第一篇:2012年中考科学压轴题证明题专项复习02 文档
浙江科学复习压轴题证明题物理专项
、密度为的某种液体和密度为的某种液体能够相互相溶,其中>,若将它们分别按照等质量混合和等体积混合,请证明等体积混合后溶液的平均密度大于等质量混合后溶液的平均密度。不考虑溶液体积混合后的变化
、由欧姆定律和串联电路的特点导出:串联的两个导体的总电阻等于各导体的电阻之和。并请你设计一个实验方案进行验证。
、由欧姆定律和并联电路的特点导出:并联的两个导体的总电阻的倒数等于各导体的电阻倒数之和。并请你设计一个实验方案进行验证。
、请证明在有两个电阻和的串并联电路中都有
、请证明:在远距离传输电能过程中若发电机输出功率和传输导线电阻一定的情况下,输电导线上因发热而损失的功率与传输电压的平方成反比。
、使用滑轮组提升物体在不计摩擦和绳重的情况下其机械效率与动滑轮上绳子的股数和物体被提升的高度无关。
、请证明对于同种材料制成的均匀实心的不同种柱体在高度相等时对水平面的压强相等。、对于能够漂浮在液体上的物体总有:物
液V排V物
、对于密度比液体大的实心物体用弹簧秤悬挂并完全浸没在液体中时总满足:物G液GT示数
、一架不准确的天平,主要是由于它横梁左右两臂不等长。为了减少实验误差,在实验室中常用“交换法”来测定物体的质量。即先将被测物体放在左盘,当天平平衡时,右盘中砝码的总质量为;再把被测物体放在右盘,当天平平衡时,左盘中砝码的总质量为。试证明被测物体的质量mm1m2
、一具形状不规则的木棒水平放置于地面上,采用如下方法测定其重量:在木棒左端以的竖直向上的力刚好能提起木棒,在木棒右端以的数值向上的力也能刚好提起木棒。证明木棒的重量。
、某汽车质量为,当其在水平路面行驶时,发动机输出功率恒为,此时汽车以的最大速度匀速行驶。当汽车行驶入长度为高为的斜坡上,发动机输出功率为,已知在斜坡上汽车受到的总阻力为水平路面上的倍。证明在斜坡行驶时汽车的最大速度v2P2v1LMghvPkL1
1、一辆满载物资的总重为牛顿的运输车,将物资沿路线运至处,段海拔高度为米,段海拔高度为米,如图甲所示。在整个运输过程中,汽车以恒定速度米/秒运动,汽车时经过处,时经过处,时经过处,在此过程中汽车牵引力功率随时间,变化的图象可简化为图乙所示、、和也为已知量。
甲乙
请利用已知量证明汽车沿斜坡段运动时所受总阻力fP2(t2t1)G(h2h1)v(t2t1)
、放在水平地面上的物体受到的重力与地面受到的压力相等
第二篇:中考数学复习几何证明压轴题
中考数学专题
几何证明压轴题
1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)
求证:DC=BC;
(2)
E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)
在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.[解析]
(1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以.即DC=BC.(2)等腰三角形.证明:因为.所以,△DEC≌△BFC
所以,.所以,即△ECF是等腰直角三角形.(3)设,则,所以.因为,又,所以.所以
所以.2、已知:如图,在□ABCD
中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形
BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
[解析]
(1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD
.
∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD
.
∴AE=CF
∴△ADE≌△CBF
.
(2)当四边形BEDF是菱形时,四边形
AGBD是矩形.
∵四边形ABCD是平行四边形,∴AD∥BC
.
∵AG∥BD,∴四边形
AGBD
是平行四边形.
∵四边形
BEDF
是菱形,∴DE=BE
.
∵AE=BE,∴AE=BE=DE
.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形
3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
图13-2
E
A
B
D
G
F
O
M
N
C
图13-3
A
B
D
G
E
F
O
M
N
C
图13-1
A(G)
B(E)
C
O
D(F)
[解析](1)BM=FN.
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴
∠ABD
=∠F
=45°,OB
=
OF.
又∵∠BOM=∠FON,∴
△OBM≌△OFN
.
∴
BM=FN.
(2)
BM=FN仍然成立.
(3)
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.
∴∠MBO=∠NFO=135°.
又∵∠MOB=∠NOF,∴
△OBM≌△OFN
.
∴
BM=FN.
4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
(1)若,求CD的长;
(2)若
∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。
[解析]
(1)因为AB是⊙O的直径,OD=5
所以∠ADB=90°,AB=10
在Rt△ABD中,又,所以,所以
因为∠ADB=90°,AB⊥CD
所以
所以
所以
所以
(2)因为AB是⊙O的直径,AB⊥CD
所以
所以∠BAD=∠CDB,∠AOC=∠AOD
因为AO=DO,所以∠BAD=∠ADO
所以∠CDB=∠ADO
设∠ADO=4x,则∠CDB=4x
由∠ADO:∠EDO=4:1,则∠EDO=x
因为∠ADO+∠EDO+∠EDB=90°
所以
所以x=10°
所以∠AOD=180°-(∠OAD+∠ADO)=100°
所以∠AOC=∠AOD=100°
5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.
[解析]
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF
∴,∵HE=EC,∴BF=FD
(2)方法一:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO
∴∠OCF=90°,∴CG是⊙O的切线---------6′
方法二:可证明△OCF≌△OBF(参照方法一标准得分)
(3)解:由FC=FB=FE得:∠FCE=∠FEC
可证得:FA=FG,且AB=BG
由切割线定理得:(2+FG)2=BG×AG=2BG2
在Rt△BGF中,由勾股定理得:BG2=FG2-BF2
由、得:FG2-4FG-12=0
解之得:FG1=6,FG2=-2(舍去)
∴AB=BG=
∴⊙O半径为26、如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线平行于轴,点P在直线上运动.
(1)当点P在⊙O上时,请你直接写出它的坐标;
(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.[解析]
解:
1点P的坐标是(2,3)或(6,3)
2作AC⊥OP,C为垂足.∵∠ACP=∠OBP=,∠1=∠1
∴△ACP∽△OBP
∴
在中,又AP=12-4=8,∴
∴AC=≈1.94
∵1.94<2
∴OP与⊙A相交.7、如图,延长⊙O的半径OA到B,使OA=AB,C
A
B
D
O
E
DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.求证:∠ACB=∠OAC.[解析]
证明:连结OE、AE,并过点A作AF⊥DE于点F,(3分)
∵DE是圆的一条切线,E是切点,∴OE⊥DC,又∵BC⊥DE,∴OE∥AF∥BC.∴∠1=∠ACB,∠2=∠3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A是OB的中点,∴点F是EC的中点.∴AE=AC.∴∠1=∠2.∴∠4=∠2=∠1.即∠ACB=∠OAC.8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为.
1求AO与BO的长;
2若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;
②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’=,试求AA’的长.
[解析]
1中,∠O=,∠α=
∴,∠OAB=,又AB=4米,∴米.米.--------------
(3分)
2设在中,根据勾股定理:
∴
-------------
(5分)
∴
∵ ∴
∴
-------------
(7分)
AC=2x=
即梯子顶端A沿NO下滑了米.----
(8分)
3∵点P和点分别是的斜边AB与的斜边的中点
∴,-------------
(9分)
∴-------
(10分)
∴
∴
∵
∴
-----------------------
(11分)
∴-----
(12分)
∴米.--------
(13分)
9.(重庆,10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)
求直线AB的解析式;(2)
当t为何值时,△APQ与△AOB相似?
(3)
当t为何值时,△APQ的面积为个平方单位?
解:(1)设直线AB的解析式为y=kx+b
由题意,得
解得
所以,直线AB的解析式为y=-x+6.
(2)由AO=6,BO=8
得AB=10
所以AP=t,AQ=10-2t
1°
当∠APQ=∠AOB时,△APQ∽△AOB.
所以 =
解得 t=(秒)
2°
当∠AQP=∠AOB时,△AQP∽△AOB.
所以 =
解得 t=(秒)
(3)过点Q作QE垂直AO于点E.
在Rt△AOB中,Sin∠BAO==
在Rt△AEQ中,QE=AQ·Sin∠BAO=(10-2t)·=8
-t所以,S△APQ=AP·QE=t·(8-t)
=-+4t=
解得t=2(秒)或t=3(秒).
(注:过点P作PE垂直AB于点E也可,并相应给分)
点拨:此题的关键是随着动点P的运动,△APQ的形状也在发生着变化,所以应分情况:①∠APQ=∠AOB=90○②∠APQ=∠ABO.这样,就得到了两个时间限制.同时第(3)问也可以过P作
PE⊥AB.
10.(南充,10分)如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.
(1)写出y与x的函数关系,并确定自变量x的范围.
(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由.
解:(1)过动点P作PE⊥BC于点E.
在Rt⊿ABC中,AC=10,PC=AC-AP=10-x.
∵ PE⊥BC,AB⊥BC,∴⊿PEC∽⊿ABC.
故,即
∴⊿PBC面积=
又⊿PCD面积=⊿PBC面积=
即 y,x的取值范围是0<x<10.
(2)这个判断是正确的.
理由:
由(1)可得,⊿PAD面积=
⊿PBC面积与⊿PAD面积之和=24.
点拨:由矩形的两边长6,8.可得它的对角线是10,这样PC=10-x,而面积y是一个不规则的四边形,所以可以把它看成规则的两个三角形:△PBC、△PCD.这样问题就非常容易解决了.
第三篇:中考数学压轴题整理
【运用相似三角形特性解题,注意分清不同情况下的函数会发生变法,要懂得分情况讨论问题】
【分情况讨论,抓住特殊图形的面积,多运用勾股定理求高,构造梯形求解】
【出现边与边的比,构造相似求解】
【当图形比较复杂的时候,要学会提炼出基础图形进行分析,如此题中可将两个三角形构成的平行四边形提取出来分析,出现两个顶点,结合平行四边形性质和函数图像性质,找出不变的量,如此题中N点的纵坐标不变,为-3,为突破口从而求解】
已知△ABC是等边三角形.
(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.
①如图a,当θ=20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;
②当△ABC旋转到如图b所在位置时,求∠BOE的度数;
【旋转,平移,轴对称的题目,要将动态转化为静态求解,运用全等和相似的方法】
【通过旋转把条件进行转移,利用与第一题相同的方法做辅助线,采用构造直角三角形的方法求解】
如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.
(1)表中第8行的最后一个数是_________,它是自然数_______的平方,第8行共有________个数;
(2)用含n的代数式表示:第n行的第一个数是_______,最后一个数是_________,第n行共有个数__________;
(3)求第n行各数之和.
【利用三角函数求解】
如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t=_____________.
【提取基础图形,此题将三角形提取出来,构造直角三角形,利用30°所对的边是斜边的一半,设未知数求解】
【要求是否能构造成直角三角形,构造包含欲求三角形的三边的另外三个直角三角形,利用勾股定理求出三条边,再运用勾股定理,分三种情况求解】
如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是___________.
当遇到求是否构成等腰三角形,等边三角形,等腰直角三角形,直角三角形时,在坐标轴中,设未知数求解;如设点A为(x,y)或设点A为(0,m),多寻找可用相似表示的边,运用相似的面积比,周长比,高之比,边之比求解
求坐标轴上有多少个图形能够构成面积为多少,周长为多少的三角形四边形等时,注意坐标点可能在正半轴或负半轴,注意加绝对值符号,计算多边形面积可采用割补法
第四篇:2010年全国各地中考数学压轴题专集一几何证明题
外国语中学中考数学压轴题专集
1.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.
(Ⅰ)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;
(Ⅱ)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.
2.如图1,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.
(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;
(2)若CE=2,BD=BC,求∠BPD的正切值;
1(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.
3B C P B C P B C
图
1图2(备用)图3(备用)
3.已知:如图①,在平面直角坐标系xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P,Q分别从A,O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;
(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图②,现有∠MCN=60°,其两边分别与OB,AB交于点M,N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M,N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.
P
5.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.
(1)若c=a1,求证:a=kc;
(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;
(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由.
A
c
1C B1C11
6.如图1,在△ABC中,AB=BC,且BC≠AC,在△ABC上画一条直线,若这条直线既平..分△ABC的面积,又平分△ABC的周长,我们称这条线为△ABC的“等分积周线”.
(1)请你在图1中用尺规作图作出一条△ABC的“等分积周线”;
(2)在图1中过点C能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由;
(3)如图2,若AB=BC=5cm,AC=6cm,请你找出△ABC的所有“等分积周线”,并简要说明确定的方法.
C图2 图1
7.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P以一定的速度沿AC边由A向C运动,点Q以1cm/s的速度沿CB边由C向B运动,设P、Q同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t(s).
(1)若点P以3cm/s的速度运动
4①当PQ∥AB时,求t的值;
②在①的条件下,试判断以PQ为直径的圆与直线AB的位置关系,并说明理由.
(2)若点P以1cm/s的速度运动,在整个运动过程中,以PQ为直径的圆能否与直线AB
相切?若能,请求出运动时间t;若不能,请说明理由.
A
备用B
8.如图1、2是两个相似比为1 :2的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E、F,如图4.
求证:AE +BF =EF ;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE +BF =EF 是否仍然成立?若成立,请给出证明;若不成立,请
说明理由;
D A B A D
图2 图3 图
1A D B A F
图4 图
5(3)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由. D ;
F
C
9.(河南省)222222B B
(1)操作发现·
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决 保持(1)中的条件不变,若DC=2DF,求
(3)类比探究
保持(1)中的条件不变,若DC=n·DF,求
AD的值. ABAD的值; AB
第五篇:中考几何证明题复习
中考复习
(二)中考复习:几何证明题
说明一:在直角三角形中,或是题中出现多个直角时,要证明两个角相等,涉及到的知识点:
同角(或等角)的余角相等。
例1:已知:如图,在△ABC中,∠ACB=90,CDAB于点D,点E 在AC上,CE=BC,过E点作AC的垂
线,交CD的延长线于点F.求证:AB=FC
说明二:(1)一般情形,题中有多个问题时,第二问都与第一问有直接的关系,利用第一问的结论解题。(2)判别菱形的方法:例:如图,在平行四边形ABCD中,AE
(1)求证:△ABE∽△ADF;(2)若AG
例3:如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3, AB
⑴求证:△AOB为等边三角形;⑵求BF的长.A
AH
BC
A
E
于E,AF
CD
于F,BD与AE、AF分别相交于G、H.
B
D,求证:四边形ABCD是菱形.
D
B
E
C
说明:在解梯形的题中,一般需要作辅助线。
例4:如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长。
说明:证明正方形的方法:例:如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。(1)试探究,四边形BECF是什么特殊的四边形;
(2)当A的大小满足什么条件时,四边形BECF是正方形? 请回答并证明你的结论.例:如图,在梯形ABCD中,AD∥BC,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ60保持不变.设PCx,MQy,求
y与x的函数关系式;
C
(3)在(2)中当y取最小值时,判断△PQC的形状,并说明理由.
A
M
D
60°
B
P
C
圆中计算与相关证明
说明:关于圆的计算,若出现直径,要联想到:直径所对的圆周角是直角;
若出现切线,要连接圆心和切点,就出现直角;
如弦长,联想到垂径定理(垂直,平分弦,构建直角三角形)
例:如图,AB是半圆O上的直径,E是 ⌒BC的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于
点F.已知BC=8,DE=2.⑴求⊙O的半径;⑵求CF的长;⑶求tan∠BAD 的值。
说明:证明圆的切线的办法:(1)连半径,证垂直;(2)作垂直,证半径。例:如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,ACCD,D30°,(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求弧BC的长.(结果保留π)
例:如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE。(1)若BE是△DEC的外接圆的切线,求∠C的大小?(2)当AB=1,BC=
2,求△DEC外接圆的半径。
A
B
O B
如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)求证:EF是⊙O的切线;(2)求DE的长.
说明:出现三角函数值,必须在直角三角形中,或作垂直或找出相等的角,该角在直角三角形中。如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过D作DE⊥AC,垂足为E.
(1)求证:AB=AC;(2)若⊙O的半径为4,∠BAC=60º,求DE的长.
C
F
B