域最大的课题是将LED应用在汽车的头灯,例如在日本市场,由于受到法律的限制,无法在头灯使用LED。但是,这样的限制将在2007年开始出现转机,从2007年开始可以将LED应用在概念车上,从2008年开始,更可以扩大使用LED来作为头灯,并且在2010年以后应该可以以允许开始正式使用。从元件的性能来看,目前的白光LED已经可以代替卤素灯了,最大的挑战是如何取代HID。但是随着技术的发展,相信到2010年,LED将会有机会在亮度和成本两方面与HID进行竞争。
从基本来看,在汽车头灯使用LED的优点很多,首先是使用寿命,尽管与前述的LED的高峰衰减期也有一些关系,但是汽车的头灯不是平常的照明,所以与一般照明用途不同;接下来是设计的灵活度,头灯内的纵深将变薄,正面可以用来全面照明,使得设计的弹性度增加,而且因为LED是比较指向性强的光源,所以作为照明可以进行设计简单化和轻型化,除此之外,透过与可视光通讯技术的结合,非常有可能成为安全行驶用的资讯通讯元件。
在头灯之外,LED在汽车的应用也逐渐地增多,尾灯、方向灯和 雾灯等外部照明,还有车内灯、脚灯、仪表板用灯、导航设备用的液晶背光,和其他自动设备的操作面板,应用可以说是相当的多,当然各个应用领域都有辉度要求,同时对于演色性也有所要求,另一方面也有只要成本低的情况,所以要求各不相同。这彼此之间可以约略的进行区分,例如一般车外灯的要求会是以辉度为主,车辆内装则是以演色性为主。具体来说,头灯是需要光的到达距离,对色再现等等没有明确的要求,而车内灯会因为乘车人讨厌蓝色的光等等因素,所以对演色性的要求很高,而如果应用在仪表板上的LED就和演色性无关,不过却会被要求低辉度和低成本。
以目前来看,在车用领域最大的市场在车内饰背光,其次为车后灯,2006年全球车内饰市场销售额4.2亿美元,车后灯市场为2.2亿美元,预计2010年汽车市场LED总体销售额会达到11.5亿美元。
4.6 LED用于一般照明领域技术与成本制约尚需一段时间
未来LED市场最大的领域就是一般照明市场,如果能够完全代替荧光灯的话,相信就可能有近1000亿美元的潜在市场规模,并且能够应用在更多不同的领域。但是事实上,如果期望LED能够完全取代传统灯源还是有一定的困难。由于LED是点光源,因此在部分的产品可以开始利用LED来代替以往的白炽灯等灯泡,就实际的市场上而言,目前已经有包括吸顶灯、内部照明等开始采用,而市场规模也是 逐年扩大之中。但是,在荧光灯等面光源领域的市场发展却较为缓慢,因为如果要把LED作为面光源来利用的话,只能像面板用的背光一样,以直下的方式将LED在固定面上铺满,或者以侧光的方式利用导光板来完成。但是这些方式都很难在发光功率和价格方面代替荧光灯,特别是在一般照明领域需要演色性高,这样一来就需要使用紫外光,或者使用以蓝色LED为基础,配可激发RGB的荧光粉,不过这却会造成发光效率的下降,因此期望满足产业化的100lm/W的照明效率需求还需要一段时间。
半导体照明成本在逐渐下降
该部分为南昌大学江风益教授在《中国电子报》上撰文(11/2005),对认识LED白光照明成本结构及发展趋势有莫大裨益,在此引用。
半导体照明的技术路线众多,不同技术路线成本不同。就同一种技术路线而言,不同技术水平成本也有明显差异。即使同一种技术路线、同一种技术水平,各生产厂家采用不同的成本控制方法,其结果也会有较大差别。
由于上述问题都给成本预测带来困难,所以要做半导体照明的有关成本预测,对技术方案进行一些假设:首先,蓝光LED激发荧光粉,其中蓝光LED为GaN基多量子阱LED结构;其次,由尺寸为1mm×1mm的芯片封装成单灯;第三,半导体照明灯由若干个单灯简单组合而成;第四,每一个单灯均安装在带有驱动电源、散热性能良好的灯支架上,但驱动电源、支架及装饰部件的成本不计算在固态照明灯成本之内,即仅考虑“灯泡”的成本;第五,芯片发光效率高低和芯片器件所能承受的功率密度大小基本与成本无关。这一假设在一定范围内是成立的。比如,同一家研究单位或企业提高外延生长、芯片制造和器件封装水平,往往可以在不明显增加成本的前提下,通过优化工艺技术而显著提高发光效率和器件所能承受的电流密度;第六,外延生长、芯片制造和器件封装均达到比较理想的90%的合格率。
发光效率为40lm/W时,1W半导体白光灯成本在2.5元以内,光通量为1500lm的半导体白光照明灯,其成本应可控制在93.75元以内;发光效率为200lm/W时,1W半导体白光灯成本在2.5元以内,光通量为1500lm的半导体白光照明灯,其成本应可控制在18.75元以内;发光效率高达200lm/W,同时器件功率密度高达10W/mm2(美国固态照明技术路线图的最高目标),也就是说使用一颗1mm×1mm的GaN基LED芯片,就可封装成光通量为2000lm的半导体白光灯,它比20W日光灯还亮。此时,比起日光灯、1500lm半导体白光灯的成本更低,其成本主体取决于封装,成本有可能变到5元以下。
一些国家已经对固态照明技术的成本做出了一个规划,例如,美 国固态照明技术路线图中就有对成本的目标:首先,到2007年,光通量为200lm的固态白光照明灯(效率为75lm/W),价格降到4美元以下,即光通量相当于20W白炽灯水平的固态白光照明灯,其单价降到32元人民币左右;其次,到2012年,光通量为1000lm的固态白光照明灯(发光效率为150lm/W),价格降到5美元以下,即光通量相当于60W白炽灯水平的固态白光照明灯,其单价降到40元人民币左右;第三,到2020年,光通量为1500lm的固态白光照明灯(发光效率为200lm/W),价格降到3美元以下,即光通量相当于20W日光灯水平的固态白光照明灯,其单价降到24元人民币左右。(注:这一目标可能较早制定,日亚宣布2007年将投产光效为150lm/w的LED产品,全球LED照明产品的研发进程估计大大快于上述目标进程)
目前市场上光通量为30lm~50lm的固态白光单灯(1mm×1mm芯片),其销售价格约为20元到28元。但实际成本如何呢?在一片直径为50mm的蓝宝石衬底上,GaN基LED的衬底、外延和芯片成本分别为300元、300元和600元,用此外延材料可制造成1600个大小为1mm×1mm的功率型半导体芯片,每个芯片的成本不到1元。目前封装1W半导体白光灯的成本约6元(芯片成本除外),但批量生产,厂家自己开模,成本控制在1.5元是没有问题的,所以,只要企业规模做上去了,合格率达到预期的目标,1W半导体白光灯成本应在2.5元以内。
这一目标能否达到,外延材料生长、芯片制造和器件封装同样重要。研究工作表明,半导体照明芯片承受功率密度10W/mm2是没有问题的,只要散热条件足够好,而今后的关键问题在于提高外延材料内量子效率,提高芯片出光效率,提高器件封装效率和散热特性半导体白光照明灯要替代白炽灯和日光灯,在外延、芯片和封装等成本上并没有很大困难,即使上述预测成本提高一倍也还是比较乐观的,这里关键的挑战在于能否大幅度提升技术水平。不断提高外延材料的质量,不断提高发光效率,不断提高器件所能承受的功率密度,解决好器件散热问题,半导体照明灯替代白炽灯和日光灯是必然趋势,其价格一定能降到老百姓能接受的程度。近期国内外技术突飞猛进,预示着半导体照明灯进入千家万户的时代会提前到来。
4.7 LED超越传统光源创造更高品质
LED市场是一个尚包含着很多的课题和可能性的领域,正因为如此市场的潜力是相当的大,相信在各领域的努力下,LED大有机会可以超越传统光源,创造更高品质的光源环境。
对于LED的新应用市场来说,早期一般所期待的是车用领域、LCD用背光灯领域,以及代替白炽灯等灯泡,或代替用于室外看板光源功能的一般照明领域,对于这些领域,LED可以说在辉度和演色性两方面都能够满足要求,只不过在部分的技术上还要进行开发和努力。
但是因为LED的技术还在不断的开发中,各种应用的可能性都还是相当的大,相信未来必定会因为发光效率的提高,和价格的降低被开发出更多的新应用领用,例如目前已经有业者开始开发利用LED作为液晶投影机的光源、可视光通讯用的光源等等。此外伴随着这些变化,在封装材料、热传导黏合剂等的封装相关领域也因此而有着相当多的改变,并且出现了相当大的连锁效应。
就如平面显示器实现每英 1万日圆的理想一样,就技术与应用而言,白光LED的效能已经逐渐接近在100lm/W下、每流明1日圆的成本目标。以目前技术而言,如果蓝光LED芯片的光输出若能达到360lm/W的话,就有相当大的可能性获得100lm/W输出的白光LED,而这个达到360lm/W蓝光LED芯片的技术以今天而言,已经不再是艰巨的挑战了,Cree在2006年便以发展出光输出高达370lm/W白光LED用蓝光LED芯片。所以一旦360lm/W以上的蓝光LED芯片量产技术确立之后,下一个目标便是开始朝向在白光100lm/W下、每流明1日圆的成本目标发展。更具体化一点来看,如果期望在各领域普及白光LED应用的话,就必须将现在30lm/W的成本降低1/2~1/3。这样一来就必须朝向提高在LED生产和封装时的良率,以及使用材料的改变。不过最好的方法还是透过量产的方式来降低单价,但是为了得到更大的量产效果,终究还是必须增加白光LED在各方面的应用机会。现在各业者都在努力增加白光LED的应用领域,所以才能够使得1ml的成 本持续降低,相信在未来数年内1m 的大面积LED晶片的产品和高单价的高阶LED产品,能够有机会到达商品化实用的价格。
在蓝光LED芯片与白光LED技术的迅速推进下,在应用市场方面也获得了相对令人欣慰的回应。白色发光LED的应用,从单颗小型照明应用,不断扩展到液晶面板背光源,并即将敲开车用大灯、屋外照明等各领域的应用大门。根据isuppli市调公司的统计,2006-2008年复合成长率(CAGR)约为111.2%,而2007年LED产品各项应用更将步入高速成长期,整体而言,手机应用已出现成长趋缓,但背光源、车用、户外看板等需求将大幅提升,从2005-2010年之间,背光源、车用、户外看板的年复合成长率分别为55.8%、19.2%、16.5%。
第五章、中国LED产业发展与前景
5.1中国LED产业概况
经过30多年的发展,中国LED产业已初步形成了较为完整的产业链。中国LED产业在经历了买器件、买芯片、买外延片之路后,目前已经实现了自主生产外延片和芯片。现阶段,从事该产业的人数达5万多人,研究机构20多家,企业4000多家,其中上游企业50余家,封装企业1000余家,下游应用企业3000余家。特别是2003年中国半导体照明工作小组的成立标志着政府对于LED在照明领域的
第三篇:2012中国LED产业机遇与挑战并存
2012中国LED产业机遇与挑战并存
2012年,在国内产能大量释放、全球市场需求增速减缓、政府补助政策仍未清晰的多重压力下,中国LED产业必然进入行业格局重整和竞争模式转变的新阶段。
首先,2012年上游产能逐步释放,外延芯片价格压力仍将持续,国产化率稳步提升,国内外竞争加剧波及大功率芯片。
2011年,国内的MOCVD总数达到720台,按目前各公司调整后的设备引进计划,预计2012年MOCVD的安装量将维持在300台左右的水平。2011年,国内企业芯片营收增长30%,达到65亿元,但远远不及MOCVD设备106%的增速,这也反映出国内芯片产能未能充分发挥,2012年外延芯片价格压力仍将持续。
2011年,国内GaN芯片产能增长达到12000kk/月,但产能利用不足50%,全年产量仅为710亿颗,但国产化率达到70%以上。同时,国内芯片已经通过小芯片集成的方式在照明应用取得突破;大功率照明芯片20%的市场占有率仍然较低,但随着研发创新和产品品质的提升,总体趋势是国内芯片占有率小幅提高,国外芯片价格有望突破6000RMB/K。
尽管2011年末LED市场增量放缓,但仍有来自日本和台湾地区的上游项目入驻中国大陆,这也造成2012年国内LED外延芯片领域竞争趋势加剧,在国际宏观经济形势持续动荡的形势下,国内上游产业投资将趋谨慎。
其次,2012年封装领域,优质企业将整合更多行业资源,产品结构向高亮LED、SMD LED集中,总体市场保持增量减利趋势,上下游合作整合成为封装企业突围的新模式。
2011年,以国星光电、瑞丰光电、鸿利光电为首的LED封装企业陆续发力、纷纷入市,2012年资本与封装企业的合作将更加紧密与活跃。
2011年,我国LED封装产业整体规模达到285亿元,较2010年的250亿元增长14%,产量则由2010年的1335亿只增加到1820亿只,增长36%。2012年,国内封装产量依然会保持30%以上的增长,但由于利润率受到上下游成本与需求的挤压,造成总体产值增长不会超过20%。
从产品结构来看,高亮LED产值达到265亿元,占LED封装总销售额的90%以上;SMD LED封装增长最为明显,已经成为LED封装的主流产品,2012年,SMD和高亮LED所占比例仍将有有较大提升。
LED封装企业作为产业链中间环节,往往需要承受来自纵向与横向两个方面的竞争压力,尽管2011年的资本介入增加了部分LED封装企业的竞争筹码,然而,整合突围仍然是落在封装企业肩头的一副重担。据笔者获悉,目前一些封装企业已经展开了与国内传统照明大厂的合作,共同投资、合作建厂的模式或许会成为这条突围路上的新尝试。
再有,2012年LED应用领域将保持较快增长,照明、景观、背光仍是拉动增长的三驾马车,LED照明应用热点进一步从户外照明转向室内,国际市场需求和国内政策引导将成为决定LED照明增长速度的关键要素。LED照明应用竞争格局存在诸多变数,具有资金、规模、技术、品牌和市场渠道优势的企业成为产业整合的主体。
2011年,我国LED应用领域整体规模达到1210亿元,整体增长率达到34%,是半导体照明产业链增长最快的环节。其中,照明应用的增长非常明显,整体份额已经占到整个应用的25%,成为市场份额最大的应用领域,背光、景观等应用也保持了较快的增长。
据“十城万盏”试点城市调研统计,目前37个试点城市已实施的示范工程超过2000项,应用的LED灯具超过420万盏,年节电超过4亿度。2012年,LED户外照明将逐步实现从政府引导向市场主导的转型过渡,鉴于“十城万盏”的示范作用,目前国内众多城市正在加大LED路灯(含隧道灯)的替换安装量,加之国内每年200万盏的新增安装量,给户外照明企业提供了更广阔的市场空间和拓展机会。
2011年,虽然业内一致期待的LED产品补贴政策迟迟未能出台,但LED室内照明市场应用前景已经得到认可。2012年,LED补贴政策全面出台只是时间问题,我们有理由期待在2012年4月25-27日Green Lighting盛会举办期间会有相关信息发布。
第四篇:我国旅游行业发展机遇分析
中投顾问产业研究中心
我国旅游行业发展机遇分析
一、国际化机遇
一是国际环境总体上有利于旅游业发展。从国际政治经济环境看,和平、发展与合作仍是当今世界的时代主流,世界多极化、经济全球化和区域一体化发展的格局更加明显,为世界旅游经济提供了稳定的外部环境。全球经济增长的稳步回升,加上有关国际组织和各国各地区政府采取更加有利的旅游产业促进政策,有利于国际旅游保持持续较快发展。
二是对外开放不断扩大和出境旅游的发展,为旅游业的国际化提供有利的市场环境。当前,我国和世界主要大国、周边国家、发展中国家等的关系持续平稳发展,中国—东盟自由贸易区已正式启动,一批跨境经济技术合作规划已经或正在编制。“十二五”以来,我国还实施互利共赢的开发战略,进一步提高对外开放水平。我国国际关系的稳定和对外开放的扩大,为我国旅游业的国际化发展创造了良好的宏观环境。从行业自身来说,我国旅游业的开放水平也不断提高。我国与其他国家和地区、国际组织的旅游交流合作蓬勃发展,目前国际上著名旅游集团几乎全部进入中国,外资进入中国旅游业呈加速态势,并向二三线城市纵深发展。与此同时,我国出境旅游持续快速增长,也将推动我国旅游企业更快地“走出去”,使得中国旅游业越来越融入全球化发展的大格局当中。
二、市场需求机遇
国内消费结构升级和城市化进程加快,国内旅游市场需求可望保持旺盛。我国居民消费已经进入结构快速升级时期,人们的旅游消费需求潜力巨大。未来我国城乡居民收入将进一步增长,旅游消费进入快速增长的黄金期,我国旅游持续较快发展具有强大的市场基础。
未来一段时期是我国城镇化加快发展的时期,城镇化有利于国民消费结构的升级,将为旅游消费提供新的增长空间。保障和改善民生将是我国今后一段时期的重要发展任务,政府支出中用于改善民生和社会事业的比重将进一步增加,社会保障制度覆盖面将进一步扩大,这也将有利于居民消费预期的形成,促进旅游消费需求的增长。
三、交通支撑机遇
我国高速交通等配套支撑体系不断完善,将为我国旅游行业的发展提供更加稳固的发展基础。根据《中国铁路中长期发展规划》,到2020年,我国将建立省会城市与大中城市间的快速客运通道以及四个城际快速客运系统,形成“四纵四横”的高速铁路基本框架,高铁覆盖全国90%以上人口。根据《全国民用机场布局规划》,至2020年,全国民用机场总数将达244个。与此同时,航线也会大大增加。公路方面,根据《国家高速公路网规划》,我国高速公路网采用放射线与纵横网格相结合的布局方案,形成由中心城市向外放射以及横贯东西、纵贯南北的大通道,总规模达到8.5万公里,全部建成后将连接全国所有的省会级城市、城镇人口超过50万的大城市以及城镇人口超过20万的中等城市,覆盖全国10多亿人口;实现东部地区平均30分钟上高速,中部地区平均1小时上高速,西部地区平均2小时上高速,从而大大提高全社会的机动性,为人们旅游、休闲提供快速通道。
中投顾问·让投资更安全 经营更稳健
中投顾问产业研究中心
我国高速交通体系的初步建成,大大拓展了游客出行距离和产业发展空间。加上海洋和内河、湖泊等水上交通、城市内部交通的发展,公共服务体系的健全,我国旅游业发展的配套支撑体系不断完善,各种发展大众旅游的条件正在成熟,发展基础逐步稳固。
四、转型升级机遇
以信息化为代表的科技进步以及现代商业模式的创新,将推动旅游业转型升级。随着信息技术和知识经济的发展,用现代化的新技术、新装备改造和提升旅游业,正在成为新时期旅游业发展的新趋势。在这一进程中,科学技术不仅创造出大量新的旅游业态和新的旅游需求,引导新的旅游消费,还将极大地推动服务方式创新和商业模式创新。
中投顾问在《2016-2020年中国旅游行业投资分析及前景预测报告》中指出,今后一段时期,信息技术将会更加广泛地运用到旅游业发展的方方面面。特别是2015年国务院推行的“三网融合”,将促进不同网络之间的信息兼容,实现网络资源的共享,这将在很大程度上改变传统的旅游消费方式、旅游经营方式和旅游管理方式,将推动旅游业向现代服务业的运行模式发展,推动旅游业转型升级。
中投顾问·让投资更安全 经营更稳健
第2页
第五篇:中国LED显示屏市场机遇与挑战并存
中国LED显示屏市场机遇与挑战并存
受到体育场馆用LED显示屏需求快速增长的带动,近年来,中国 LED显示屏应用逐步增多。目前,LED广告大屏幕已经广泛应用在银行、火车站、广告、体育场馆之中。显示屏也从传统的单色静态显示转变为全彩视频显示。
2006年,中国LED显示屏市场需求额为40.5亿元,比2005年增长25.1%,这其中户外全彩显示屏需求额达到17.1亿元,占整体市场的42.2%,双色显示屏的需求额位于第二位,需求额为16.3亿元,占整体市场的40.2%,由于单色显示屏单价比较便宜,需求额为7.1亿元。
图1 2006-2010年中国LED显示屏市场规模
数据来源:赛迪顾问,2007,09
而随着奥运会、世博会的临近,LED显示屏将广泛的应用在体育场馆以及道路交通指示中,LED显示屏在体育广场中的应用将出现快速增长。而随着体育场馆、广告领域对于全彩显示屏的需求将不断增加,全彩LED显示屏在整体市场中所占的比重将持续扩大。2007-2010年,中国LED显示屏市场年均复合增长率将达到15.1%,2010年市场需求额将达75.5亿元。
> 图2 2006年中国LED显示屏市场颜色结构 数据来源:赛迪顾问,2007,09
重大活动成为市场助推器
2008年奥运会的召开将会直接推动体育场用大屏幕数量的快速增加,同时,由于奥运会用屏对LED显示屏的品质要求也较高,因此,高端屏幕的使用比例也将会增加,数量和质量的提高带动LED显示屏市场的增长。除了体育场馆之外,奥运会和世博会等重大活动召开的另一直接推动领域就是广告领域国内外的广告公司必然会看好奥运会和世博会带来的商机,因此必然会增加广告用屏的数量来提高自身收入,从而促进了广告用屏市场的发展。
奥运会和世博会等重大活动的召开必然会伴随着很多大型活动,政府、新闻媒体和各种组织都可能会在奥运会和世博会之间举办各种相关活动,某些活动可能需要大屏LED,这些需求除了直接带动显示屏市场以外还可能同时带动LED显示屏租赁市场。
除此之外,两会的召开还将会刺激政府部门对于LED显示屏的需求,而LED电子显示屏作为有效的公共信息发布工具,可能会在两会期间更多的被政府部门采用,例如政府机关、交通部门、税务部门和工商部门等。
广告领域回款困难,市场风险系数高
体育场馆、户外广告是中国LED显示屏市场最大的两个应用领域。LED显示屏多属于工程类性质的应用,一般如体育场馆、广告等大型LED显示屏项目主要是通过公开招标进行,而一些针对企业的显示屏项目则主要是通过邀标的方式进行。
由于LED显示屏工程类性质明显,在广告大屏幕项目执行的过程中常需要面对回款问题。由于体育场馆多为政府类项目,资金方面相对充裕,所以LED显示屏厂商面对的汇款压力要低一些。而同属于LED显示屏重要应用领域的广告领域中,由于项目投资方经济实力参差不齐,并且项目投资方出资兴建LED广告屏主要是依赖显示屏的广告费用来维持企业的正常运转,而后期投资方获得的LED显示屏广告费用灵活性比较大,投资方不能保证有足够充裕的资金,LED显示屏生产企业在广告项目中受到的汇款压力要大一些。同时,中国LED显示屏生产企业众多,一些企业为了争夺市场份额,不惜采用价格战手法,在项目竞标的过程中,不断出现低价抢标的现象,企业间的竞争压力不断加大。为了保证企业的健康发展,减少企业面临的汇款危险,降低企业呆账、坏账的数目,目前,国内一些主要的LED显示屏生产企业在承接广告等项目时,多采取比较谨慎的态度。
中国将成为全球主要生产基地
目前,国内从事LED显示屏生产的企业众多,同时,受到外资企业LED显示屏价格过高的影响,在中国LED显示屏市场上多以本土企业为主。目前,本土LED广告大屏幕生产企业除供应国内需求外,还不断把产品出口到国外市场。而近年来,受到成本压力的影响,国际上一些知名的LED显示屏企业也逐步把生产基地移到了中国,如巴可在北京设立了显示屏生产基地,Lighthouse在惠州也拥有生产基地,Daktronics、莱茵堡都在国内设立了生产工厂。而三菱等还没有进入中国市场的显示屏生产企业,也看好国内市场的发展前景准备进军国内市场,随着国际LED显示屏生产大厂不断把生产基地转移至国内,加之国内众多的LED显示屏本土企业,中国正在成为全球LED显示屏的主要生产基地。
LED显示屏产业新格局正在形成
目前,LED显示屏产业正面临良好的市场机遇。随着LED器件材料性能的不断提高,全彩色显示屏正在成为LED显示屏行业新的增长点;2008年北京奥运会、2010年上海世博会等大型活动的举办,为LED显示屏市场带来了更多的市场机会;半导体照明产业的发展,为LED显示屏产业的发展开拓了更大的空间;户外广告、体育、交通和演出、展览、租赁、集会等领域的市场也在显著增加。
要抓住这些机遇,必须客观地认识我国LED产业的发展现状。
产业发展面临三大问题
目前,我国LED产业发展面临三个主要问题,一是技术创新能力不足,产业总体创新水平需要提高。主要表现在技术含量高的新产品和引领市场发展的骨干拳头产品不足,“克隆”技术和产品的现象普遍,行业内能在推动技术进步和提升行业整体发展水平方面发挥积极作用的龙头企业缺乏,企业在研发方面的投入严重不足。由于技术创新的缺乏,产品低水平的技术重复,导致市场竞争的价格战和各种不规范的竞争行为。
二是企业的核心竞争力较弱。行业技术进步缓慢,产品创新程度低,技术含量不够等导致核心竞争力缺乏。
三是产业链的错位。上下游产业有机结合,专业化协作和分工是产业健康发展和成熟的标志。LED显示产业内近年出现了不少显示屏制造企业进行LED器件封装和LED器件封装企业生产供应显示屏的情况。从企业发展来说固然有其道理,但从产业链的构成来说是不合理的。
新趋势改变产业格局
产业发展趋势可以从以下三点进行分析:
一是产品技术的深化和产品的多元化。
我国LED显示屏产业的技术基础和水平应该说还是相当先进的,主要产品和关键技术与国际同行业的先进水平能够保持一致,但工艺水平比较落后,在产品规范化、整机系统设计、可靠性、制造工艺、检测测试手段等方面与国外有明显的差距。
LED器件技术和性能不断提高,电子技术发展日新月异,这为LED显示屏产品的技术深化和提高带来良好的基础。同时LED显示在社会生活的各个领域得到了广泛的应用,半导体照明产业的发展更为LED显示产业带来良好契机,因此,LED广告显示屏市场发展前景乐观。深化技术内涵,丰富产品体系,产品多元化,突出主导产品的优势将是LED显示屏产业发展的重要趋势。
二是常规产品的标准化和特定领域应用产品的专业化。相关标准的宣传贯彻和推广,将促进LED显示产品的标准化发展。常规LED显示产品中,标准化显示器件和控制系统等会得到更加广泛的采用,集成性的LED显示产品在产业中会占主要的地位,标准化LED显示产品的生产和市场技术服务的专业化分工将更为明显。
在专业应用领域,LED显示产品为满足专业应用的需求,专业化水平将不断提升,结合应用需求的专业化产品将拓展形成LED显示的新产品和新的应用领域,如城市亮化工程的大面积LED显示、体育场馆的LED显示、交通领域的LED显示等。
三是产业内部的合理分工和新产业格局的形成。
随着技术和市场的发展,我国的LED显示屏产业将会在调整中逐步提高并有合理的分工,形成新的产业格局。在整体产业链中,LED大屏幕生产的龙头企业和显示产品生产的骨干企业的形成,将重新界定上下游产业的分工,突出体现专业化分工和协作。也许在半导体照明产业发展初期,LED器件生产企业和显示产品生产企业的专业化分工和协作的界定比较模糊,但随着市场的扩展和技术产品的成熟,这种界定将日渐清晰。
在LED广告屏产业中,产业内的企业群体将适当分类,逐步形成以关键控制系统技术研发为主的技术开发型企业,以规模化、标准化生产为主的产品制造型企业,以市场应用推广为主的技术服务型企业,以满足专业市场需求为主的专业应用型企业等。
LED显示屏故障分析和处理办法
简介:01.加载不上可能是哪些原因造成的?加载不上可能是由于以下几种原因造成的,请根据所列各项与您的操作...01.加载不上可能是哪些原因造成的?
加载不上可能是由于以下几种原因造成的,请根据所列各项与您的操作进行对照: A.确保控制系统硬件已正确上电.(+5V)B.检查并确认用于连接控制器的串口线为直通线,而非交叉线. C.检查并确认该串口连接线完好无损并且两端没有松动或脱落现象.
D.对照LED显示屏控制软件和自己选用的控制卡来选择正确的产品型号、正确的传输方式、正确的串口号、正确的波特率并对照软件内提供的拨码开关图正确地设置控制系统硬件上的地址位及波特率.
E.查看跳线帽是否松动或脱落;如果跳线帽没有松动现象,请确保跳线帽的方向正确. F.如经过以上检查并校正后仍然出现加载不上,请用万用表测量一下,是否所连接的电脑或控制系统硬件的串口被损坏.以确认是否应送还电脑厂家或将控制系统硬件送还检测.
02.通讯不上可能是什么原因造成的?
通讯不上与加载不上的原因大致相同,可能是由于以下几种原因造成的,请根据所列各项与您的操作进行对照:
A.确保控制系统硬件已正确上电.(+5V)
B.检查并确认用于连接控制器的串口线为直通线,而非交叉线. C.检查并确认该串口连接线完好无损并且两端没有松动或脱落现象.
D.对照LED显示屏控制软件和自己选用的控制卡来选择正确的产品型号、正确的传输方式、正确的串口号、正确的波特率并对照软件内提供的拨码开关图正确地设置控制系统硬件上的地址位及波特率.
E.查看跳线帽是否松动或脱落;如果跳线帽没有松动现象,请确保跳线帽的方向正确. F.如经过以上检查并校正后仍然出现加载不上,请用万用表测量一下,是否所连接的电脑或控制系统硬件的串口被损坏.以确认是否应送还电脑厂家或将控制系统硬件送还检测.
03.为什么系统会提示“请连接LED显示屏控制器”字样?
很多客户朋友从公司网站上的“下载中心”里直接下载得到“LED显示屏控制系统”,安装后运行20分钟后即会出现“请连接LED显示屏控制器”字样的提示,这是由于系统在测试的时间内未检测到诣阔控制系统硬件的原故.
此时,请将您购得的LED显示屏控制系统硬件的一端与电脑相连,另一端与HUB分配板相连,HUB分配板的排线插座与LED显示屏的各个单元部份的接口相连接.
连接完毕后,即可进入到“设置”内的“设置屏参”设置相关参数,完成后关闭再重新打开软件,这时,软件上方会出现“连接成功”字样.此时,系统已检测到显示屏控制系统硬件,便可无时间限制地正常使用了.
04.为什么LED显示屏控制系统硬件在刚上电的时候会出现几秒钟的亮线或“花屏”? 将显示屏控制器与电脑及 HUB分配板和显示屏连接妥当后,需要给控制器提供+5V电源以使其正常工作(此时,切勿直接与220V电压相连接).上电瞬间,显示屏上会出现几秒钟的亮线或“花屏”,该亮线或“花屏”均是正常测试的现象,提醒用户显示屏即将开始正常工作 .
2秒钟内,该现象自动消除,显示屏进入正常工作状态.
05. 自动或手动亮度调节是什么意思?
亮度调节是指在显示屏所能显示的最暗与最亮之间所做出的调整.而非感光调节. 自动亮度调节是根据不同的时间段所应出现的不同亮度而由诣阔LED显示屏控制系统自动调整至某一预定亮度.
手动亮度调节是指终端用户通过对诣阔LED显示屏控制系统的操作而使LED显示屏达到某一指定亮度.
06.为什么控制器一切都正常的时候显示屏上面却没有显示?
控制器设置及连接线连接妥善的情况下,有时候LED显示大屏幕上也会出现没有显示的情况,一般是由以下原因之一造成的,请对照检查: A.LED显示屏是否正常上电.
B.HUB分配板与显示屏的连线是否接反. C.所编辑并发送的节目是否为空. 07.单元板出现整屏不亮、暗亮.
A.目测电源连接线、单元板之间的26P排线及电源模块指示灯是否正常.
B.用万用表测量单元板有无正常电压,再测量电源模块电压输出是否正常,如否,则判断为电源模块坏.
C.测量电源模块电压低,调节微调(电源模块靠近指示灯处的微调)使电压达到标准.
08. LED显示屏出现黑屏是什么原因造成的?
在控制系统运用的过程中,我们偶尔也会遇到LED显示屏出现黑屏的现象.同样的一种现象可能是由各种不同的原因导致的,就连显示屏变黑的过程也会因不同操作或因不同环境而异.比如它可能是一上电的瞬间就是黑的,也可能在加载过程中变黑,还可能是在发送完毕后变黑等等.遇到这种现象请注意可参照以下各个方面来判断“故障”: A.请确保包括控制系统在内的所有硬件已全部正确上电.(+5V,勿接反、接错)B.检查并再三确认用于连接控制器的串口线是否有松动或脱落现象.(如果在加载过程中变黑,很可能是因为该原因造成,即在通讯过程中由于通讯线松动而中断,故而屏黑.千万不要以为显示屏体没有动,线就不可能松动,请动手检查一下,这对您想要快速解决问题很重要.)
C.检查并确认连接LED显示屏及与主控制卡相连的HUB分配板的是否紧密连接、是否插反.