第一篇:物理化学课程的学习方法
物理化学课程的学习方法
物理化学是一门研究物质性质及物质变化规律的基础理论课程,因此,凡是要促使物质发生变化,以转变为具有优良性质的产品的众多专业,如化工(包括制药)、材料、轻工、冶金等都把物理化生课程的学习放在十分重要的地位。
为了学好物理化学课程,每位初学者都应该根据自己的经验摸索出一套适合自身特点的学习方法。下面的建议可供同学学习时参考。
首先要联系实际进行思考,并努力运用所学理论解释及解决实际问题。物理化学的许多概念,中学已经学过,如热、功、热容、反应速率等概念,只不过中学学习中讲得粗浅一些,在物理化学中讲得更深刻一些,故理解时要与中学的概念相互衔接。
另外,初学者往往会感到物理化学的概念多,理论抽象,公式繁多,难以捉摸,难以记忆。其实这些概念、理论都是从客观实际中概括、归纳出来的,学习时如能联系生活的客观现象进行思考、推理,则不但不会觉得难懂,而且会感到生动有趣。物理化学是一门逻辑性很强的学科,必须勤于思考,认真推理才有可能学好。在学习过程中,要仔细阅读材料,动笔练习公式的推导,理清理论体系的主次关系,在理解的基础上加以记忆。另外,要多做习题,通过做习题找出自己概念模糊之处,同一概念往往需要需要经过多次反复学习,才能逐渐加深理解,切不可忙于对答案。另外,还应记住,数学史工具,书本应用大量的数学推导而得出在不同条件下使用的一些结论,数学的推导过程是让我们明白公式的由来,它只是获得结果的必要手段,而不是目的,故不要将精力放在繁杂的推导过程,而要注意结论的使用条件以及物理意义。除重要的公式及其推导过程,只要求理解而一般不要求强记。
为了帮助你准备考试,建议你要弄清楚书中黑体字所有术语的意义;记住一些基本公式;重做你过去感到困难的课后习题;为了增加训练,做一些未指定的习题或习题解答中的一些补充习题。
物理化学是理论与实验并重的学科,理论的发展离不开实验的启示和检验。物理化学实验方法往往是物理的方法,所用到的仪器较多,只能采用循环方式安排实验,课程进程与实验不一致时必然的,这就要求同学们在实验前充分预习,了解实验的目的是什么,它验证哪个公式或说明什么问题。做到实验前心中有数,试验后联系理论公式做好报告的处理。实验中要开动脑筋,积极是靠问题,动手解决问题,掌握好物理化学的基本实验技能。要知道,你的学习能力和理解能力是有限的,最好承认这个事实,即有些内容,可能是你永远不能充分理解的,没有人能对每样事都充分理解。即使是这方面的专家,也有一些问题是要进行研究和探讨的,甚至等待相当长的时间还是得不到解决。
第二篇:初中物理化学学习方法
初中物理学习方法
一、学好物理首先要重视基础知识的理解和记忆
基础知识包括三个方面的内容:即基本概念(定义),基本规律(定律),基本方法。如:对于“凸透镜”一节的概念的理解,“透镜”就是可以让光“透”过的光学元件,所以是用玻璃,等“透明”材料制成的。关于“凸透镜”“凹透镜”的定义则从透镜的形状和“凹、凸”两个字的形状上找相似点,而关于“焦点”则是利用凸透镜会聚太阳光可以把地面上的纸“烧焦”这个角度去考虑。在理解的基础上,用科学的方法,把学过的大量物理概念、规律、公式、单位记忆下来,成为自己知识信息库中的信息。前面学过的知识,是后面学习的基础。
反复自我检查,反复应用,是巩固记忆的必要步骤。所以每次课后的复习,单元复习,解题应用,实验操作,学期学年复习等,都应有计划做好安排,才能不断巩固自己的记忆。
二、掌握科学的思维方法
物理思维的方法包括分析、综合、比较、抽象、概括、归纳、演绎等,在物理学习过程中,形成物理概念以抽象,概括为主,建立物理规律以演绎、归纳、概括为主,而分析综合与比较的方法渗透到整个物理思维之中,特别是解决物理问题时,分析综合方法应用更为普遍,如下面介绍的顺藤摸瓜法,发散思维法和逆推法就是这些方法的具体体现.(1)顺藤摸瓜法,即正向推理法,它是从已知条件推论其结果的方法。这种方法在大多数的题目的分析过程都用到。
(2)发散思维法,即从某条物理规律出发,找出规律的多种表述,这是形成熟练的技能技巧的重要方法。例如,从欧姆定律以及串并联电路的特点出发,推出如下结论:串并联电路的电阻是“越串越大,越并越小”,串连电路电压与电阻成正比,并联电路电流与电阻成反比。
(3)逆推法,即根据所求问题逆推需要哪些条件,再看题目给出哪些条件,找出隐含条件或过度条件,最后解决问题。
三、重视课堂上的学习上课。
开动脑筋勤于思考,没有积极的思考、不可能真正理解物理概念和原理。我们从初中开始,就要养成积极动脑筋想问题的习惯。
上课要认真听讲,不走思或尽量少走思。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经常看,要能做到爱不释手,终生保存。
四、重视对所学知识的应用和巩固
要及时复习巩固所学知识。对课堂上刚学过的新知识,课后一定要把它的引入,分析,概括,结论,应用等全过程进行回顾,并与大脑里已有的相近的旧知识进行对比,看看是否有矛盾,否则说明还没有真正弄懂。这时就要重新思考,重新看书学习.在弄懂所学知识的基础上,要即时完成作业,有余力的同学还可适量地做些课外练习,以检验掌握知识的准确程度,巩固所学知识。
要善于把学到的物理知识运用到实际中去,不注意知识的运用,你得到的知识还是死的,只有通过具体运用,才能扩展和加深自己对的知识理解,学会对具体问题具体分析,提高分析和解决问题的能力。
总之,学习物理就是:学知识,学方法,长能力。在初中物理课中,我们不但要掌握物理学的基础知识,还要掌握一些研究自然科学的方法(科学观察),培养从事生产和探索未知事物的能力。只要按照正确的学习方法进行学习,在学习阶段,可以学得快而好,参加建设工作后,就具有独立工作能力,有所创造发明。
初中化学学习方法
一、勤于预习,善于听课做笔记
要想学好化学,必须先了解这门课程。课前一定要预习,在预习时,除了要把新课内容仔细读一遍外,还应在不懂处作上记号,并试着做一做课本上的练习。这样带着疑问、难点,听课的效率就会大大地提高。初中化学内容比较多,知识比较零散,老师在讲课时,着重围绕重点内容进行讲授。因此大家要仔细听课,认真做笔记,这不仅有利于进行课后复习,掌握重点,而且还可以有效地预防上课时“走神”。不过,在记笔记时,要在听清楚老师所讲内容的基础上,记重点、难点、疑点和课本上没有的内容。
二、常复习,多记忆
课后应及时复习,认真做好作业,这是学好化学的重要环节。复习可采用课后复习、周后复习、单元复习、章节复习、综合复习等。复习的方法有复述、默写、做联系等。只有通过多次复习才能牢固地掌握知识。现行初中化学课本中有多个基本概念和原理,要求掌握的元素符号二十多个,还有许多的化学式和化学方程式以及其他一些知识。这些内容都需要大家在理解的基础上记忆,它们多为学习化学的基础,若不能熟记,便会感到在“化学王国里”行走困难。要牢记化学的各个名词,定义,并且要仔细加以区分,比如化合物,纯净物,单质,混合物,它们的定义不但牢记,还要加以区分,比较,要扣定义里面字眼,谁包括谁都要搞清。一旦真正搞清了,那我问你牛奶是上面哪一种物质你就不至于思索半天了。常见的化学反应是必须牢记的,要会默写,条件(加热、光照、催化剂),箭头(可逆,不可逆)都需要注意,反应过程的现象就不用说了,重要的都得记住。化学中的公式,就像记数学公式那样把它理解,记住,融会贯通,灵活运用,注意变通,别当书呆子。
三、吃透课本,联系实际
以课本为主线,认真吃透课本,这是学好化学的根本。为此,同学们必须善于阅读课本,做到课前预读、课后细读、经常选读等,既重视主要内容,也不忽视小字部分、一些图表、资料及选学内容。中学化学内容与生活、生产联系紧密。这就要求我们在学习化学的同时,应尽量联系生产、生活实际,从身边的生活中发现化学,体味化学,这样就能越学越有兴趣,越学越想学,越学越爱学。
四、重视实验,培养兴趣
化学是一门以实验为基础的学科,我们要认真、细致地观察老师的演示实验,认真做好每一次分组实验,对实验所用的仪器、药品、装置以及实验原理、步骤、现象和注意事项,都必须弄清、记熟。
五、注意记忆,准备“两本”
化学有其“特殊的语言系统,”对化学用语及其他知识点,好学易忘,我们要注意运用一些有效的记忆方法如:韵语记忆、谐音记忆、歌诀记忆等方法把要求记住的内容,轻松记住,如学习元素化合价的时候,我们用歌诀帮助记忆: 钾钠氢银正一价,氟氯溴碘负一价。钙镁锌钡正二价,通常氧是负二价。铜正一正二铝正三,铁正二正三碳二四。硅四氮磷负三五等等,这样对于多种元素的化合价就可以很熟练的应用了。
再者,在学习化学之前准备好两个笔记本,一个“错题本”专记自己在练习、作业、考试中的错题,分析出错的原因,记下正确和好的解法。另一个“好题本”对于一些好题,好的解题方法、解题技巧、解题规律记下来,在考前看一遍能起到事半功倍的效果。
第三篇:物理化学课程总结(定稿)
物理化学期末总结
在这一学期的学习中,我们主要学习到了物理化学中的电化学,量子力学,统计热力学,界面现象与化学动力学的一些基础知识,这其中我个人还有许多地方存在问题,包括一些基础概念,公式,还有解题思路,都有些欠缺。这更能说明这是一门需要我们用心才能学好的课程,在这里请允许我自我检讨一下:
在这一学期的学习生活中,我并没有尽到一个好学生应尽的义务去认真负责的完成本学期的学习任务,导致在临近期末的时候脑海中实在搜刮不出一些讲得出口,拿得出手,上得了台面的知识与技巧,又实际上没有没什么可说的,没什么能说的出口的,可以说是虚度好一段大好时光。学习本如逆水行舟,不进则退。但学期末的总结也只能说是反省一下自我过失,谈不上后悔,和如果当初了......为了期末考试对于我来说我还是要好好复习。以弥补我在这个学期中对物理化学学习的不用功。
但是,这学期的课程中有很多我感兴趣的部分知识点,仍然学了些可以总结的东西,比如电化学。
电化学学习伊始,老师就提点了我们几点基本的学习要求:①理解原电池与电解池的异同点;理解电导‘电导率’摩尔电导率的定义及其应用。②掌握电解质的活度‘离子平均活度和离子平均活动系数的定义及计算。③掌握离子迁移数,离子电迁移率的定义了解迁移数的测定方法。掌握离子独立运动定律和德拜休克尔极限定律。④掌握电池反应和电极反应的能斯特方程,会利用能斯特方程计算电池电动势和电极电动势。⑤了解浓差电池的原理,了解液接电势的计算。⑥了解分解电压和极化的概念以及极化的结果。
学习中我了解到电化学是研究化学能和电能相之间相互转化规律的科学。其中电解质的导电任务是由正,负离子共同承担,向阴,阳两极迁移的正负离子物质的量总和恰好等于通入溶液的总电量,等类似的基本概念。还学会了希托夫法测量离子迁移数的测定方法,电导定义,德拜休克极限公式和有关电池热力学方面的计算与测定。当然不能不提的还有电池的原设计,其中有氧化还原反应的,中和反应的,沉淀反应的以及浓差电池——扩散过程。
窥一斑而见全豹,从本学期的电电化学的学习中,我更加深了了解物理化学这门课的含义:即物理化学是在物理和化学两大学科基础上发展起来的。它以丰富的化学现象和体系为对象,大量采纳物理学的理论成就与实验技术,探索、归纳和研究化学的基本规律和理论,构成化学科学的理论基础。也更加明白了问什么说“物理化学的水平在相当大程度上反映了化学发展的深度”。
最后我想说的是物理化学是一门值得我们学生努力学习的一门课,它相对而言更难,更精,是我们化学专业领域的一块好工具,傻傻的我一开始并不清楚,只有失去才懂得追悔莫及。
第四篇:物理化学课程论文
摘要:近年来,新能源在世界范围内得到迅速发展。作为当代大学生,关心环境和未来是我们的责任。因此,笔者查证文献,分析了国内新能源技术发展现状、前景,希望能对关心新能源开发利用的朋友有所帮助。
英文摘要:In recent years, new energy have been developed rapidly around the world.As a contemporary college student, being concerned about the environment and the future is our responsibility.Therefore, I verify documents, analyze the domestic development and prospects of the new energy technologies, with the hope that friends who concern for new energy development and utilization can gain some help from this text.中文关键字:新能源 发展 现状 开发利用 可持续发展
英文关键字:new energy;development;the present situation ;development and utilization;sustainable development;
引言:能源问题已经刻不容缓,减少碳排放让世界目光聚焦新能源。虽然传统能源在国际能源消费中的比例仍然居多,但许多国家都把发展新能源作为缓解高油价压力、应对气候变暧以及实现可持续发展的重要途径和长远战略。而在我国,支持新能源发展的方针被明确写进了今年的政府工作报告,这意味着发展新能源的春天已经到来。
一 研究背景
在经济高速发展的今天,能源越来越凸显出其重要性。能源是国民经济的基础产业,对经济持续快速健康发展和人民生活的改善发挥着十分重要的促进与保障作用。而对于中国来说,我们加入WTO之后,意味着我们处在一个更加开放的环境中,我们的着眼点不应该局限于中国。应该放到更大的背景下去看。而更加重要的是,我们正处于工业化阶段,而且大部分的研究表明我们正处于重工业化的阶段,我们面临能源紧张的危机,所以我们对新能源的开发和利用显得尤为重要。
为了保证人类所需的能源得到稳定而持久的供应,减轻和防止环境污染对人类的危害,世界各国特别是经济发达国家都高度重视新能源的开发利用和新能源技术的发展,把新能源技术摆在新技术革命支柱技术的重要位置,制定规划,采取措施,加大投人,积极发展。
地球上的各种能源,有的已被大规模开发和广泛利用,如煤炭、石油、天然气、水力等,称常规能源;还有一些能源,如氢能、太阳能、风能、地热能、海洋能、核能、生物质能源等,是正在以新技术为基础,系统开发和利用的能源,被通俗地称为新能源。它们的共同特点是资源丰富、可再生、没有污染或很少污染。研究和开发清洁而又用之不竭的新能源,是21 世纪发展的首要任务,将为人类可持续发展做出贡献。
氢能具有清洁、无污染、效率高、重量轻、储存和输送性能好等诸多优点,其开发利用首先必须解决氢源问题,大量廉价氢的生产是实现氢能利用的根本。目前,世界上氢的年产量是3600 万吨,但绝大多数是从石油、煤炭和天然气中制取。由水电解制氢技术上是成熟的,但因消耗电能太多,经济上不合算。因此,必须寻找一种低能耗、高效率的制氢方法。如利用太阳能光解水制氢将是一种非常有前途的制氢方法。同时,安全、高效、高密度、低成本的储氢技术,是将氢能利用推向实用化、规模化的关键。目前,研究新的经济上合理的制氢储氢方法是一项具有战略性的研究课题。
太阳能资源是指到达地面的太阳辐射总量,包括太阳的直接辐射和天空散射辐射的总和。它受地理位置和地面反射等因素的影响,各地差异较大。太阳每年辐射到地球表面的能量为50 ×1018 千焦,相当于目前全世界能量消费的113 万倍,因此利用太阳能的前景非常诱人。阳光普照大地,单位面积上的辐射并不大,如何把分散的热量聚集在一起成为有用的能源是有效利用太阳能的关键。
风能利用的主要方式有风力发电、风力提水和风帆助航等。按人均风电装机容量算,丹麦遥遥领先,已经从风能中获得其电力的将近15 % ,其次是美国和荷兰。庞大的1615 亿千瓦涡轮机的问世及其它进展,使风能的成本从1980 年以来已经下降了90 %。在一些地方,风力发电比石油或天然气火力发电所产生的电力要便宜。据设在华盛顿的思想库世界观察研究所说,10 年来,全世界的风力发电量一直以每年25 %的平均速度递增,超过了任何其它的能源。
地热主要由地幔的岩浆作用或火山的运动而形成。地热的利用主要分为地热发电和直接利用两类。全球地质资料表明,世界上存在两大地热带。一是地中海——喜玛拉雅地热带,包括意大利、我国青藏高原、菲律宾、印度尼西亚,直到南太平洋的新西兰;另一个是环太平洋地热带,包括美国西海岸、冰岛、日本等地。目前,人类利用地热发电已达43756 GW·h/a,地热的直接利用36910 GW·h/a。但据估计人类利用地热发电的潜力可达12000 T W·h/a。
海洋能是指海洋本身所蕴藏的能量,它包括潮汐能、波浪能、海流能、温差能、盐差能和化学能。另外,科学家已经探明,海底埋藏着大量的甲烷,总储量估计是诸如石油和煤炭等其他矿物燃料总储量的2倍以上。作为有价值的气体能源,它既能直接燃烧提供热能,又能作为燃料电池的动力。如何安全经济的加以开发和利用海底甲烷将是又一新的研究课题。
20世纪30年代,随着对原子核研究的深入,人类发现了原子核内蕴藏着巨大的可开发能量,并致力于和平利用原子能的研究。经过半个多世纪的努力,迄今世界上已有30多个国家建成440多座核电站,其发电量占全球发电量的18%。与火电相比,核电是廉价、洁净、安全的能源。随着将来受控热核聚变的成功,核能必然成为未来的能源支柱。
生物质能指的是利用自然界的植物以及城乡有机废物转化成的能源。它们主要由碳氢化合物组成,也是一种可供人们利用的能源。
二 我国新能源开发利用的现状
我国自然资源总量排世界第七位,能源资源总量约4万亿吨标准煤,居世界第三位。
我国在能源领域面临的主要挑战是:
(1)人均能源资源占有量不足,且分布不均。(2)人均能源消费量低,单位产值的能耗高。(3)能源构成以煤为主。
(4)工业部门消耗能源占有很大的比重。
(5)农村能源短缺,以生物质能为主。
(6)从能源安全角度考虑,我国能源面临挑战。
(7)能源品种结构不合理,优质能源供应不足。
(8)能源工业技术水平有待进一步提高。
(9)节能提效工作亟待加强。中国《国家中长期科学和技术发展规划纲要(2006-2020年)》中,关于优先展新能源部分指出:“要重点研究开发大型风力发电设备,沿海与陆地风电场和西部风能资源密集区建设技术与装备,高性价比太阳光伏电池及利用技术,太阳能热发电技术,太阳能建筑一体化技术,生物质能和地热能等开发利用技术。
中国的风能资源十分丰富,储量约为32亿千瓦,可开发利用的风能约10亿千瓦,可开发的装机容量约2.53亿千瓦,风能资源居世界首位。.风力发电是中国增长最快的发电技术,仅2006年就使现有能力翻了一番。2007年,中国拥有4家主要的风力涡轮制造商,另有6家国外的子公司制造商,以及超过40公司开发和商业化生产风力涡轮。按照规划,到2020年中国将建MW级的风电机组2--3万台。
中国同样有着良好的太阳能利用条件,每年陆地接受的太阳辐射能相当于2.4万亿吨标准煤。中国对太阳能的开发利用已颇具规模:中国太阳能光伏生产能力已从2005年350兆瓦增加到2006年超过1000兆瓦,2007年约为1500兆瓦,几家中国公司拥有高效益的上市股票,有些价值数十亿美元,使全球对中国太阳能光伏产业刮目相看;太阳能热水系统的设置能力已从2000年3500万平方米提高到2006年底1亿平方米,仅2006年就增加了2000万平方米,太阳能热水器使用量稳居世界第一,中国一些公司现生产太阳能热水器成本为美国和欧洲的1/5~1/8。
生物质能资源,包括农作物秸秆、薪柴和各种有机废物,利用量约为2.6亿吨标准煤,占农村生活能源消费的70%,整个用能的50%。中国从农业途径产生的废弃物可望一年产生800亿立方米生物气体,高于政府到2020年年产生440亿立方米的目标。2006年,中国生物质发电能力约为2GW,大多数来自采用甘蔗废弃物为主要原料的热电组合(CHP)装置
我国新能源发电取得良好成绩。根据中电联公布的数据,我国2006年运行核电机组的装机容量685万千瓦,风力发电机组装机容量187万千瓦,同比增加76.7%。另据国家发改委统计,2006年全国在建秸秆发电项目总装机约120万千瓦,有三座总装机8万千瓦的秸秆发电站已投产。据此测算,包括核电、风电和生物质能发电在内的新能源占全部装机容量的1%。新能源发电装机容量上升,主要是受资源和环保的压力增加驱使。
但有统计显示,我国可再生能源资源量是每年73亿吨标准煤,开发量尚不足。目前除了小水电外,中国可再生能源发电成本远高于常规能源发电成本,如小水电发电成本约为煤的1.2倍,生物质发电成本为煤电的1.7倍,风力发电为煤电的1.7倍,光伏发电为煤电的11倍至18倍。成本偏高抑制了可再生能源市场,市场狭小又会给可再生能源的成本降低造成障碍。这种恶性循环,桎梏了可再生能源的产业化
近年来,我国可再生能源开发利用技术取得明显进展,已进入产业化发展阶段,再加上国内法规体系日臻完善,特别是2005年《可再生能源法》的颁布和施行,极大地调动了各方面发展可再生能源的积极性,大规模开发利用可再生能源的时机基本成熟。
在政策倾斜下,新能源产业化规模将不断扩大,具有规模优势及资源优势的新能源企业将有更大的发展空间。国家经贸委组织制定的《2000-2015年新能源与可再生能源产业发展规划要点》指出:中国今后将大力发展新能源和可再生能源,到2015年新能源和可再生能源年开发量将达到4,300万吨标煤。2015年新能源和可再生能源产业将成为国民经济的一个新兴行业,潜在市场价值约1,000亿元。
三 新能源开发利用的前景 石油等传统能源的枯竭预期以及环保的压力使得新能源业务的比较优势日益突出。从而也加大了市场参与主体对新能源业务的研究激情,这有利于发电成本的大幅下降,如此就有利于提振产业资本新能源投资的底气。
开发利用新能源是应对能源、环境挑战,促进经济可持续发展的重要战略举措。根据新能源发展战略研究专家预测,随着石油的世界性大量消耗,不久后全球将面临资源短缺的现实问题。从世界范围来看,新能源的综合利用今后会有更大的发展空间
当前经济危机不会影响新能源产业发展的总体趋势,面对全球能源危机和环境危机的双重压力,新能源在全球范围内的迅猛发展不可逆转。尽管经济危机对风力发电的发展速度产生比较严重的影响,但总体来讲利用包括风能和太阳能在内的新能源产业解决环境问题的总体战略不会改变。
结论:近年来,受石油价格上涨和全球气候变化的影响,新能源发展日益受国际社会的重视,许多国家提出了明确的发展目标,制定了支持新能源发展的法规和政策,使新能源技术水平不断提高,产业规模逐渐扩大,成为促进能源多样化和实现可持续发展的重要能源。从化石能源的资源有限性看,新能源主导社会发展只是迟早的事,或许石油紧缺加速了它的步伐,但决不是主要原因,因为新能源幻化成真是能源发展的大势。开发利用新能源和可再生能源是一项远有前景,近有实效的事业。但由于尚处在发展初期,同其它能源建设相比,需要政府给予更多的支持和相应的扶持政策。
参考文献:
[1] 王玉萍,赵媛.世界风电政策分析及对我国风电政策的建议[J]安徽农业科学, 2008,(01).[2] 刘助仁.新能源:缓解能源短缺和环境污染的新希望[J].科技与经济, 2008,(01).[3].周大地,韩文科主编.中国能源问题研究 [M].中国环境科学出版社, 2002.[4] 肖英.全球新能源技术发展:以技术垄断与技术扩散为视角[J]可再生能源, 2007,(04).[5] 张希良主编.风能开发利用 [M].化学工业出版社, 2005.[6] 张无敌,宋洪川,钱卫芳,秦素梅.我国生物质能源转换技术开发利用现状[J]能源研究与利用, 2000,(02).[7] 张政伟,吕子安,张英,徐旭常.能源与中国经济增长[J]工业技术经济, 2006,(01).
第五篇:物理化学课程教案
第十二章
化学动力学基础
(二)教学目的与要求: 使学生了解和掌握化学反应速率理论发展的动态,两种速率理论的具体的内容,基本思路及其成功和不足之处。
上一章介绍了化学动力学的基本概念,简单级数反应的动力学规律和等征,复杂反应的动力学规律,温度对反应速率的影响以及链反应等,同时还介绍了反应机理的一般确定的方法,在这一章中,主要介绍各种反应的速率理论。
重点与难点: 反应速率理论的基本假定和一些基本概念,基本结论:阈能,势能面,反应坐标,能垒高度,以及阈能,能垒高度等与活化能的关系等。
§12.1 碰撞理论
碰撞理论的基本假定
碰撞理论认为:(1)发生反应的首要条件是碰撞,可以把这种碰撞看成是两个硬球的碰撞;(2)只有碰撞时相互作用能超过某一临界值时才能发生反应,化学反应的速率就是有效碰撞的次数。
双分子的互碰频率
设:要发生碰撞的两个分子是球体,单位体积内A分子的数目为NA,B分子数为NB,分子的直径为dD和dB,则碰撞时两个分子可以接触的最小距离为dABdAdB/2。
当A、B两个分子在空间以速度vA,vB运动时,为了研究两个分了的碰撞,通过坐标变换,可以把两个分子的各自的运动变换为两个分子重心的运动(质量为MmAmB)和 质量为(m1m2)/m1m2的假想粒子以相对速度vr的相对运动。此时两个分子的运动的能量可以表示为:
11112222Em1v1m2v2(m1m2)vMvr2222
式中vM为分子的质心的运动速度。由于分子的质心的运动和分子碰撞无关,可以不予考虑。而两个分子的平均相对运动速度为
vr 碰撞频率为
8RT
由此可以得到A,B分子的,相同分子之间的碰撞频率为
2ZAAdA2ZABdAB8RTNANB8RT22NA2dA A、B两个分子相互碰撞过程的微观模型
几个基本概念:
碰撞参数:通过A,B两分子的质心,而与相对速率平行的两条直线的距离
RT2NAMA
b称为碰撞参数。
碰撞参数描述了两个分子可以接近的程度,两个分子要发生碰撞的条件
dAdBdAB2
0≤ b ≤
2碰撞截面: CdAB,凡是两个分子落在碰撞截面内才能发生碰撞。
1ur2碰撞时两个分子相互作用能:分子的相互移动能2在碰撞时两个分子的质心连线的分量是两个分子的相互作用能。
在反应过程中,只有超ε δ过某一规定值ε
c时,碰撞才是有效的,εc称为反应的阈能或临界能(对不同的反应,ε,故发生反应的条件为 c不同)
12vrcosc εr‘≥εc
22ur2dABb2cos()d2dABAB因为22br12dAB
b2或ε‘(1-r(dAB2)≥εc
从上式可以看出,要满足碰撞时的相互作用能不小于εc,对相对移动能和碰撞参数都有限限制的条件。对某一εr,要使上式满足的碰撞参数为br,则有
br(1r2)cdAB br2dAB2(1c)r 或
当ευ 一定时,凡是b ≤ br 的所有碰撞都是有效的。据此,定义反应截面
rbr2dAB2(1c)r
对一定的反应来说,ε变,所以σδ是ε
δ
υ一定,br随ε
δ
而的函数,(也是ur的函数)可
以用左图表示反应截面与相对动能的关系。
微观反应与宏观反应之间的关系(有效碰撞分数的求算)
如果研究一个分子和其它为数众多的分子的相对速度,会有无数个相对速度,并呈现一定的分布,这种分布也可以用麦克斯韦速率分布公式表示,即
dN(ur)322u4N()urexp(r)dur2kT2kT
将εδ=(1/2)μur2代入上式,可以得到相对动能的分布公式
1dN(r)213212()exp()NdkT kT上式的意义是,在单位体积中的N个分子中,一个分子和其它N1N个分子的相对速率在ururdur(或相对移动能在rrdr)之间的机率。
在该速率间隔中(或能量间隔中)和其它粒子的碰撞的次数
213212kT2NdABur()redrkT
在上述碰撞中,满足εr≥εr,又在反应截面内的碰撞次数为
rr213212kT2NdAB(1)ur()redrkTrc
上式是一个分子的有效碰撞频率,如果是N个分子的有效碰撞,则有
2rZAA1N2rNdAA2r213212kT(1)ur()redrckT
rc/kT2RT2N2dAeMA
c/kTeEc/kT所以,有效碰撞的分数为
qe1/2
c/kT可以证明,两种不同分子的有效碰撞在总的碰撞中占的分数亦为e 所以反应的速率
dNA2ZAA(ZAB)dt
(一次碰撞消耗2个分子)
22RTEc/RT4NAdAMeA
两边除以L,使NA成为CA
dCA22RTEc/RT4LCAdAedtMA
dCA2kTCAdt和二级反应的速率公式相比
2RTk4LdAMA反应阈能与实验活化能和的关系
EaRT2Ec/RTe
dlnk(T)dT根椐实验的活化能定义
将上边得到的反应速率常数代入,可以得到
E11EaRT2c2EcRT22TRT
1EcRT2对于一般的反应,则可以认为EaEc,但两者的含义是不同的,Ec才是与温度无关的常数。若用代替,则上式可改写成
28kTEa/RTkTLdABe
或以求出阿仑尼乌斯公式指前因子所代表的实际意义是
28kTALdAB
概率因子
§11.2 过渡状态理论
过渡状态理论又称活化络合物理论,是在量子力学及统计力学的基础上发展起来的,在理论有形成过程中又引入了一些模型假设。
在由反应物到产物的转化过程中,要经过(由两个反应物分子构成的体系的)势能较高的过渡状态,形成不稳定的活化络合物,它可以和反应物达成平衡,而活化络合物分解转化为产物的速率就是该反应的速率。
势能面
(1)原子之间的势能
原子之间的相互作用力(来自于不同的原子和电子之间的相互作用)可以用势能来表示,对双原子分子来说,它是原子之间的势能的函数。
EpEpR
原则上,可以由量子力学的计算得到,但计算过程颇难。另一种方法是采用经验公式的进行计算,莫尔斯(Morse)公式就是对双原子的经验公式
EprDeexp2arr02exparr0)]
0
E(r)与r的关系可以用下图来定性的表示
在图中,De为阱深,r0为两原子的平衡核间距,r>r0,两核之间有吸引力,r<r0时,两核之间有斥力,这样两个原子如同一个振子在平衡位
置振动,这种振动是量子化的,振子的能量为
1Ev(v)h2
式中v是振动量子数(v =1,2,…v),ν是系统的振动特征频率,当v =0时,11h22Ev = E0 =hν,E0称为零点振动能,而De和E0的差值为D0 =De-(E0),v = 0的状态为基态,(完美晶体在OK时,各原子均处于振动基态,具有零点振1hE02动能)。
当光照或分子之间运动发生碰撞时,振动状态会从较低的状态跃迁到较高的状态。
D0的数值可以从光谱的数据中获得
当然,这样的势能和r的关系仅是分子中电子处于基态的情况,当电子的运动状态发生变化时,势能的关系也会发生变化。
1.分子间的势能与势能面
设:原子A和双原子B-C发生反应,当A靠近B-C时,由三个原子构成的体系的势能也会发生变化,要描述三个原子之间的距离,需要三个坐标(rAB, rBC, rAC),而描述三个坐标与势能的关系需要四维空间, 这是无法用平面图型来表示的, 为了说明过渡状态的基本思路, 可以设想三个原子在同一条直线上, 这样, 只需要两个原子间距的标, 同时可以在平面图上表示。
按照该理论的基本假设,在反应进行的过程中
AB+ CABCC
A + B
A靠近B-C时, B-C之间的化学键松驰, 同时三个原子构成的反应体系的势能会发生变化, 形成过渡的活化络合物, 最后活化络物分解, 生成产物分子, 在这个过程中, 体系的势能是核间距和的函数, 这种函数关系可以用下图定性的进行说明.1.立体图的说明 2.平面图的说明
1.反应坐标
反应体系(三个原子)从反应物转化到产物所经过的能量要求最低的途径.2.E0与Eb的关系及定义
Eb是活化络合物的最低势能与反应物的最低势能之间的差值。
E0是活化络合物的零点能与反应物的零点能之间的差值。
由过渡状态理论计算反应速率
按照基本假定: 反应物和活化络合物可以达成化学平衡, 并且活化络合物一旦生成, 它将一无反顾地转化为产物, 而转化为产物的速率就是该反应的速率。同时假定:导致生成产物那种不对称的振动很弱,一次振动就可以使活化络合物分解而生成产物。
d[A--B-]r(分解)[ABC]dt
C][AB由于反应物和活化络合物可以达成平衡。
A + B
[AC]BKc=
[A][BC]
=K[A][BC][ABC]c d[ABC](分)代入上式 [A][BC]K=νcr= dt和二级反应的速率公式相比较, k = νKc#,所以只要知道KC#, 便可以求出速率常数。有两种方法可以求出Kc# 1. 速率常数的统计力学处理
由统计力学的知识,可以求出反应的速率常数为
kBTf3tfrfvABvE0kexp()333NA633NB63h/2(ftfrfvkBT)(ftfrfv)3[3N3N7]式中活化络合物的振动自由度为3(NB+NB)-7, 是因为一个引起活化络合物分解的那个振动自由度已经分离出去了。
原则上只要知道分子的质量,转动惯量,振动频率等微观物理数据,就可以由此式求出反应的速率常数。所以这个理论也称为绝对反应速率理论。
2. 过渡状态理论的热力学方法处理
过渡状态理论的热力学处理就是用反应物转变为活化络合物过程中的热力rGmrHmTrSm学函数的变化值来计算Kc,并进一步计算速率常数值k。(对于n 分子的反应)
kBT1nrSmrHmk(c)exp()exp()hRRT
对于气相的反应,也可以用压力表示浓度,则有
kBTp1nrSm(p)rHm(p)k()exp[]exp[]hRTRRT
Ec,Eb,E0,Δ≠r Hm⊙,Δr≠Sm⊙,Ea和指前因子之间的关系
(1)几个与能量有关的物理量的含义及相互关系
Ec是发生有效碰撞时,分子的相互移动能在碰撞时的质心连线上分量的阈值
Ea = Ec + RT E0是活化络合物的零点能与反应物的零点能的差值,Eb是反应物形成活化络物时所必须翻越的能垒的高度。
11EaEb[h0h0(反应物)]L22
E0与实验活化能的关系为Ea = E0 + mRT(m包括了普适常数及配分函数中所有与T有关的因子,对一定的反应体系,有定值。
对于理想气体的反应,Ea≈Δ当温度不太高时,Ea≈Δ
r
≠
≠
r
Hm+ nRT(n为气态反应物的系数之和)
⊙
Hm⊙
两种速率理论的比较
分子碰撞理论把分子看作是没有结构的球体,分子之间的反应看作是硬球之间作用能大于某一特定的阈能的有效碰撞,对很简单的反应可以计算出反应的速率常数。但由于模型的粗糙,对稍微复杂的反应的计算也不能和实验相符,为了迎合实验数据,提出了几率因子,但它又不能由碰撞理论本身得到。另外,该理论本身也不能解决反应阈能的计算问题。但分子碰撞理论必定给人们描绘了反应过程中分子相互作用的清晰图象,成为反应速率理论进一步发展的基础。
活化络合物理论在现代量子力学和统计力学的基础上,对化学反应过程提出子新的物理模型,和碰撞理论相比,它解决了反就应的活化能的求算问题,通过对反应的势能面的计算,可以预言化学反应进行的途径,可以揭示阿累尼乌斯公式的指前因子的物理意义,可以解释并计算碰撞理论的几率因子,这个理论对反应速率常数的计算在原则上可以不借助认何反应的实验数据,仅凭对有关物质的微观化学结构的了解和量子力学和统计力学的计算,就可以解决反应的速率常数和求算问题,所以这个理论又称为绝对反应速率理论。