第一篇:特种废塑料炼油技术
特种废塑料炼油设备
一.原料来源
随着信息时代的来临,通信事业迅速发展,导致配套的所需材料----通信电缆发生深刻变革。以应用领域分,有市话电缆,海底电缆及电视共用天线CATV,以电缆结构分绝缘料和护套料护套料不仅用于电缆,也用于光缆。各国聚烯生产厂家竟相开发新的品种,替代产品多种多样,原来的通信电缆被迫替换。这些产品怎么处理呢?
二.处理办法
1.做成塑料颗粒,有些塑料不能作成颗粒如电缆的护套料等,又怎么办呢?
2.炼油,像海底电缆炼油,但炼油的工艺比较复杂,一般需要裂解,精馏,调和成燃料油。有没有好的办法呢?
三.特种废塑料炼油
1.像海底电缆用常规的裂解方法可以炼油,采用专用催化剂可以一步法制取燃料油。但对于部分电信电缆和光揽常规裂解法就不能裂解出燃料油了。
2.有人做过也许现在正在做,把电信电缆按常规方法进行裂解,做出的产品是:很浑浊的液体,在生产中发现:管壁很快被白色的像蜡一样的物资粘壁堵塞,造成安全隐患,原因何在?
3其实你不知道你在炼出了一种很高级的燃料油,这种油闪点,十六烷值都很高。能调出内燃机用的柴油成品,你看到的只是一种混合物,这种电缆按常规生产,但必须采用专用的特效催化剂才能生产。
四.效益分析
原料价格:800元/吨催化剂100元水电 50元工人工资3*40元=120元 其它损耗50元/天总计:1120元
收益:原料钢丝 800元回收燃料油1吨*50%=0.5吨*3700元/吨=1850元
每吨利润:1850元—1120=730元
每天按生产4吨原料730元*4吨=2920元
月收入能达到2920*30天=8万元
五.欢迎考擦此项目:我公司现供应设备及技术,提供催化剂配方。如你处有像这种电信电缆按常规不能炼油的原料请速告诉本公司,本公司在很短的时间内会为你解决。看不眼的垃圾料那是放错地方的黄金,前面的钞票,后面的人总拿的比前面的少。先干的先富是个硬道理。
本公司提供各种废塑料炼油,废橡胶炼油,废机油炼油,生物柴油,饲料油等炼油技术及设备,各种脏油的脱色技术,除味技术,稳定剂,降凝剂,降酸剂,各种炼油高效催化剂。联系电话:0374-7699686***
联系人:文洁【经理】
网址: http://
第二篇:特种加工技术学习心得
激光加工
特种加工技术中有很多的加工方法,我比较感兴趣的就是激光加工。激光加工可以用于打孔、切割、电子器件的微调、焊接、热处理以及激光存储等各个领域,由于激光加工不需要加工工具,而且加工速度快,表面变形小,可以加工各种材料,已经在生产实践中愈来愈多地显示了它的优越性,所以很受人们的重视。
激光加工是利用光的能量,经过透镜聚焦,在焦点上达到很高的能量密度,靠光热效应来加工各种材料的。激光是可控的单色光,它强度高、能量密度大,可以在空气介质中高速加工各种材料,因此它的应用越来越广泛。激光的光发射是以受激辐射为主,因而发光物质中基本上是有组织地、相互关联地产生光发射的,发出的光波具有相同的频率、方向、偏振态和严格的位相关系,正因如此,激光具有强度高,单色性好,相干性好和方向性好的优点。
激光加工的基本设备包括激光器、激光器电源、光学系统及机械系统等四大部分。激光器是激光加工的重要设备,它把电能转化为光能,产生激光束。激光器按激活介质的种类可以分为固体激光器和气体激光器,按工作方式可分为连续激光器和脉冲激光器。固体激光器一般采用采用光激励,能量转化环节多,光的激励能量大部分转换为热能,所以其效率低。气体激光器一般采用电激励,因其效率高、寿命长、连续输出功率大,所以广泛用于切割、焊接,热处理等加工。常用于材料加工的气体激光器有二氧化碳激光器、氩离子激光器等。
常用的激光加工工艺有激光打孔,激光切割,激光刻蚀打标记等。
激光打孔的成形过程是材料在激光热源照射下产生的一系列热物理现象综合的结果。激光打孔适合于自动化连续打孔,其直径可以小到0.01mm一下,深径比可达50:1。激光几乎可以在任何材料上打微型小孔,目前激光打孔已应用于火箭发动机和柴油机的燃料喷嘴加工、化学纤维喷丝板打孔、钟表及仪表中的宝石轴承打孔、金刚石拉丝模加工等方面。
激光切割的原理和激光打孔原理基本相同,不同的是,激光切割中工件于激光束要相对移动,在生产实践中一般都是移动工件。激光切割大都采用重复频率较高的脉冲激光器或连续输出的激光器,但连续输出的激光束会因热传导而使切割效率降低,同时热影响层也较深。因此,在精密机械加工中,一般都采用高重复频率的脉冲激光器。激光可用于切割各种各样的材料。它可以切割金属也可以切割非金属;它可以切割无机物也可以切割皮革之类的有机物;它可以切割玻璃、陶瓷和半导体等既硬又脆的材料也可以对细小部件作各种精密切割。
激光刻蚀打标记的加工工艺也很受人们的青睐。小功率的激光束可用于对金属或非金属表面进行刻蚀打标,加工出文字图案或工艺美术品。例如,可在竹片上刻写缩微的孙子兵法、毛主席诗歌等。
第三篇:技术:炼油企业恶臭废气治理技术
技术 | 炼油企业恶臭废气治理技术
恶臭作为一种环境公害,在世界范围内受到越来越多的关注。在日本,恶臭投诉仅次于噪声,占环保投诉案件量的第二位。石油炼制是一个恶臭污染较重的行业,近年来,我国炼油企业恶臭扰民案件迅速上升,有的恶臭污染甚至酿成公害事件,受到国家环保局查处。因此,开展炼油企业恶臭污染控制治理十分必要。
1、炼油厂恶臭污染物及其控制标准
恶臭是刺激人的嗅觉器官、引起不愉快或厌恶、损害人体健康的气味。抚顺石油化工研究院(简称FRIPP)在对多家炼油企业的恶臭污染调查中,曾测定、检出过硫化氢、甲硫醇、乙硫醇、甲硫醚、乙硫醚、二硫化碳、二甲二硫、氨、甲胺、二甲胺、三甲胺、苯、甲苯、二甲苯、苯乙烯、苯酚、甲酚、总硫、总烃、C1~C8。烃等物质和项目,可以将这些恶臭污染物归类为硫化物、烃类、氨、有机胺等。
我国炼油企业要控制上述恶臭污染物,应同时执行《恶臭污染物排放标准》(GBl4554-93)和《大气污染物综合排放标准》(GBl6297-1996)。
2、炼油厂恶臭污染源及其综合治理技术
炼油工业的恶臭污染源有10多种,其污染类型及治理技术有:
2.1碱渣湿式氧化脱臭
催化汽油碱渣、液态烃碱渣含有高浓度Na2S和有机硫化物(盐),pH>12,传统的处理方法是加酸调节pH到中性,进污水处理场处理。在碱渣加酸调pH过程中,产生高浓度H2S气体,极易造成恶臭污染和中毒事件。
2000年,FRIPP开发的碱渣湿式氧化处理技术通过了中石化组织的技术鉴定。这项技术能够在150~200℃,0.9~3.2MPa,用空气中的氧将碱渣中的硫化钠和有机硫化物氧化为硫酸钠,将部分有机物氧化为H2O和C02,脱除COD,防止碱渣中和处理时产生H2S恶臭气体。目前,这项技术已在国内近20家企业应用。
2.2焦化冷焦水密闭冷却循环使用
从焦化塔排出的冷焦水温度可达85℃以上,含有挥发烃、重油和焦粉等,按传统处理方法,冷焦水经过隔油池、敞开式空气凉水塔冷却到约50℃,返回焦化塔循环使用。其中,在隔油池或敞开式空气冷却过程中,散发出大量的恶臭气体,严重污染环境。
中石化组织华东理工大学等参与开发的冷焦水密闭处理技术,能够有效控制恶臭污染。这项技术的特点为:
(1)采用“高温水一低温水混合注水技术”,即把部分经过冷却处理的冷焦水注入高温来水中,控制水温在70℃以下,然后一起进入冷焦水隔油池或储罐,减少恶臭气体散发;
(2)在隔油池或储罐中,采用重力分离方法除去比水重的焦粉并去除一部分吸油后密度减小的焦粉和一部分浮油;
(3)采用旋流分离器强化分离密度接近于水的那部分焦粉和大量的重油;(4)用密闭式空气冷却器取代敞开式空气凉水塔,消除冷却过程的恶臭污染。目前,该技术已在近30套大型延迟焦化装置上推广应用。
2.3常减压“三顶气”压缩进瓦斯管网
中石化某分公司加工高硫原油后,其常减压蒸馏装置的“三顶气”排放量大幅度增加,减顶气不能完全进入加热炉作为燃料燃烧,剩余部分只能放空,对周围环境造成严重恶臭污染。
2005年,该分公司采取措施,将初馏塔顶提压至0.28MPa,尽量回收液态烃,同时确保初顶气直接进入系统瓦斯线去脱硫;将常顶气、减顶气用螺杆压缩机提压至0.20MPa进瓦斯线去脱硫,消除了减顶气直接排放造成的恶臭污染。
2.4污水处理场恶臭气体治理
石化污水处理场是重要的恶臭气体散发源,散发的恶臭污染物有硫化氢、有机硫化物、氨和挥发性有机物(VOC)等,按污染物浓度高低,可以将污水场恶臭气体划分为以隔油池废气为代表的高浓度恶臭气体和以曝气池废气为代表的低浓度恶臭气体。
为治理隔油池、调节池、浮选池、污油罐等散发的高浓度恶臭气体,FRIPP开发了“脱硫及总烃浓度均化—催化燃烧”处理技术。这项技术,采用多功能吸附剂,将废气中的绝大部分硫化物吸附脱除,防止催化燃烧催化剂中毒;通过多功能吸附剂对烃类化合物的吸附/解吸,使不断波动的有机物浓度得到稳定化处理;采用蜂窝状Pt/Pd贵金属催化剂,在反应器入口温度200~300℃,床层空速20000~40000h-1条件下,废气中的非甲烷总烃可以从2000~8000mg/m3降到l20mg/m3以下,净化气体无不良气味,符合GBl4554—93和GBl6297—1996排放标准。目前,该技术已在中石化广州分公司等6家企业推广应用。
为治理曝气池等散发的低浓度恶臭气体,FRIPP先后开发了适用于不同工况的洗涤—活性炭吸附法、生物滤塔法、吸附浓缩—催化燃烧法专利技术。
洗涤—活性炭吸附法,以污水场净化水或碱液为吸收剂,洗涤脱除废气中的水(碱)溶性污染物,不溶性的烃类化合物进入活性炭床层吸附去除。这种方法,可以将废气中总还原性硫化物(TRS)降到5mg/m3以下,将非甲烷总烃降到50mg/m3以下。饱和活性炭用120℃以上的高温蒸汽再生,重复使用。
生物滤塔法,以泥炭、活性炭、空心塑料球等为生物载体,接种微生物,通过控制适宜的温度、湿度和营养成分等,使填料上形成适宜的微生物群落,在恶臭气体通过生物填料床层时,利用微生物的新陈代谢达到脱臭目的。在镇海炼化污水场A/O池上进行的试验表明,硫化氢、甲硫醇、二甲二硫的去除率90%~l00%,苯系物去除率95%以上,净化气体达标排放。
在有隔油池等高浓度气体“脱硫及总烃浓度均化—催化燃烧”处理装置的情况下,FRIPP建议采用吸附浓缩—催化燃烧法处理曝气池等低浓度气体。即来自曝气池等散发的低浓度恶臭气体,首先采用污水场的废水(可调PH)洗涤,脱除硫化物、氨、酚等污染物,洗涤水进污水处理场处理;洗涤净化气再进活性炭罐吸附脱烃,饱和活性炭用来自催化燃烧装置的高温净化尾气再生,高温净化尾气携带再生脱附的烃类化合物进催化燃烧装置处理。
2.5酸性水罐和含硫油罐排放气的安全、控制和治理
酸性水,又称含硫含氨污水,通常夹带一定量的油品进入储罐,从储罐排出的恶臭气体中含有硫化氢、有机硫化物、氨、烃类化合物、水蒸气和空气。
恶臭污染比较严重的含硫油罐包括半成品油罐和污油罐,这类油罐排放的气体中主要含有硫化氢、有机硫化物、烃类化合物和空气。
恶臭气体中的硫化物能够与储罐内壁上的铁反应生成硫化亚铁,在空气和烃类化合物存在下,可能发生硫化亚铁自燃导致储罐爆炸。
为保障酸性水罐和含硫油罐的安全使用、减少和治理恶臭气体排放,FRIPP开发了如下技术:
(1)采用罐内惰性气体保护,保障酸性水罐和含硫油罐的使用安全。根据企业的实际情况,惰性气体可以是氮气、硫磺装置的SCOT尾气或经过净化处理的烟气。
(2)采取措施,减少恶臭气体排放。减排措施包括:
a)脱气罐。在酸性水进储罐之前,先进脱气罐,脱除在较高压力下溶于含硫污水中的硫化氢、低碳烃,气体排人低压瓦斯管网。
b)建立罐区罐顶气连通管网和缓冲罐。当一个罐进料,而另一个罐出料时,这两个罐之间通过管道和缓冲罐形成气体“呼”与“吸”的关系,减少废气排放量。c)控制来料温度,进入储罐的含硫污水或油品温度高,物料蒸气压就大,挥发排放的大气污染物就多,因此,降低来料温度将减少废气排放量。一般应在产生含硫污水或油品的车间将它们的温度冷却到45℃以下。
d)保持含硫污水在适当的pH值,通过控制污水中的氨与硫化氢的比例或加入适量氢氧化钠控制含硫污水的pH,可以减少硫化氢和氨的挥发量。
e)拱顶罐改为浮顶罐,拱顶罐改为浮顶罐,或罐区气体缓冲罐为浮顶气柜,可减少废气排放量。
(3)采用洗涤—冷凝—吸附工艺处理酸性水罐排放的恶臭气体。从酸性水罐排出的恶臭气体,首先进入洗涤器,用氨水或氢氧化钠溶液吸收脱除硫化氢,当吸收液中含有氧化剂时,能够同时脱除有机硫化物;从洗涤器排出的气体进入氨蒸发冷凝器,冷凝脱水和部分烃类化合物,液氨来自酸性水汽提装置的氨压缩机系统,蒸发产生的氨再返回去压缩循环;从冷凝器排出的气体进入活性炭床层吸附处理,净化气体达标排放,饱和活性炭用6~8kg/cm2过热水蒸汽再生,再生气冷凝为油—水两相,进酸性水罐,不凝气低压瓦斯管网。
(4)含硫油罐排放气处理。根据恶臭气体组成,含硫油罐排放气可选用吸附或洗涤一吸附等组合工艺。
2.6轻质油品装车过程的油气减排和回收 轻质油品、芳烃装车过程,易散发大量油气。液下装车、在油罐与槽车之间安装回气管路可以减少油气排放;针对不同的工况,排放的油气可以分别采用吸附法、吸收法、冷凝法和膜法回收,相对而言,前3种技术更成熟,在国内外应用也更多。目前,中石化组织开发的活性炭吸附法、专用溶剂吸收法都已实现工业应用;FRIPP设计开发的三级冷凝油气回收装置正在进行工业化应用试验,冷凝温度分别为一级4℃,二级—25℃,三级“—60℃,油气浓度30%~60%(V),以C3~c3组分为主,油气回收率80%~95%。
2.7汽油氧化脱硫醇尾气治理
汽油氧化脱硫醇尾气恶臭污染严重,它含有高浓度挥发性有机物、二甲二硫等有机硫化物、氧气和氮气,不能进瓦斯管网,进焚烧炉也有回火爆炸的危险,因此,国内炼油厂大多直接排放或高架排放。
为治理汽油氧化脱硫醇尾气和液态烃氧化脱硫醇尾气,FRIPP和中石化沧州分公司合作开发了“冷凝油气回收-不凝气蓄热燃烧”处理技术,建成尾气处理量200m3/h的工业化试验装置,工业化试验表明,冷凝油气回收率可达80%—90%,每天可回收轻质馏分油l~2t,不凝气油气浓度l%~3%,不凝气与适量空气混合一起进入蓄热燃烧装置处理,净化气体总烃浓度50~100mg/m3,符合GBl4554—93和GBl6297—1996排放标准。
2.8克劳斯尾气催化焚烧处理
克劳斯硫回收工艺尾气中含有一定量的硫化氢和有机硫化物,从安全和满足恶臭污染物排放标准的角度,必须焚烧后才能排放。
尾气焚烧有热焚烧和催化焚烧两种工艺。热焚烧温度650~850℃,燃料消耗较多,能耗高,操作条件不易控制,易发生炉膛超温、炉体变形事故,焚烧炉寿命较短。催化焚烧温度300~400℃,能耗和操作费用节约近50%,是一种安全、节能的新技术。目前,国内普遍采用热焚烧技术,国外法国石油研究院(IFP)、壳牌(Shell)和法国罗纳一普朗克公司都有催化焚烧技术,应用壳牌(Shell)技术的催化焚烧装置有30多套。
FRIPP开发的FCl—xx克劳斯硫回收尾气催化焚烧催化剂,能够在反应温度350℃、空速6000h-
1、水蒸汽3%~5%(v/v)、过氧系数1.5~2.0、硫化氢进气浓度约2000mg/L、羰基硫进气浓度约700mg/L时,硫化氢转化率>99.9%,二氧化硫生成率为70%~80%,羰基硫浓度不超过150mg/L时,其转化率高于70%。净化气体达标排放。
2.9设备和管阀件泄漏检测维修程序
Exxon公司的统计表明,炼油厂设备和管阀件泄露排放的挥发性有机物(VOC)占其VOC排放总量的40%~60%,常见的泄露点包括阀、泵、法兰、接头等,泄漏排放的污染物中相当一部分属于恶臭污染物。泄露是随机的,极少重复发生,目前国内还是通过人工肉眼观察来发现泄漏现象并进行处置。
在美国,已经建立了标准化的设备和管阀件泄漏检测维修程序(缩写LDAR),它有传统LDAR和SmartLDAR两种,传统LDAR采用EPA方法21(挥发性有机物泄露检测),用手持式仪器(如有机蒸汽分析仪、有毒蒸汽分析仪、光离子检测器等)定期检测每个部件;现行惯例是每个季度巡检一次,根据泄漏的污染物浓度、执行的维修等级和泄漏部件,决定是否处置和采用何种处置方式。
目前,FRIPP和中石化金陵分公司正在参照美国标准,建立我国炼油企业的LDAR,并将在金陵分公司1~2个恶臭污染严重的车间进行应用示范。
2.10停工检修恶臭污染控制和治理
众所周知,炼油厂停工检修过程易发生恶臭污染事故,目前,国内企业通过建立停工检修恶臭污染控制制度,注意施工期天气状况,吹扫蒸汽进冷凝器处理,使用专用溶剂清洗等措施来减少恶臭气体排放。对检修过程中,因为蒸汽吹扫、蒸罐或热空气吹扫而产生的恶臭气体,FRIPP正在开发移动式(冷凝、吸收、吸附、催化燃烧)处理装置,可用于不同企业、不同装置的停工检修过程。
3、结语
十年来,我国开发应用的炼油企业恶臭污染综合治理技术有:碱渣湿式氧化、焦化冷焦水密闭冷却、常减压“三顶气”压缩进瓦斯管网、污水处理场废气催化燃烧、轻质油品装车过程油气减排和冷凝回收、酸性水罐和含硫油罐排放气洗涤—冷凝—吸附、汽油氧化脱硫醇尾气冷凝回收油气—不凝气蓄热燃烧等;正在研究开发的有克劳斯硫回收尾气催化燃烧、设备和管阀件泄漏检测维修程序(LDAR)等。
随着我国社会和经济的快速发展,以及人民对生活环境质量要求的不断提高,我国炼油企业恶臭污染治理技术达到一个更高的水平。
第四篇:炼油工艺流程
石油化工工艺流程
-------袁刚
整合石油化工的工艺流程较为复杂,一套完整的富含高科技含量的石化装臵可以生产出完整得包括石油燃料、石油溶剂与化工原料、润滑剂、石蜡、石油沥青、石油焦等六个系列的产品。作为东营市的地方石化企业,由于受到规模、原料、资金等方面的限制,主要形成了以石油燃料的生产为主、其他产品为辅产品分布。以石油燃料生产为主的石化企业的工艺流程主要包括原油预处理、常减压蒸馏、催化裂化、制氢、加氢、延迟焦化、气体分离等环节。结合石化企业工艺流程图,石化企业的主要生产装备和主要产品情况介绍如下:
一、炼油厂的分类
目前的炼油厂大致可分为4种类型。1)燃料油型:生产汽油、煤油、轻重柴油和锅炉燃料等。2)燃料润滑油型:除生产各种燃料油外,还生产各种润滑油。3)燃料化工型:以生产燃料油和化工产品为主。4)燃料润滑油化工型:它是综合型炼厂,既生产各种燃料、化工原料或产品同时又生产润滑油。从目前的情况看,东营市的几家大型的石化企业主要是燃料油型的石油加工企业,只有华星集团具备一定规模的润滑油生产能力。
二、石油化工工艺流程图
三、生产环节及其装备情况
1、原油评价试验
当加工一种原油前,先要测定原油的颜色与气味、沸点与馏程、密度、粘度、凝点、闪点、燃点、自燃点、残炭、含硫量等指标,即是原油评价试验。原油的评价试验主要是区分原油中重要的成分含量,评价原油的质量,预测现有原油加工工艺对该油品的适用性。
2、原油的预处理
从油田送往炼油厂的原油往往含盐(主要是氯化物)、带水(溶于油或呈乳化状态),可导致设备的腐蚀,在设备内壁结垢和影响成品油的组成,需在加工前脱除。常用的办法是加破乳剂和水,使油中的水集聚,并从油中分出,而盐份溶于水中,再加以高压电场配合,使形成的较大水滴顺利除去。
3、常减压蒸馏
常减压蒸馏是常压蒸馏和减压蒸馏在习惯上的合称,常减压蒸馏基本属物理过程。原料油在蒸馏塔里按蒸发能力分成沸点范围不同的油品(称为馏分),这些油有的经调合、加添加剂后以产品形式出厂,相当大的部分是后续加工装臵的原料,因此,常减压蒸馏又被称为原油的一次加工。包括三个工序:原油的脱盐、脱水 ;常压蒸馏;减压蒸馏。常减压装臵产品主要作为下游生产装臵的原料,包括石脑油、煤油、柴油、蜡油、渣油以及轻质馏分油等。
石脑油作为催化重整装臵原料,常压煤油、常压柴油作为煤柴油加氢精制装臵原料,减压馏分油作为馏分油加氢精制装臵原料,蜡油作为生产石蜡等润滑油的原料;渣油作为重油加氢装臵原料。主要产品为优质高辛烷值汽油调和组分、航空煤油和优质低硫柴油。
4、催化裂化
催化裂化是在热裂化工艺上发展起来的。是提高原油加工深度,生产优质汽油、柴油最重要的工艺操作,主要是将重质原料油转化为轻质燃料油品。
催化裂化装臵是普通石化企业的核心装臵,原料范主要是原油蒸馏或其他炼油装臵的350--540℃馏分的重质油,包括加氢常压渣油和加氢蜡油等。催化裂化工艺由三部分组成:原料油催化裂化、催化剂再生、产物分离。催化裂化所得的产物经分馏后可得到液化气、汽油、柴油和重质馏分油。
催化汽油经吸收稳定脱硫之后作为汽油调和组分 ;催化柴油经汽提、换热后作为柴油加氢原料或柴油调和组分;重质馏分油一部分作为循环洗涤油,另一部分作为产品燃料油;液化气经脱硫精制后作为气体分馏装臵原料,也可以直接作为产品销售。
催化裂化过程的主要化学反应有:
1、裂化反应。裂化反应是C-C键断裂反应,反应速度较快。
2、异构化反应。它是在分子量大小不变的情况下,烃类分子发生结构和空间位臵的变化。
3、氢转移反应。即某一烃分子上的氢脱下来,立即加到另一烯烃分子上,使这一烯烃得到饱和的反应。
4、芳构化反应。芳构化反应是烷烃、烯烃环化后进一步氢转移反应,反应过程不断放出氢原子,最后生成芳烃。
5、催化重整
催化重整(简称重整)是在催化剂和氢气存在下,将常压蒸馏所得的轻汽油转化成含芳烃较高的重整汽油的过程。如果以80-180℃馏分为原料,产品为高辛烷值汽油;如果以60-165℃馏分为原料油,产品主要是苯、甲苯、二甲苯等芳烃,重整过程副产氢气,可作为炼油厂加氢操作的氢源。重整的反应条件是:反应温度为490-525℃,反应压力为1-2兆帕。重整的工艺过程可分为原料预处理和重整两部分。催化重整在炼油中的作用主要有三方面的功能:一是能把辛烷值很低的直馏汽油变成80至90号的高辛烷值汽油。二是能生产大量苯、甲苯和二甲苯,这些都是生产合成塑料、合成纤维和合成橡胶的基本原料。三是可副产大量廉价氢气。催化重整得到的汽油、苯系列产品等可以作为产品销售,副产品氢气可以作为加氢反应的来源。
6、加氢裂化
是在高压、氢气存在下进行,需要催化剂,把重质原料转化成汽油、煤油、柴油和润滑油。加氢裂化由于有氢存在,原料转化的焦炭少,可除去有害的含硫、氮、氧的化合物,操作灵活,可按产品需求调整。产品收率较高,而且质量好。加氢裂化的主要原料是重质馏分油,包括催化裂化循环油和焦化馏出油等。它的产品主要是优质轻质油品,特别是生产优质航空煤油和低凝点柴油。
7、延迟焦化
它是在较长反应时间下,使原料深度裂化,以生产固体石油焦炭为主要目的,同时获得气体和液体产物。延迟焦化用的原料主要是高沸点的渣油。延迟焦化的主要操作条件是:原料加热后温度约500℃,焦炭塔在稍许正压下操作。改变原料和操作条件可以调整汽油、柴油、裂化原料油、焦炭的比例。
8、溶剂脱沥青
溶剂脱沥青装臵既是生产重质润滑油的主要装臵,又是一个重油加工装臵,它在炼厂中占有很重要的地位。减压渣油经溶剂脱沥青装臵后,脱除沥青质、胶质和含金属的非烃化合物。脱沥青油既可做重质润滑油原料,又可做催化裂化原料;脱油沥青直接调和成道路沥青或氧化成建筑沥青,重质润滑油料在脱蜡后还可生产地蜡。
9、重油加氢 重油加氢的主要作用是脱除渣油中硫、氮、残碳、重金属,为重油催化裂化装臵提供合格的原料。原料主要为劣质常压渣油、减压瓦斯油和减压渣油混合料。该装臵主要产品渣油作为重油催化裂化装臵原料,其他产品中柴油经汽提后出装臵作为柴油调和组分,石脑油可作为商品石脑油直接出售。
10、制氢
制氢装臵主要是采用轻烃—水蒸汽转化及变压吸附法制氢工艺。原料油主要由催化重整拔头油组成。产品氢气纯度达到99.99%,主要供给重油加氢、煤柴油加氢、馏分油加氢、聚丙烯等装臵,提供氢气来源。
煤柴油加氢装臵设计加工煤油58万吨/年、柴油46万吨/年,原料主要来源于常一线直馏煤油和常二、三线直馏柴油。装臵由加氢系统、产品分馏系统和脱硫系统组成。精制后的煤(柴)油作为产品出装臵。
馏分油加氢装臵设计加工减压蜡油或催化柴油100万吨/年,主要由反应部分、分馏部分、压缩机部分和气体脱硫部分组成。分馏塔塔顶出石脑油,侧线出柴油,塔底尾油去重油催化裂化装臵作为原料。
11、气体加工装臵
由气体分馏、MTBE装臵、烷基化三套装臵组成。
11.1、气体分馏装臵主要原料为催化裂化装臵生产的液化气,其目的产品为精丙烯和轻碳四馏分,作为聚丙烯装臵、MTBE装臵和烷基化装臵原料。该装臵采用五塔流程。
11.2、MTBE(甲基叔丁基醚)装臵采用膨胀床低醇烯比醚化反应合成MTBE工艺,催化剂采用大孔径强酸性阳离子交换树脂。原料来源于气分轻碳四馏分,其产品为高辛烷值汽油调和组分,同时为烷基化装臵提供轻碳四原料。
11.3、烷基化装臵设计生产烷基化油10万吨/年,采用流出物制冷硫酸法烷基化工艺。原料来源于MTBE装臵的未反碳四,产品烷基化油作为汽油调和组分。该装臵反应系统由两套反应器及沉降器组成,原料、制冷、酸洗、碱洗及分馏系统均为单套。
12、丙烯装臵
聚丙烯装臵原料是由气分装臵生产的精丙烯。该装臵主要由原料精制系统、催化剂配制系统、聚合反应系统、丙烯闪蒸回收系统、聚合物汽蒸干燥系统、造粒系统和包装系统组成。目前产成品丙烯是重要的化学工业基础原料,市场需求量大,供不应求,市场前景很好。
13、产品精制
前述各装臵生产的油品一般还不能直接作为商品,为满足商品要求,除需进行调合、添加添加剂外,往往还需要进一步精制,除去杂质,改善性能以满足实际要求。常见的杂质有含硫、氮、氧的化合物,以及混在油中的蜡和胶质等成分。它们可使油品有臭味,色泽深,腐蚀机械设备,不易保存。除去杂质常用的方法有酸碱精制、脱臭、加氢、溶剂精制、白土精制、脱蜡等。酸精制是用硫酸处理油品,可除去某些含硫化合物、含氮化合物和胶质。碱精制是用烧碱水溶液处理油品,如汽油、柴油、润滑油,可除去含氧化合物和硫化物,并可除去酸精制时残留的 硫酸。酸精制与碱精制常联合应用,故称酸碱精制。脱臭是针对含硫高的 原油制成的汽、煤、柴油,因含硫醇而产生恶臭。硫醇含量高时会引起油品生胶质,不易保存。可采用催化剂存在下,先用碱液处理,再用空气氧化。加氢是在催化剂存在下,于300~425℃, 1.5兆帕压力下加氢,可除去含硫、氮、氧的化合物和金属杂质,改进油品的 储存性能和腐蚀性、燃烧性,可用于各种油品。脱蜡主要用于精制航空煤油、柴油等。油中含蜡,在低温下形成蜡的结晶,影响流动性能,并易于堵塞管道。脱蜡对航空用油十分重要。脱蜡可用分子筛吸附。润滑油的精制常采用溶剂精制脱除不理想成分,以改善组成和颜色。有时需要脱蜡。白土精制一般放在精制工序的 最后,用白土(主要由二氧化硅和三氧化二铝组成)吸附有害的物质。经过了精制阶段,该系列化工产品就可以直接进行销售了。
四、产品知识:
石油产品可分为: 石油燃料、石油溶剂与化工原料、润滑剂、石蜡、石油沥青、石油焦等6类。
4.1、汽油
是消耗量最大的品种。汽油的沸点范围(又称馏程)为30--205°C,密度为0.70-0.78克/厘米3,商品汽油按油料在汽缸中燃烧时抗爆震燃烧性能的优劣区分,标记为辛烷值70、80、90或更高。标号越大,性能越好。汽油主要用作汽车、摩托车、快艇、直升飞机、农林用飞机的燃料。商品汽油中添加有添加剂(如抗爆剂四乙基铅、醚化剂MTEB等)以改善使用和储存性能。
4.2、柴油
沸点范围有180-370℃和350-410℃两类。对石油及其加工产品,习惯上对沸点或沸点范围低的称为轻,相反成为重。故上述前者称为轻柴油,后者称为重柴油。商品柴油按凝固点分级,如
10、-20等,表示低使用温度,柴油广泛用于大型车辆、船舰。由于高速柴油机(汽车用)比汽油机省油,柴油需求量增长速度大于汽油,一些小型汽车也改用柴油。对柴油质量要求是燃烧性能和流动性好。燃烧性能用十六烷值表示愈高愈好,大庆原油制成的柴油十六烷值可达68。高速柴油机用的轻柴油十六烷值为42-55,低速的在35以下。
4.3、燃料油
用作锅炉、轮船及工业炉的燃料。商品燃料油用粘度大小区分不同牌号,如渣油等。4.4、润滑油
润滑油从石油制得的润滑油约占总润滑剂产量的95%以上。除润滑性能外,还具有冷却、密封、防腐、绝缘、清洗、传递能量的作用。产量最大的是内燃机油(占40%),其余为齿轮油、液压油、汽轮机油、电器绝缘油、压缩机油,合计占40%。商品润滑油按粘度分级,负荷大,速度低的机械用高粘度油,否则用低粘度油。炼油装臵生产的是采取各种精制工艺制成的基础油,再加多种添加剂,因此具有专用功能,附加产值高。
4.5、润滑脂
俗称黄油,是润滑剂加稠化剂制成的固体或半流体,用于不宜使用润滑油的轴承、齿轮部位。4.6、石蜡油
包括石蜡(占总消耗量的10%)、地蜡、石油脂等。石蜡主要做包装材料、化妆品原料及蜡制品,也可做为化工原料产脂肪酸(肥皂原料)。
4.7、石油沥青
主要供道路、建筑用。4.8、石油焦
用于冶金(钢、铝)、化工(电石)行业做电极。
4.9、炼厂气
可直接做燃料或加压液化分出液化石油气,可做原料或化工原料。炼油厂提供的化工原料品种很多,是有机化工产品的原料基地,各种油、炼厂气都可按不同生产目的、生产工艺选用。常压下的气态原料主要制乙烯、丙烯、合成氨、氢气、乙炔、碳黑。液态原料(液化石油气、轻汽油、轻柴油、重柴油)经裂解可制成发展石油化工所需的绝大部分基础原料(乙炔除外),是发展石油化工的基础。
4.10其他产品:炼油厂还是苯、甲苯、二甲苯等重要芳烃的提供者。另外,汽油、航空煤油、柴油中或多或少加有添加剂以改进使用、储存性能。各个炼油装臵生产的产物都需按商品标准加入添加剂和不同装臵的油进行调和方能作为商品使用。石油添加剂用量少,功效大,属化学合成的精细化工产品,是发展高档产品所必需的,应大力发展。如目前生产的MTEB产品是提高汽油辛烷值的重要的添加剂。
第五篇:特种加工技术论文
特种加工技术概论
摘要:特种加工技术是直接借助电能、热能等各种能量进行材料加工的重要工艺方法。本文简介了电火花加工,电化学加工,超声波加工等各种不同的特种加工技术,并介绍了特种加工技术的特点及未来发展方向趋势。
关键词:特种加工 电火花加工 电化学加工 离子束加工 超声波加工 快速成形
一.前言:
近年来,计算机技术、微电子技术、自动控制技术、国防军工和航空航天技术发展迅速,与此同时,高度、高韧性、高强度和高脆性等难切削材料的应用日益广泛,制造精密细小、形状复杂和结构特殊工件的求也在日益增加。社会需求与技术进步的结合促使特种加工技术不断进步和快速发展。所谓特种加工,是一种利用化学能、电能、声能、机械能以及光能和热能对金属或非金属材料进行加工的方法。其工作原理不同于传统的机械切削方法,即加工过程中工件与所用工具之间没有明显的切削力,工具材料的硬度也可低于工件材料的硬度。特种加工技术在国内外各行各业的应用中取得了巨大成效,它们有着各自的特点,特殊材料或特殊结构工件的加工工艺性发生了根本变化,解决了传统加工方法所遇到的各种问题,已经成为现代工业领域中不可缺少的重要加工手段和关键制造技术。
二.特种加工的特点
特种加工与一般机械切削加工相比,有其独特的优点,在某种场合上,它是一般机械切削加工的补充,扩大了机械加工的领域。它具有以下较为突出的特点
(1)不用机械能,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。
(2)非接触加工,不一定需要工具,有的虽使用工具,但与工件不接触,因此,工件不承受大的作用力,工具硬度可低于工件硬度,故使刚性极低元件及弹性元件得以加工。
(3)微细加工,工件表面质量高,有些特种加工,如超声、电化学、水喷射、磨料流等,加工余量都是微细进行,故不仅可加工尺寸微小的孔或狭缝,还能获得高精度、极低粗糙度的加工表面。
(4)不存在加工中的机械应变或大面积的热应变,可获得较低的表面粗糙度,其热应力、残余应力、冷作硬化等均比较小,尺寸稳定性好。
(5)两种或两种以上的不同类型的能量可相互组合形成新的复合加工,其综合加工效果明显,且便于推广使用。
(6)特种加工对简化加工工艺、变革新产品的设计及零件结构工艺性等产生积极的影响。
三.特种加工的分类
与其它先进制造技术一样,特种加工正在研究、开发推广和应用之中,具有很好的发展潜力和应用前景。依据加工能量的来源及作用形式列举各种常用的特种加工方法。特种加工按照所利用的能量形式来分类,具体如下:(1)电、热能 电火花加工、电子束加工、等离子加工。(2)电、机械能 离子束加工。
(3)电、化学能 电解加工、电解抛光。
(4)电、化学能、机械能 电解磨削、阳极机械磨削。(5)光、热能 激光加工。
(6)化学能 化学加工、化学抛光。(7)声、机械能 超声加工。
(8)机械能 磨料喷射加工、磨料流加工、液体喷射加工。
目前,生产实用中应用最广的是电火花加工、电化学加工、离子束加工、超声加工、磨料水射流切割技术和液中放电成形加工。1.电火花加工
电火花加工的原理是基于工具和工件之间脉冲性火花放电时的电腐蚀现象来蚀除多余的金属,以达到对零件的尺寸形状及表面质量预定的加工要求。按
工具电极和工件相对运动的方式和用途的不同,电火花加工工艺大致可分为电火花成形加工、电火花线切割、电火花磨削和镗磨、电火花同步共轭回转加工、电火花高速小孔加工、电火花放电沉积与刻字六大类。
1.1 电火花放电沉积的基本原理与特点
电火花放电沉积的原理是利用脉冲电路的充放电原理,采用导电材料(硬质合金、石墨、合金钢、铝和铜等)作为工具电极(阳极),在空气或特殊的气体中使之与被强化的金属工件(阴极)之间产生火花放电。当工具电极与工件达到某个距离电场强度足以使介质电离击穿时两者之间就产生火花放电,使电极端部与工件表面微区发生熔化甚至气化,熔融金属在热作用,电磁力和机械力的作用下沉积在工件表面。电极与工件的放电间隙频繁发生变化,电极与工件间不断发生火花放电,从而实现放电沉积。1.2 极性效应
在电火花放电加工过程中,无论是正极还是负极,都会受到不同程度的电蚀。这种单纯由于正、负极性不同而彼此电蚀量不一样的现象叫做极性效应。因此,当采用窄脉冲、精加工时应选用正极性加工;当采用长脉冲、粗加工时,应采用负极性加工,此时可得到较高的蚀除速度和较低的电极损耗。从提高加工生产率和减小工具损耗的角度来看,极性效应愈显著愈好,故在电火花加工中必须充分利用。当用交变的脉冲电流加工时,单个脉冲的极性效应便相互抵消,增加了工具的损耗,因此,电火花加工一般采用单向脉冲电源。1.3 电火花加工中电极损耗分析与解决措施
电火花在整个加工过程中要受到各种干扰因素的影响, 这些干扰因素直接或间接地影响着加工质量。在电火花加工过程中电极损耗分为绝对损耗和相对损耗。造成电极损耗的原因有:小面积精加工,加工件结构尺寸偏小,加工时间过长,电极装夹不当等因素。因此为了减少电极的损耗一般有以下方法:(1)有效排除电蚀物(2)电极材料和加工参数的合理选用(3)提高加工技能和安全操作意念等等。电火花加工电极损耗和变形是一个复杂的过程。为了降低电极损耗程度, 减少变形, 除了充分利用放电过程的极性效应和吸附效应外, 同时也要选用适宜的电极材料, 并且在实际的加工过程中要根据具体的加工对象实施一定的加工技巧和选择合适的加工参数。
1.4 电火花加工的发展趋势
电火花线切割加工技术在相当长的时间里间都是采用精规准参数进行一次切割成型,其切割速度与加工表面质量之间存在着一定的矛盾。中国特有的高速走丝电火花线切割机长期存在的加工质量问题, 可以采用多次切割工艺来解决。现目前中速走丝电火花线切割机是一种价格较低, 加工精度、粗糙度、加工效率介于高速走丝与慢走丝的一种机床,具有很好的发展前景。2.电化学加工
电化学加工是利用电化学反应(或称电化学腐蚀)对金属材料进行加工的
方法。与机械加工相比,电化学加工不受材料硬度、韧性的限制,已广泛用于工业生产中。常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。近期,电化学加工工艺技术研究涉及的方向主要集中在超纯水电解加工、微细加工、加工间隙的检测与控制、数字化设计与制造技术等重点领域。
2.1 电解加工的优缺点
(1)加工范围广不受金属材料本身力学性能的限制(2)电解加工的生产效率高(3)可以达到较好的表面粗糙度(4)加工过程中阴极工具在理论上不会损耗(5)加工过程中没有切削力可以不会产生残余应力和变形。但是任何一种加工方式都有它的弊端,在电化学加工过程中也有缺点和其局限性:(1)不易达到较高的加工精度和加工稳定性(2)电极工具的设计和修正比较麻烦(3)电极加工的附属设备较多。(4)电解产物需要进行妥善的处理,否则将污染环境。
2.2 未来展望
近阶段,电解加工的研究重点及应用领域主要会集中在以下几个方向:(1)电化学微精加工的深入研究电化学加工技术具有加工机理的独特优势以及在微精甚至在纳米加工领域进一步研究探索的空间,但还必须在自身工艺规律认识和完善的基础上不断创新。具体应关注: ①进一步完善硬件系统,如微进给系统及微控工作台的性能及可靠性的提升;加工过程自动检测与适应控制研发的深化;②微精加工机理的研究,尤其是中、高频率脉冲电流条件下,微精加工电化学反应系统动力学等方面的深入研究。(2)脉冲电源的深化研发微秒级脉冲电源的工程化完善以及在工业领域的大力推广应用。纳秒级脉冲电源、群脉冲电源、逆变式脉冲电源的性能完善。(3)理论成果向实际应用的转化。诸如加工间隙的检测与控制、阴极数字化设计、电解加工过程的模拟与仿真等均是电化学加工的关键技术,不能仅仅在各种基金支持下获得理论成果即束之高阁,而应尽快由实验室向工业生产现场转移。
3.离子束加工
聚焦离子束技术是一种集形貌观测、定位制样、成分分析、薄膜淀积和无掩膜刻蚀各过程于一身的新型微纳加工技术。离子束纳米加工,具有传统加工方法无可比拟的优势而逐渐成为新一代精加工方法,在微纳米加工、操纵以及器件的研制等方面具有重要应用。纳米测量学在纳米科技中起着信息采集和分析的不可替代的重要作用,纳米加工是纳米尺度制造业的核心,发展纳米测量学和纳米加工的一个重要方法就是电子束与离子束技术。4.超声波加工
超声加工是利用超声频作小振幅振动的工具,并通过它与工件之间游离于液体中的磨料对被加工表面的捶击作用,使工件材料表面逐步破碎的特种加工。超声加工常用于穿孔、切割、焊接、套料和抛光。其加工原理是超声波发生器将工频交流电能转变为有一定功率输出的超声频电振荡,换能器将超声
频电振荡转变为超声机械振动,通过振幅扩大棒(变幅杆)使固定在变幅杆端部的工具振产生超声波振动,迫使磨料悬浮液高速地不断撞击、抛磨被加工表面使工件成型。超声加工的主要特点:不受材料是否导电的限制;工具对工件的宏观作用力小、热影响小,因而可加工薄壁、窄缝和薄片工件;被加工材料的脆性越大越容易加工,材料越硬或强度、韧性越大则越难加工;由于工件材料的碎除主要靠磨料的作用,磨料的硬度应比被加工材料的硬度高,而工具的硬度可以低于工件材料;可以与其他多种加工方法结合应用,如超声振动切削、超声电火花加工和超声电解加工等。4.1 高效超声波光整技术原理
高效超声波光整技术是利用超声波振动冷压加工原理。它是将一台高效超声波表面光整设备装于车床刀架上,利用工件的回转,磨头对零件表面作高频率短促的往复振动冲击运动,以一定的冲击力敲击被加工表面的加工方法。其冷压加工是充分利用金属的塑性,使零件的表面层金属在外力作用下产生细微塑性残余变形,从而达到改变其表面性能,形状和尺寸的目的。5.快速成形
快速成形技术的基本原理是基于“离散—堆积”的成形方法, 借助三维CAD 软件, 或用实体反求方法采集得到有关原型或零件的几何形状、结构和材料的组合信息, 从而获得目标原型的概念并以此建立数字化描述CAD 模型, 之后经过一定的转换或修改, 将三维虚拟实体表面转换为用一系列三角面片逼近的表面, 生成面片文件, 再按虚拟三维实体某一方向将CAD 模型离散化, 分解成具有一定厚度的层片文件, 由三维轮廓转换为近似的二维轮廓, 然后根据不同的快速成形工艺对文件进行处理, 对层片文件进行检验或修正并生成正确的数控加工代码, 通过专用的CAM 系统控制材料有规律地、精确地叠加起来(堆积)而成一个三维实体制件,快速成形技术的成形方法多达十余种,目前应用较多的有立体光固化法,选择性激光烧结、分层实体制造、熔积成形等。这些工艺方法都是在材料叠加成形的原理基础上,结合材料的物理化学特性和先进的工艺方法而形成的,它与其他学科的发展密切相关。5.1 快速成形技术特点:(1)制造快速(2)技术高度密集(3)自由成形制造(4)制造过程高柔度性(5)可选材料的广泛性(6)广泛的应用领域(7)突出的技术经济效益 5.2 快速成形制造技术的发展趋势
最近随着新材料技术、新工艺及信息网络化等方面的进步,许多新快速成型制造技术不断涌现并应用在各领域,主要出现在快速模具,纳米制造、仿生制造和集成制造等领域。6.磨料水射流切割技术
随着我国经济的迅猛发展,各行各业对切割技术的需求越来越大,对切割质量的要求也越来越高。水射流都已成为新型的切割加工方法之一。水射流切割分为纯水射流切割和磨料水射流切割两种。纯水射流切割是以纯水作为能量载
体, 其结构简单,喷嘴磨损慢, 但切割能力差。磨料水射流切割以水和磨料的混合液作为能量载体, 切割能力强,能切割几乎所有的材料,其卓越的应用效果越来越被人们
7.液中放电成形加工
液中放电成形加工:它是利用液电效应对金属进行冲压成形的工艺方法。当高压脉冲放电在液体中发生时,液体内会产生强烈的爆炸,其冲击压力可达102~104M Pa,这就是所谓的液电效应,也叫电水锤效应。该法具有成形速度高,可用于高强高硬的金属材料;工件回弹小,加工精度高;能同时完成拉伸、冲孔、剪切、压印、翻边等多种工序等优点。该法适合形状复杂及高强高硬金属工件的冲压成形。液电冲压成形法在国外的机械加工行业中已有应用,并已有这种成形设备的系列产品面世。四.特种加工的发展趋势
为进一步提高特种加工技术水平及扩大其应用范围, 当前特种加工技术的发展趋势主要包括以下几点:1)采用自动化技术。充分利用计算机技术对特种加工设备的控制系统、电源系统进行优化,使加工设备向自动化、柔性化方向发展, 这是当前特种加工技术的主要发展方向。2)趋向精密化研究。高新技术的发展促使高新技术产品向超精密化与小型化方向发展, 对产品零件的精度与表面粗糙度提出更严格的要求。为适应这一发展趋势, 特种加工的精密化研究已引起人们的高度重视, 3)开发新工艺方法及复合工艺。为适应产品的高技术性能要求与新型材料的加工要求, 需要不断开发新工艺方法, 包括微细加工和复合加工, 尤其是质量高、效率高、经济型的复合加工, 如工程陶瓷、复合材料以及聚晶金刚石等。五.结束语
特种加工技术涵盖了机械、材料等技术,是一门综合的科学加工技术其发展异常迅速。加工尺度的微细化,加工方法的复合化和加工过程的自动化,已成为特种加工技术研究发展的热点。随着科学技术的飞速发展, 特种加工必将不断完善和迅速发展, 特种加工必将成为推动科学技术和现代制造工业发展的中坚力量。参考文献: [ 1 ] 孔庆华.特种加工[M ].上海:同济大学出版社, 2003.[ 2 ] 赵万生.特种加工技术[M ].北京:高等教育出版社, 2001.[ 3 ] 曹凤国.超声加工技术[ M].北京: 化学工业出版社, 2005 [ 4 ] 张辽远.现代加工技术[ M].北京: 机械工业出版社, 2002 [ 5 ] 陈晓华.快速成形技术[ J ].电气制造, 2006(3).[ 6 ] 华林, 王华昌.激光切割和水切割技术[J ].机械制造, 1996(2).[ 7 ] 薛胜雄, 黄汪平.我国高压水射流设备的发展动向[J ].流体机械, 1999(1).