第一篇:生物处理技术综述
生物处理技术综述
摘要:水的生物处理技术具有运行成本低、节能、剩余污泥量少、可以处理高浓度和好氧条件下生物难降解有机物质,具有良好的环境效应和经济效应。水的生物处理技术有:塔式生物滤池、生物转盘反应器、生物膨胀床与流化床、生物接触氧化法、膜生物反应器、电生物反应器等。
关键词:环境 水污染 废水处理 生物技术
Biological treatment technology overview
Abstract:Water biological treatment technology with lower cost, energy saving, excess sludge quantity is little, can handle high-concentration oxygen conditions be reconciled biological hard-degradation organic material, have good environmental effect and economic effect.Water biological treatment technology are: tower biological filter, rotating bio-disc reactor, biological expansion bed with fluidized bed, biological contact oxidation, the membrane bioreactor, electricity bioreactor, etc.Key words: environmentwater pollutionwaste water treatmentbiotechnology 正文:
1.背景分析:
随着我国经济的飞速发展和人们生活水平的不断提高,我国的能源、资源和环境问题日益突出。在大面积的地区性缺水的同时,伴随着严重的水污染问题,使得多数江河湖海水质下降甚至失去了使用功能,这进一步加剧了水资源的短缺,形成恶性循环的局面。同时,由于我国矿物能源资源的匮乏和使用的低效,使得我国对再生能源的需求日益增长。在水处理工艺中,采用传统的处理方法要消耗大量能源,并产生大量需要二次处理的污泥,所以世界各国都在不断探索和研究高效低能耗的新型废水处理技术。水的生物处理技术由于具有运行成本低、节能、剩余污泥量少、可以处理高浓度和好氧条件下生物难降解有机物质的特点等,近年来已成为国内外环境科学与工程领域研究的热点。
与其他水处理的技术相比,水的生物处理技术具有以下优势:
①与物理和化学净化技术相比,生物处理更为经济有效。就现代净水技术而言。生物预处理已成物理化学处理工艺的必要补充。该方法投资少。见效快,能去除常规传统工艺不能去除的污染物,操作管理简单,只需增加预处理单元,对后续常规处理单元影响小,同时能使后续工艺简单易行,运行费用增加少,处理效果比较理想,出水水质明显改善,适于大规模推广,适合中国国情。
②对铁、锰、酚、色、嗅、味、浊度及色等均有较好的去除效果。如果设置在沉淀出水后,则可以减轻后续处理的负荷,还可以和其他工艺联合使用,延长过滤或活性炭吸附等物化处理工艺的使用周期,使炭不必再生,仅需经常地反复冲洗即可长期运行,并且可以和臭氧等结合进行深度处理,优势互补,最大可能地发挥水处理工艺的整体作用,提高出水水质,降低水处理费用。
2.生物处理技术
水源水生物处理技术的本质是水体天然净化的人工化,通过微生物的降解,去除水源水中包括腐殖酸在内的可生物降解的有机物及可能在加氯后致突变物质的前驱物和NH3—N,NO2—等污染物,再通过改进的传统工艺的处理,使水源水水质大幅度提高。常用方法有生物滤池、生物转盘、生物流化床,生物接触氧化池和生物活性炭滤池。这些处理技术可有效去除有机碳及消毒副产物的前体物,并可大幅度的降低NH3—N,对铁、锰、酚、浊度、色、嗅、味均有较好的去除效果,费用较低,可完全代替预氯化。
一、塔式生物滤池
轻质滤料的开发与采用,为塔式生物滤池的应用创造了条件。生物塔滤增加了滤池高度,分层放置填料,通风良好克服了普通生物滤池(非曝气)溶解氧不足的缺陷。国外广泛采用塑料材质大孔径波纹孔板滤料,我国常采用环氧树脂固化玻璃钢蜂窝填料。塔式生物滤池的净化作用也是通过填料表面的生物膜的新陈代谢活动来实现的。塔式滤池的优点是负荷高、产水量大、占地面积小,对冲击负荷水量和水质的突变适应性较强。缺点是动力消耗较大,基建投资高,运行管理不便。
二、生物转盘反应器
生物转盘在污水处理中已广泛采用,目前在给水处理领域,对某些污染程度较为严重的微污染水进行了一些研究。日本、我国台湾地区以及国内学者的试验研究表明,采用生物转盘预处理在适宜水力负荷下改善微污染水水质是有效的。
生物转盘的特点表现为,生物膜能够周期的运行于空气与水相两者之中,微生物能直接从大气中吸收需要的氧气(减少了溶液中氧传质的困难性),使生物过程更为有利的进行。转盘上生物膜生长面积大,生物量丰富,不存在类似于生物滤池的堵塞情况,有较好的耐冲击负荷的能力,脱落膜易于清理处置。但存在的不足是生物氧化接触时间较长,构筑物占地面积大,盘片价格较贵,基建投资高。
三、生物膨胀床与流化床
生物膨胀床是介于固定床和流化床之间的一种过渡状态,流化床中的填料随水、气流的上升流速的增加而逐渐由固定床经膨胀床最后成为流化床。生物膨胀床与流化床通过选用适度规格粒径(约为0.2~1.0mm)的生物载体,如砂、焦碳、活性炭、陶粒等,采用气、水同向混合自下而上,使载体保持适度膨胀或流化的运转状态。与固定床相比,从两个方面强化了生物处理过程:一方面,载体粒径变小,比表面积增大,单位溶剂的比表面积可达到2000~3000m2/m3,这大大提高了单位生物池的生物量。另一方面,由于颗粒在反应器中处于自由运动(膨胀或流化)状态,避免了生物滤池的堵塞现象,提高了水与生物颗粒的接触机会;同时可采用控制膨胀率的办法来控制水流紊动对生物颗粒表面的剪力水平,进而控制填料上生物膜的厚度,有利于形成均匀、致密、厚度较薄且活性较高的生物膜。这些都大大的强化了水中可生物降解基质向生物膜内的传递过程,使生物膨胀床、流化床的单位容积的基
质降解速率得到提高。生物膨胀床、流化床含有活性高的较大生物量,处理水力负荷增大,并保证出水水质良好。
采用生物膨胀床与流化床,可解决固定填料床中常出现的堵塞问题,进一步提高净化效率,且占地面积少。但由于保持膨胀或流化状态,消耗的动力费用较高,且维护管理复杂,尤其是当池体比较大的情况,如一旦停止运行,再启动很困难,运行中水力学条件难以控制等。在运行过程中还存在流化介质跑料现象,其工程应用还很少见。
四、生物接触氧化法
生物接触氧化工艺是利用填料作为生物载体,微生物在曝气充氧的条件下生长繁殖,富集在填料表面上形成生物膜,其生物膜上的生物相丰富,有细菌、真菌、丝状菌、原生动物、后生动物等组成比较稳定的生态系统,溶解性的有机污染物与生物膜接触过程中被吸附、分解和氧化,氨氮被氧化或转化成高价形态的硝态氮。反应过程如下:
有机污染物氧化反应:4CxHyOz+(4x+y-2z)O2——4xCO2+2yH2O+Q(1)
氨氮氧化方程式:2NH4++3O2——2NO2—+4H++2H2O+Q(2)
2NO2—+ O2——2NO3—+Q(3)
生物接触氧化法的主要优点是处理能力大,对冲击负荷有较强的适应性,污泥生成量少;缺点是填料间水流缓慢,水力冲刷小,如果不另外采取工程措施,生物膜只能自行脱落,更新速度慢,膜活性受到影响,某些填料,如蜂窝管式填料还易引起堵塞,布水布气不易达到均匀。另外填料价格较贵,加上填料的支撑结构,投资费用较高。
现有生物接触氧化法在曝气充氧方式、生物填料上都有所改进。国内填料已从最初的蜂窝管式填料,经软性填料、半软性填料,发展到近几年的YDT弹性立体填料;曝气充氧方式也从最初的单一穿孔管式,发展到现在的微孔曝气头直接充氧以及穿孔管中心导流筒曝气循环式。在一定程度上,促进了膜的更新,改善了传质效果。
五、膜生物反应器
膜生物反应器是指以超滤膜组件作为取代二沉池的泥水分离单元设备,并与生物反应器组合构成的一种新型生物处理装置,英文称之为Membrane Bioreactor。由于超滤膜能够很好的截留来自生物反应器混合液中的微生物絮体、分子量较大的有机物及其他固体悬浮物质,并使之重新返回生化反应器中,这就使反应器内的活性污泥浓度得以大大提高,从而能够有效的提高有机物的去除率。用于膜生物反应器的膜有微滤膜和超滤膜。
水处理容量小是膜生物反应器法经济,水处理容量大时活性污泥法经济。
六、电生物反应器
将电极装置与生物反应器组合起来就构成了所谓电生物反应器(英文名称为
Electro-Bioreactor)。Mellor等的研究表明,在外加电流的条件下,由于电子的产生,生物膜和固定化酶的反硝化作用得以强化,其反应方程为:
2H++2e—H2(1)
2H2O+2e—H2+2OH—(2)
2NO3—+5H2+2H+—N2+6H2O(3)
显然,通过对水的电解,阴极提供电子,产生氢,而氢作为电子供体与硝酸盐发生了方程
(3)所示的反应,使生化反应速率及去除率得以提高,从而减少了水中硝酸盐的含量。从原理上讲,这种方法除了可以实现反硝化处理外,还可以去除水体中的有机物,但目前对电生物反应器尚处于基础理论和动力学研究阶段,离实际应用还有相当一段距离。
3、技术展望
水源水的水质问题越来越受到人们的重视。上述这些工艺去除有机物的原理是吸附、氧化、生物降解、膜滤等,几种工艺组合起来,互相取长补短,可以综合起到多种去除作用,效果更好。因此,生物处理和其他水处理技术联合应用是目前国内水厂改善出水水质的发展趋势。
此外,生物预处理工艺出水对人体健康的影响还有待进一步研究,如果要从根本上解决水源水水质问题,还须加强污水处理。提高污水处理率.从源头上控制污染物,即加强水源保护。这不仅有利于饮用水水质的提高,水源水水质的改善,更是恢复生态平衡,造福子孙后代的大事。综上所述,可知生物处理工艺,有着十分广阔的发展前景,对于获得有利于人类健康优质水和消除环境污染具有重大的意义。
4、参考文献
[ 1 ]王文祥,齐水冰,刘铁梅等编 《厌氧生物处理技术发展概况》广东省环境保护职业技术学校,文章编号:1007-0370(2009)02-0078-09
[ 2 ]黄源伟。《微污染水源水的生物处理技术》湖南省司法警官学院,文章编号:1006—8937(2008)ll一0035—03
[ 3 ]宋海亮,杨小丽。《膜生物处理技术的机理及应用研究》东南大学,文章编号:1005-8 29X(2006)0 8-0 001-0
[ 4 ]赵立军,滕登用,刘金玲,沈凤丹,栗 毅。《废水厌氧生物处理技术综述与研究进展》中国地质科学院环境工程技术设计研究院,2001
[ 5 ]马伟,王增长。《SBR污水生物处理技术研究》太原理工大学环境工程学院,文章编号:1005-6033(2007)02-0169-0
[ 6 ]肖本益,曲久辉,林估侃。《常温厌氧生物处理技术》国科学院生态环境研究中,2007
第二篇:城市垃圾的生物处理技术
城市垃圾的生物处理技术
班级:姓名:指导老师:
摘要:生物技术是实现城市垃圾无害化和资源化的一种有效手段。重点阐述了城市垃圾生物处理的基本原理及3种主要的生物处理方法,简要介绍了城市垃圾生物处理方法中的一些新技术及发展趋势,为寻找适合我国国情的垃圾处理技术提供一些参考。关键词:城市垃圾;生物处理原理;生物处理技术。
正文:
城市垃圾处理是环境污染控制的重要课题之一。城市垃圾也称城市固体废物,是指在城市居民日常生活中或为城市日常生活提供服务的活动中产生的固体废物。目前,我国每年城市垃圾产量已超过1.3亿吨,并有资料报道,我国城市垃圾的产量还将以平均每年8%~10%的速度继续增长,北京等少数几个大城市增长速度还将达到15%~20%[1]。令人担忧的是,大量的城市垃圾目前的处理方式也只是在城市周围堆放或简易填埋,达到无害化处理基本要求的不足20%[2],无论从环境还是社会角度考虑,这都是急需尽快给予重视与解决的社会问题。随着居民生活水平的提高,垃圾中的有机物含量迅速增加。采用生物技术将其进行生物降解或生物转化,不仅可以有效处理城市垃圾,而且可以实现资源的再利用。因此,与物理法、化学法相比,生物处理技术具有更广阔的发展前景。
1.城市垃圾生物处理的原理
各种动植物、微生物,对自然界存在的各种有机物都有降解作用,其中微生物的降解作用最大。凡自然界存在的有机物,几乎都能被微生物降解。生物处理就是依靠自然界广泛分布的微生物,通过生物转化,将城市垃圾中易于生物降解的有机组分转化为腐殖质肥料、沼气或其他转化产品(如饲料蛋白、乙醇或糖类),从而达到城市垃圾无害化和资源化的一种处理方法。根据处理过程中起作用的微生物对氧气需求的不同,生物处理可分为好氧生物处理和厌氧生物处理两大类。
1.1好氧生物处理基本原理
好氧生物处理是一种在有氧的条件下,利用好氧微生物使有机物降解并稳定化的生物处理方法。城市垃圾中往往含有大量的生物组分的大分子及其中间代谢产物如纤维素、碳水化合物、蛋白质、脂肪、氨基酸、脂肪酸等,这些有机物一般都较容易为微生物降解。在好氧生物降解过程中,有机废物中的可溶性小分子可透过微生物的细胞壁和细胞膜而为微生物直接吸收利用,而不溶的胶体及复杂大分子有机物,则先被吸附在微生物体外,依靠微生物分泌的胞外酶分解为可溶性小分子物质,再输送入细胞内为微生物所利用。微生物通过自身的生命活动——新陈代谢过程,把一部分有机物氧化分解成简单的无机化合物,如c02、HzO、NH3、P043_、S042~等,从中获得生命活动所需要的能量;同时又把另一部分有机物转化合成新的细胞物质,使微生物增殖。
1.2厌氧生物处理基本原理
厌氧生物降解是在无氧条件下,利用厌氧微生物的代谢活动,将有机物转化为各种有机
酸、醇、CH4、H2S、c02、NH3、H2等和少量细胞物质的过程。它是一个多类群细菌的协同代谢过程。在此过程中,不同微生物的代谢过程相互影响,相互制约,形成复杂的生态系统。
2.城市垃圾生物处理的方法
目前,对于可生物降解的城市垃圾的处理,世界各国主要采用堆肥、卫生填埋、厌氧发酵等处理方法。
2.1堆肥法
堆肥法是指在人工控制条件下,利用自然界广泛分布的细菌、放线菌和真菌等微生物,使来源于生物的有机废物分解,向比较稳定的腐殖质进行生化转化的微生物过程。垃圾堆肥是目前广泛应用且经济有效的处理和消纳城市垃圾的重要途径之一,通过生物处理技术将生活垃圾中的有机物质转变成优质的有机肥料,具有良好的环境效益和社会效率。根据堆肥过程中微生物对氧气的需求情况不同,可分为好氧堆肥和厌氧堆肥。通常好氧堆肥堆温高,一般在55℃~60℃,极限可达80℃,故也称高温堆肥。与传统的厌氧堆肥相比,好氧堆肥具有基质分解彻底、发酵周期短、异味小、占地面积小、可大规模采用机械处理等优点,因而好氧堆肥技术的应用已较为普遍。但随着“垃圾能源学”的产生,有机垃圾的厌氧堆肥技术也得到了广泛关注与快速发展,鉴于好氧技术与厌氧技术各自的特点,在未来的垃圾处理技术应用中,好氧堆肥和厌氧堆肥技术将综合运用,这也是堆肥技术发展大势所趋。
根据堆肥过程中物料运动形式分为静态堆肥和动态堆肥;按堆肥堆制方式,可分为露天式堆肥(野积式堆肥)和装置式堆肥(封闭式堆肥)。堆肥的发展趋势是由静态堆肥向动态堆肥,露天式堆肥向装置式堆肥的方向发展。就目前我国城市垃圾组成现状而言,静态堆肥较为适用,但随着人民生活水平的提高,垃圾组成中有机物含量将高达50%--70%,对于未来高有机物含量组成的垃圾则必须采用动态堆肥b J技术。此外,在静态堆肥基础上发展起来的间歇式动态好氧堆肥处理技术也具有一定优势,例如发酵周期短,处理工艺简单,发酵仓数少和投资小。传统的堆肥法存在发酵时间长,产生臭味且肥效低等问题。近几年来,人们借助于微生物选育技术,加强了对降解能力强的高效菌种的研究,将这些菌种应用于垃圾堆肥处理中,不但能有效加快堆肥材料的腐熟,缩短发酵周期,提高堆肥产品质量等,而且温度高,能有效杀灭某些病原体、寄生虫卵和杂草种子等,且能控制臭气【3】|。
2.2卫生填埋法
卫生填埋法是从传统的堆放和填地处理的基础上发展起来的,始于20世纪60年代,其原理与厌氧堆肥相同,都是利用好氧微生物、兼性厌氧微生物和专性厌氧微生物对垃圾中的有机物进行分解转化,使之最终达到稳定化。卫生填埋法虽然速度慢、占地多、减量少,且存在渗滤液污染水体的问题,但由于这种方法简单易行,造价和处理成本低,至今仍然是土地辽阔的国家或城市以及发展中国家处理城市垃圾的主要方法。用于卫生填埋的垃圾有机物含量不应太高,以免带来严重的地下水、空气和周围环境的污染问题。现阶段,由于我国城市垃圾中无
机物含量高,填埋后比较稳定;产生的臭味比较小,不会使大气质量恶化;渗出液也较少,对地下水影响小,因此,卫生填埋技术在我国城市垃圾处理领域的主导地位,占处理总
量的70%以上,这在今后相当长一段时间将不会改变。国家环境保护总局2002年10月向社会公布的处理城市垃圾的国家行动方案规定,今后我国的城市垃圾将进行填埋处理,并把垃圾填埋产生的气体收集起来发电。城市垃圾的最新填埋处理技术是生物反应器填埋场,它是通过有目的的控制手段强化微生物过程从而加速垃圾中有机组分转化和稳定的一种卫生填埋场运行方式。控制手段一般包括液体(水、渗透液)注入、备选覆盖层设计、营养添加、pH值调节、温度调节和供氧等。该技术具有生物降解速度快,稳定化时间短,填埋场产气量高、收集完全,一般无需复杂的渗透液处理设施等特点。与传统卫生填埋场相比,大大减少了场外后处理费用。生物反应器填埋场已在美国获得广泛重视,已被认为可能是对垃圾处理的革新。
2.3厌氧发酵法
厌氧发酵亦称沼气发酵,是指有机物在厌氧微生物(或兼氧微生物)的作用下分解转化为沼气的过程。由于该技术工艺简单,成本低廉,而且严格密封的沼气池还能提高原料的肥效和杀灭寄生虫卵。在欧洲,有机垃圾厌氧消化处理量已占有机垃圾量的25%。国内厌氧消化应用最广泛的是农村沼气发酵,而在城市垃圾处理方面的应用,除少量废水处理厂的污泥进行厌氧处理外,真正城市垃圾进行厌氧消化处理的很少见报道。厌氧发酵,在降解和稳定有机污染物同时,还产生了一种十分宝贵清洁能源——沼气。因此,国内外许多学者都在积极研究并开发一些新型的厌氧发酵技术。例如,近年来,逐步形成的以湿式完全混合厌氧消化、厌氧干发酵、两步厌氧消化等为主的工艺形式。此外,国内学者在运用先好氧后厌氧发酵技术和新型厌氧消化器处理城市有机垃圾方面,也取得了很好的效果。我国是人口大国也是能源需求大国,如果把我国城镇排放的有机废物作为沼气发酵原料,每年便可获得90亿立方米沼气,相当于节约100万吨标准煤。因此,如何利用现有沼气技术,开发适合我国具体情况的厌氧发酵处理技术,从垃圾中回收沼气,不仅具有极大的经济意义,而且具有积极的社会意义。
3.城市垃圾生物处理的新技术展望
3.1生产醇类
城市垃圾中含有纤维素、淀粉和糖等有机质,微生物厌氧代谢这些有机物时,可产生一些例如乙醇、甲醇等醇类高效燃料。乙醇可用以稀释汽车用油或其他发动机用油,使功效提高10%~15%。巴西、美国早已成为利用糖类、谷物淀粉类和纤维素类发展燃料酒精的典范,美国燃料乙醇的总装置能力达到约840万t/a。英国、荷兰、德国、奥地利、泰国、南非等许多国家的政府均已制定规划,积极发展燃料酒精工业。目前的方向是,希望利用含纤维素物质如锯末、蔗渣、破旧报纸、有机垃圾等各种废物制取酒精。我国有人采用微生物酶制剂对有机垃圾酶解后,用酒精酵母对有机垃圾进行厌氧发酵生产乙醇。结果表明,在适宜的条件下,每吨垃圾可生产70~90L酒精,这为城市有机垃圾的再生利用,发展新能源,找到一条新的途径。
3.2生产氢气
氢是目前最理想的清洁燃料之一,每千克氢燃烧可放出142ⅣU的热量,是煤的3~4倍。生物制氢思路于1966年提出,在20世纪90年代受到空前重视,其中微生物发酵法是
一种有前景的氢气制备方法。许多微生物类群具有可降解大分子有机物产氢的特点,因而可以利用城市垃圾中的植物茎叶、家庭厨余等可再生能源废弃物产生大量氢气。产氢气的微生物有异养微生物和自养微生物。氢气产生菌产生的氢气,目前主要应用于燃料电池方面。如产气荚膜梭菌在含有葡萄糖培养基的10L发酵罐中,产H2速度最高可达18--23L/h,并进而利用所产生的H2推动3.1--3.5V燃料电池的工作。由于微生物的产氢机制和条件还在研究过程中,所以该类微生物能源的使用尚处试验阶段。需要解决的问题是寻找和筛选活性菌株,解决分离H2和02的方法等。中科院微生物研究所筛选了产氢活性较高的菌株,并对其产氢活性进行了研究【4】。
3.3合成微生物塑料
聚口一羟基烷酸(poly—j3一hydroxyalkanoates,PHAs)是许多原核微生物在不平衡生长条件(如缺乏氮、磷、氧等)下合成的胞内能量和碳源储藏性聚合物。PHAs具有与化学合成塑料相似的性质,能拉丝、压模、注塑等,而且具有化学合成塑料所没有的特殊性能,如利用其生物相容性可作为外科手术缝线、人造血管和骨骼代用品,术后无需取出。因而在工业、农业、医药和环保等行业都具有广阔的应用前景。PHAs可以用可降解的有机固体废弃物合成,而城市垃圾中含有大量可降解的有机固体废弃物,从目前已获得的研究成果可以展望,利用城市垃圾合成PHAs是生物合成PH魅的一条新途径,它的研究将受到人们的广泛重视,在2l世纪将有可能成为塑料工业发展的一个新方向。5 【】
垃圾处理是城市可持续发展所必须解决的一个重大问题,处理的目的是使垃圾资源化、减量化、无害化。微生物在垃圾“三化”中起着积极与重要的作用,利用微生物降解垃圾中有机物,不仅投资和运行费用低,处理效率高,而且还可获得许多有用的副产品,如沼气、饲料、蛋白、酒精等。近年来,随着环境生物技术的发展,在生物处理方面出现了不少新技术、新方法,它们的可行性和有效性也逐渐增强,正成为垃圾处理的发展方向之一。就目前而言,我国应在大力发展适合我国国情的垃圾卫生填埋和垃圾堆肥处理技术的同时,加大利用有机垃圾生产生物能源(燃料酒精、沼气、生物制氢等)的研究力度,加强降解有机垃圾的高效微生物菌剂的研究。我们相信,随着垃圾微生物降解机理研究的进一步深入,会有更为有效的微生物和处理工艺使垃圾真正地成为可利用资源。
参考文献:
[1]毕德纯.城市垃圾处理技术分析与展望[J].辽宁城乡环境科学,2004,24(2):55—56.
[2]李艳伟.我国城市垃圾处理现状分析及研究[J].环境科学动态,2001,2:7—9.
[3]王家玲.环境微生物学(第二版)[M].北京:高等教育出版社,2003:251—254.
[4]朱思诚.规划中城市垃圾卫生填埋场处理量的确定[J].环境卫生工程,2005,13(1):20—22.
[5] 陈世和.中国大陆城市生活垃圾堆肥技术概iSL EJ].环境科学,1993,15(1):53—56.
第三篇:生物分离技术
1.生物分离技术:指从动物与微生物的有机体或器官`生物工程产物(发酵液`培养液)及生物化学产品中提取`分离`纯化目标物质的技术过程.2.生物分离的一般工艺[理想化过程]:⑴动植物原料→细胞破碎→萃取与预处理→$$.⑵发酵液→预处理→分支为①②{①胞外产物→固-液分离.&②胞内产物→细胞破碎→固-液分离.$$}→初步纯化[沉淀分离`静态吸附`静态离子交换`膜分离]→精制[吸附层析`离子交换层析`凝胶层析`亲和层析`疏水层析`高效 ?? 色谱]→成品加工[脱盐`浓缩`结晶`干燥].不溶物的去除[过滤`离心`细胞破碎]→产物分离[吸附`萃取`泡沫`膜分离]→产物纯化[色谱`电泳`层析]→产品精致[结晶`脱盐].3.过滤:传统的化工单元操作,原理是使料液通过固态过滤介质时,固态悬浮物与ag分离.4.过滤前预处理:⑴加热:最简单经济的预处理,使液体粘度降低,加快过滤速率,同时可灭菌,前提是目标物为热稳定性产物.⑵加入电解质:①凝聚:原理:某些与胶粒带电性相反地电解质加入时,扩散双电层的排斥电位降低,电解质离子在水中的水化作用也会破坏胶粒周围的水化层,两者共同作用结果是,破坏胶体的分散状态,使胶体粒子聚集.②絮凝:原理:指在某些高分子絮凝剂存在下,在悬浮粒子之间产生架桥作用而使胶粒形成粗大的絮凝团的过程,作为絮凝剂的高分子聚合物必须有长链线状结构,易溶于水,长链节上含较多官能团,[根据带电不同,絮凝剂分为:阴离子型`阳离子型`非离子型].⑶加入助滤剂:助滤剂均为细粉或纤维,使难以过滤的物料变得易于过滤.硅藻土:几百年前水生植物沉淀的遗骸;;珍珠岩:处理过的膨胀火山岩.5.硅藻土使用方法:⑴作为深层过滤介质过滤悬浮液:硅藻土不规则的粉粒形状之间形成曲折的毛细孔道,借助筛分作用去除固体粒子;同时由于吸附,除去胶体粒子.⑵作为预涂层使用:以保护支撑介质的细孔不被堵塞.⑶预投后,预料液共同过滤,形成多孔性滤饼,降低滤饼可压缩性,以提高过滤效率.6.影响絮凝效果因素:⑴絮凝剂的分子量和种类:①分子量大`链长`
吸附架桥效果好;②分子过小`絮凝剂在水中溶解度小.⑵絮凝剂用量:①浓度较低时增加用量有助于架桥充当,絮凝效果提高;②絮凝剂浓度过多时,引起吸附饱和,胶粒上形成覆盖层,失去与其他胶粒架桥作用.⑶pH值:影响离子型絮凝剂官能团电离度,提高电离度`使分子链上同电荷间斥力增大,链伸展,提高架桥能力.⑷搅拌速率和时间:剪切力会打散絮凝团,要注意搅拌.7.过滤设备及其结构:按推动力的不同可分为以下四类:⑴重力过滤:
应用较少.⑵加压过滤:操作繁杂,拆装不便.⑶真空过滤:可实现连续化生产.⑷离心过滤:略 8.重力沉降:当静置悬浮液时,密度较大的固体颗粒在重力作用下逐渐
下沉.离心沉降见10 9.重力沉降受重力:Fg=πd3
ρ
s 固体颗粒介质密度[kg/m3g/6 d—微粒半径[m].2
ρ].g—微粒加速度[m/s].s—
10.离心沉降:基于固体颗粒和周围液体密度存在差异,在离心场中使不
同密度的固体颗粒加速沉降的分离过程.11.分离因数:Z=FC/g=4π2N2r/g.12.超离心技术分类:⑴制备型超离心.⑵分析型超离心.13.制备型离心:⑴离子差速离心法[分布离心法]:①逐渐增加离心速度.②高速与低速交替进行,使沉降粒子在不同离心速度及不同离心时间内分批分离出来.⑵一般密度梯度离心法[区带离心]:先将样品ag置于一个由梯度材料形成的密度梯度液体柱中,离心后被分离组分以区带层分布于梯度柱中,是粒子在完全沉降之前,液体梯度中形成不连续的分离区带,前提是要控制好粒子分离的时间.⑶等密度离心法:当不同离子存在密度差时,在离子力场作用下,粒子向上浮起,或向下沉降,一直移动到与它们密度正好相等的位置上,并形成区带.①预形成梯度等密度离心.②自形成梯度等密度离心.14.细胞破碎原理:动`植物及微生物长生的天然产物,有胞外型和胞内型两种.为回收胞内产物,需用利用外力破坏细胞膜和细胞壁,使细胞内含物释放出来,然后再进行分离纯化.15.选择细胞破碎方法所考虑因素:⑴细胞壁的坚韧长度.⑵产物的性质[承受剪切力`耐酸`耐热].16.化学破碎法: 渗透冲击法`增溶法`碱溶法`酶溶法`脂溶法.17.[化学破碎]渗透冲击法:适用范围:⑴细胞破碎难易程度决定于其类型,红血球细胞非常适合采用渗透冲击法溶破,快速改变介质中盐浓度,将十分有效地破碎红血球细胞.⑵①动物细胞只有当其组织被机械切碎或匀浆后才易溶破;②植物细胞很难溶破,因其细胞中含有大量木质成分,通过渗透流很难渗透.18.[化学破碎]增溶法:⑴方法:将2倍细胞体积的某浓度表面活性剂加入到细胞中,表面活性剂溶解细胞壁中的脂类成分,从而破碎细胞,胞内物释放.⑵表面活性剂通常是两性的,结构中含有亲水基团[离子及疏水基团[烃基],既能和水作用也能和脂作用.19.[化学破碎]碱溶法:⑴原理:细胞壁外层和浆膜上有Pro成分,利用Pro在碱性条件下溶解的特性,调节溶液pH值,实现Pro溶解,细胞壁破碎.⑵①优点:成本低廉,反应速度快;②缺点:反应剧烈,不具选择性,碱的加入,与细胞壁产生多种反应,包括磷脂皂化等.20.[化学破碎]酶溶法:⑴加酶法:将溶解细胞壁的酶加入体系中,细胞壁受到部分或完全破坏后,再利用渗透压冲击等方法破坏细胞壁,进一步增大胞内产物通透性.⑵自溶法:通过调节温度`pH值或添加有机溶剂,诱使细胞产生溶解自身的酶的方法.⑶①优点:条件温和`具有选择性,可催化细胞壁反应,而不破坏细胞内的其他物质;②缺点:价格昂贵,限制大规模生产中的使用.21.[化学破碎]脂溶法:⑴原理:选择适当溶剂,加入细胞悬浮液中,细胞壁脂质吸收后导致细胞壁膨胀`裂开,细胞质释放.⑵选择理想的溶剂应选和细胞壁脂溶解度相配,而与细胞质相差较大的.22.物理破碎法:匀浆法`超声法`研磨法`珠磨法.23.[物理破碎]匀浆法:影响高压破碎的主要因素:操作压力`破碎次数`
阀型设计`操作温度`细胞浓度.24.[物理破碎]超声:影响因素:⑴振幅:振幅直接声能有关,影响目标产
物的释放量.⑵细胞悬浮液的黏度:黏度过大会抑制空穴现象.⑶被处理悬浮液的体积:体积越大需要的能量也越大.⑷珠粒的体积和直径:添加细小的珠粒有助于形成空穴,同时可以辅助研磨效应.随着珠粒直径的变化,目标K有最大值出现.⑸超声条件:破碎时间`温度`细胞种类`pH值`料液比.25.[物理破碎]高速搅拌珠研磨法:过程:⑴研磨仓为一个密封系统,有
垂直和水平两种设计:①垂直仓的研磨介质载量为50-60%,可减少珠的磨损,但效率低.②水平仓的研磨介质装载量80-85%,研磨效率高,但磨损大.⑵搅拌设计:主要是给研磨珠的推动力,搅拌盘与驱动轴有同心的,也有偏心的,有垂直的,也有倾斜的.⑶研磨珠:有无铅玻璃`钢珠`陶瓷珠等,直径在0.1-1.5mm范围内.①使用研磨珠的大小主要由细胞的大小决定:细菌菌体--用小的研磨珠,直径0.1mm;;酵母菌菌体--用大的研磨珠,直径0.5mm.②另外目标产物在细胞内的位置也影响研磨珠的选择:用大直径可以有效释放游离在细胞之中的目标产物,在细胞质中的产物,不必把细胞完全破碎;;在细胞核中的目标产物须完全破碎,用小直径的珠.⑷研磨珠的装载量:一般在80-90%之间.①太低,提供的碰撞率和剪切力不够,增加装载量提高细胞破碎率.②过大,研磨珠之间产生相互干扰,研磨珠会过度磨损,同时产生的温度会很高,能量消耗大,对目标产物也有影响.细胞破碎率与流速成反比关系.26.吸附:利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程.27.吸附过程[四过程]:料液与吸附剂混合→吸附质被吸附→料液流出
→吸附质解吸附吸附剂再生.28.吸附剂种类:⑴活性炭:活性炭粉末[效力强`需带压];颗粒活性碳[效力中`效率高];棉纶活性炭[效力弱`易洗脱].⑵大孔网状吸附剂:①吸附机理:大孔树脂属属非离子型共聚物,借助范德华力从ag中吸附各种有机物,其吸附能力与树脂的化学结构`物理性能以及与溶质`ag性质有关.②遵循规律:非极性吸附剂可从极性溶剂中吸附非极性溶质;;极性吸附剂可从非极性溶剂中吸附极性物质;;中等极性吸附剂兼有以上两种能力.29.影响吸附的主要因素:⑴吸附剂的性质:①比表面积大,吸附容积大:因此,颗粒度越小,微孔越发达,吸附速率越快,吸附能力越强.②孔结构:孔径太大,比表面积小,吸附能力差;;孔径太小,不利于吸附质向空隙中扩散.⑵吸附质的性质:①表面张力越小,液体被固体吸附越多;②在ag中溶解度大时,吸附量少;③相似相吸;④相对分子量大易吸附.⑶操作条件:①温度:吸附是放热过程,还要兼顾吸附质的稳定性.②溶液pH值:影响吸附质的解离,进而影响吸附量.最佳pH值需通过实验来确定.③盐浓度:有影响,或阻止或促进吸附,依情而定.30.亲和吸附:利用溶质和吸附剂之间特殊的可你亲合作用[静电`氢键`疏水`金属配位],从而实现分离.31.离子交换:利用离子交换树脂树脂作为吸附剂,将ag中的待分离组分,依据其电荷差异,依靠库仑力吸附在树脂上,然后利用合适的洗脱剂将吸附质从树脂上洗脱下来,达到分离目的.32.主要的多糖基离子交换树脂:⑴离子交换纤维素:①树脂骨架为纤维素,根据活性基团的性质可分为阳离子交换纤维素和阴离子交换纤维素两类.②特点:骨架松散`亲水性强`表面积大`交换容量大`吸附力弱`交换和洗脱条件温和`分辨率高.③常用的:甲基磺酸纤维素`羧甲基纤维素`二甲基氨基乙基纤维素.⑵葡聚糖凝胶离子交换树脂:①骨架为葡聚糖凝胶,根据功能集团的不同,亦可分为阳离子交换树脂和阴离子交换树脂.②命名方法:交换活性基团+骨架+(阳C/阴A)原骨架编号.③如:DEAE-sephadex A-25为二乙基氨基乙基葡聚糖阴离子树脂;CM-sephadex C-25为羧甲基葡聚糖阳离子树脂.33.离子交换树脂分类:⑴按活性基团性质:阳离子交换树脂[含酸性基
团]`阴离子交换树脂[含碱性基团].⑵具体分为:强阳`弱阳&强阴`弱阴.34.离子交换树脂的理化性能:⑴外观:球形浅色为宜,粒度大小16-60
目>90%.⑵机械强度:>90%.⑶含水量:0.3-0.7g/g树脂.⑷交换容量:重量交换容量`体积交换容量`工作交换容量`表观交换容量.⑸稳定性:化学稳定性`热稳定性.⑹膨胀度:交联度`活性基团的性质与数量`活性离子的性质`介质的性质和浓度`骨架结构.⑺湿真密度:单位体积湿树脂的重量.⑻吸附性能指标:孔度`孔径`比表面积.⑼滴定曲线:表征树脂官能团.35.离子交换机理:⑴A+自ag中扩散到树脂表面.⑵A+从树脂表面进入
树脂内部的活性中心.⑶A+与R-B在活性中心上发生复分解反应.⑷解吸附离子B+自树脂内部扩散至数值表面.⑸B+离子从树脂表面扩散到ag中.36.扩散控制步骤:⑴内部扩散:液相浓度越快,搅拌越激烈,浓度越浓,颗
粒越大,吸附越弱.⑵外部扩散:液体流动慢,浓度稀,颗粒细,吸附强.37.离子交换速度方程:⑴外部扩散控制:ln(1-F)=-K1t
K1--外扩散速
度常数;F—时间为t时,树脂的饱和度.⑵内部扩散控制:F=1-6/π2
*∑[1/n2×e(-Din2π2t/r02)].38.影响交换速度的因素:⑴颗粒大小:愈小愈快,无论对内`外扩散.⑵
交联度:交联度小,树脂易膨胀,交换速度快.⑶温度:越高越快.⑷离子化合价:化合价越高`越快.⑸离子大小:越小越快,大分子阻力大,与骨架碰撞.⑹搅拌速度:在一定程度上`越大越快.⑺ag浓度:当交换速度为外扩散控制时,浓度越大,交换速度越快.39.应用实例—硬水软化:如果水质要求高,不仅要去除阳离子,还要出去阴离子.一般采用阳离子树脂和阴离子树脂.利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子[如Na+`Ca2+`Al3+].同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到各种阴离子[如Cl-].从阳离子交换树脂释出的氢氧根离子相结合后生成纯水.40.蛋白质离交分离的基本步骤:⑴平衡:以平衡缓冲液冲洗装填好的分离柱,目的是使离子交换树脂表面的碱性[或酸性]配基完全被平衡缓冲液中的反离子所饱和,确保分离柱处于稳定的状态.⑵吸附:样品ag进入分离柱,各组分依据离子交换亲和力大小与离子交换剂作用,目标物分子吸附于树脂上,并释放出反离子.⑶洗脱:媳妇完成后,以洗脱剂洗脱.洗脱剂含有高浓度反离子,通过竞争性吸附实现目标物洗脱.⑷再生:通过高浓度洗脱剂使离子交换树脂重新获得吸附能力.41.泡沫分离定义:以通气鼓泡在液相中形成的气泡为载体,液相中的溶质或颗粒在表面活性的作用下吸附于气泡上进行的分离,人们通常把凡是利用气体在ag中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫吸附分离技术.42.泡沫分离技术须在低于CMC浓度下进行.见48的⑶
43.泡沫分离效率的衡量指标:富集比`回收率.富集比=消泡液中的表面活性物质浓度/液相中初始料液浓度.回收率=(初始液浓度*初始液体积--剩余液浓度*剩余液体积)/(初始液浓度*初始液体积).44.泡沫的形成:⑴当气体在含表面活性剂的水ag中发泡时,首先在液体内部形成被气裹的气泡,与此同时,ag表面活性剂分子立即在气泡表面排成单分子膜,亲油基指向气泡内部,亲水基指向ag.⑵气泡借助浮力上升,冲击ag表面的单分子膜.⑶某些情况下,气泡可以跳出液体表面,此时,该气泡表面的水膜外层上,形成与液体内部单分子膜的分子排列完全相反的单分子膜,从而构成了较为稳定的双分子层气泡体,形成接近于球体的单个气泡.45.泡沫分离法的分类:⑴泡沫分离:按分离对象是ag还是含有固体粒
子的悬浮液`胶体ag,泡沫分离可分成:①泡沫分离:用于分离溶解物质,他们可以是表面活性剂,或者可与表面活性剂结合的物质,当料液鼓泡时,能进入液层上方泡沫层,从而与液相主体分开.②泡沫浮选:用于分离不溶解物质,按被分离对象是分子/胶体,是大颗粒/小颗粒.又被称作分子浮选`粒子浮选`胶体浮选等.应用较多的是对于Pro`酶的分离,目前还处于实验室阶段,最初用于胆酸和胆酸钠混合物中分离胆酸,泡沫中胆酸浓度为料液的3-6倍,活性增加65%,还有大豆蛋白质的分离也在实验室阶段成功提取.⑵无泡沫分离:用鼓泡进行分离,但不一定形成泡沫层,按是否存在萃取层,可分为:①鼓泡分离:从设备底部通气鼓泡,表面活性物质被气泡富集并上升至塔顶,和液相主题分离,使溶质得到浓缩,液相主体被净化.②萃取浮选:在ag顶部设置有一种与其互不相容的溶剂,用它来萃取或富集有塔底鼓出的气泡所吸附的表面活性物质.应用与贵重金属的分离辅机,如采用乙基二甲二硫代氨基甲酸酯将尾矿中的黄金由每吨5g左右提高到每吨2250g以上.46.气泡间当膜间夹角为120°时,压力差最小,泡沫稳定.47.泡沫的稳定性影响因素:⑴泡径大小:泡径小,利于稳定,合成大气泡的历程长,且泡膜中含液量相对较大,较能经受液体流失造成的稳定性损失.另方面,泡径小,在液相中的上升速度慢,为表面活性剂的吸附提供充足的时间,增加了稳定性.⑵起泡液粘度:一定的黏度有利于泡沫稳定,某些ag,[如Pro溶液,虽然表面张力较高,但因粘度大,对于外力的冲击起到缓冲作用,所以产生的泡沫稳定].⑶温度:基本条件是应达到表面活性剂的气泡温度,但随温度升高,ag粘度降低,表面弹性降低,排液速度加快,泡沫稳定性下降.⑷离子强度:表面电荷离子型表面活性剂,水解后带电荷,泡沫的定向吸附层为双电层结构,由于离子间延缓泡沫变薄过程,使泡沫稳定.48.泡沫分离操作的影响因素:⑴待分离物质的种类:不同分离物质其理化性质不同,表面活性也不同,因此是对分离影响最大的因素.⑵pH值:不同的pH值对分离效果有影响,对于天然表面活性物质,[如:Pro的泡沫分离,在等电点时,Pro在泡沫表面的吸附量最大]这些条件下进行分离,分离效率最高.⑶表面活性剂浓度:一般要在CMC以下,过高引起排液阻力大;;太低,泡沫层不稳定,太高,分离效率下降.⑷温度:温度应达到表面活性剂的气泡温度,保持泡沫稳定性;还要根据吸附平衡类型来选择分度高低.⑸气流速度[气体流量]:上升,泡沫形成速度↑,单位时间的去除率也↑,泡沫停留时间短,影响分离选择性;;过低时,泡沫又停留时间过长,效率低,且物质易变性.⑹泡沫柱高度:足够高的柱体才能保证泡沫层高度,使泡沫在柱中有适当的停留时间,满足目标分离需求.49.萃取分类:⑴按萃取对象分:①液-液:用选定的溶剂分离液体混合物中的某种组分.溶剂与被萃取混合液体不相溶具有选择性的溶解能力,有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性.②固-液:也叫浸取,用溶剂分离固液混合物中组分,如用水浸取甜菜中的糖类;用正乙烷浸取黄豆中的豆油;用水从药中浸取有效成分叫做”渗沥”或”浸沥”.⑵按萃取机理分:①物理萃取:利用溶剂对欲分离组分有较高溶解能力,分离过程为物理过程.②化学:溶剂首先在选择性与溶质化合或络合,从而在两相中重新分配而达到分离目的.50.有机溶剂萃取法:[溶剂萃取]利用样品中不同组分分配在两种互不相容的溶剂中的溶解度或分配比不同来达到分离`提纯或纯化的目的.51.萃取分离原理:分配定律:在一定T`P下,溶质在两个互不相溶的溶剂中分配,平衡时,如果在两相中的相对分子质量相等,溶质在两相中平衡浓度之比为成熟,成为分配系数K,表征平衡的两个共存相中溶质浓度的关系.k=y/x;;y—平衡时溶质在萃取相中的浓度.x—平衡时溶质在萃余相中的浓度.52.萃取步骤方法:⑴单机萃取.⑵多级萃取:①错流接触.②逆流接触[多用].53.多级萃取设备流程:待分离液经去杂后进入第一级萃取罐,在此与第二级沉降器来的萃取相[含目标物]混合接触,然后流入第一级沉降器分成上`下两液层,上层萃取相富含目的产物送去蒸馏回收溶剂及产物进一步精制;下层萃余相,含目的产物浓度较低,送第二级萃取.54.有机溶剂萃取的影响因素:⑴有机溶剂的选择.⑵乳化与去乳化.⑶
萃取操作的因素.55.萃取操作的因素:⑴pH值:①对弱酸随pH值降低,分配系数增大.②
对弱碱随pH值降低,分配系数减少..pH值低有利于酸性物质分配在有机相;碱性物质分配在水相.⑵温度:①温度高,分子扩散速度快,萃取速度快.②温度低,使分配系数增加.⑶盐析:生化物质在水中溶解度低,有利于溶质向有机相中分配.56.常用表面活性剂及其相应的有机溶剂:⑴AOT—烃类`异辛烷`环己
烷`四氯化碳`苯.⑵CTAB—己醇/异辛烷`己醇/辛烷`三氯甲烷/辛烷.⑶TOMAC—环己烷.⑷TritonX—己醇/环己烷.⑸磷脂酰胆碱—苯`庚烷.⑹磷脂酰乙醇胺—苯`庚烷.57.水壳模型:大分子蛋白质被封闭在”水池”中,表面存在一层水化层与
胶束内表面分隔开,从而使蛋白质不与有机溶剂直接接触.依据:⑴从似弹性光散射的研究证实在Pro分子周围存在一个单分子水层.⑵反胶束中酶动力学特征与水中接近.⑶某蛋白酶在胶束中的荧光特性与主题水中相像.58.Pro溶入反胶束的推动力:⑴静电引力作用:Pro的表面电荷与表面
活性剂反胶束内表面电荷[离子型表面活性剂]之间的静电引力作用.对于阳离子表面活性剂形成的反胶束体系,萃取只发生在水溶液的pH>pI.⑵空间位阻作用:反胶束”水池”的物理性能[包括其大小`形状及其中水的活度]会影响Pro的增溶或排斥.59.反相微胶束分离过程分为3步:⑴选择有利于形成油包水和适当
W0值的表面活性剂[HLB为3-6].⑵含生物大分子的反相微胶团的形成.⑶反相微胶团的破乳及生物大分子的释放.60.反胶束萃取操作方法:⑴相转移法.⑵注入法.⑵溶解法.61.反萃取效果评估:一方面对Pro的回收率和分离度进行评估,还应对其分离过程中微观变化分子构象评估,即对其生物活性要有保证.62.双水相萃取:利用生物物质在互不相溶的两水相间分配系数的差异进行分离的过程.63.双水相体系的种类:⑴两种都是非离子型高聚物(PEG/DEX`聚丙二醇/DEX等).⑵其中一种是离子型高聚物(羧甲基纤维素钠/葡聚糖DEX).⑶两种都是离子型高聚物(羧甲基纤维素钠/羧甲基葡聚糖钠).⑷其中一种是无机盐(PEG/磷酸盐或硫酸盐).64.试差实验及放大:⑴双水相体系形成判定:将一定量的高聚物P浓溶液置于试管内,然后用已知浓度的高聚物Q溶液来滴定.随着高聚物Q的加入,试管内ag由均相突然变浑浊,记录Q加入量.然后在试管内加1ml水,ag又澄清,继续滴加高聚物Q,ag又变浑浊,此时系统形成.以高聚物P浓度对高聚物Q浓度作图,为一系列双节线上的系统组成点,即可得到双节线.⑵试差实验放大:采用10ml离心管进行试验,结果可直接放大生产.操作过程:①配置高浓度的聚合物和盐的备用液,配置一系列不同浓度`pH值的双水相,每个双水相只改变一个参数[pH的调节可采用磷酸盐缓冲液].②先加入料液,再加入配置好的备用高聚物及盐液,使整个系统质量达到5-10g,离心管封口后,充分混合.③在1800-2000g离心3-5min,使两相完全分离.④小心移取上下两相,分别测定目标物含量,并与加入总量作对比.65.膜分离技术的概念:利用天然的或人工合成的`具有选择透过性的薄膜,以外界能量差作为推动力,由于ag中各组分迁移率的不同而进行分离`分级`提纯`富集的一种技术.66.膜分离技术的优势&劣势:⑴优势:①能耗低,处理量大.②分离条件温和,使用热敏物质的分离.③操作方便结构紧凑,工作方式灵活,自动化程度高.⑵劣势:①操作工程化中膜面容易发生污染,膜性能呈衰减趋势.②膜的耐药性`耐热性和耐溶剂能力有限.③多数膜组件价格昂贵,投资高.67.膜分离分类依据:⑴膜的平均孔径.⑵膜的推动力.⑶膜的状态.⑷膜的结构.⑸膜的形状.⑹膜的材质.68.膜分离技术按孔径分类:⑴微滤[MF]:以多孔细小薄膜为过滤介质,主要用于DNA`病毒截留与浓缩,也多于膜分离的前处理,孔径分布范围约在0.02-10μm之间.⑵超滤[UF]:分离介质同上,但孔径更小,约为0.001-0.1μm,适合与分离酶`Pro等生物大分子物质.⑶纳滤:从ag中截留平均分子量300-5000的物质,孔径分布在0.2-2nm.⑷反渗透[RO]:孔径范围0.0001-0.001μm之间,主要应用于汗水脱盐`超净水设备等.69.截留分子量[MWCO]:又称为切割分子量,指截留率为90%时所对
应的分子量,与膜孔径大小有关.由于直接测定超滤膜的孔径相当困难,所以使用一直分子量的球状物质进行测定.如膜对被截留物质的截留率达到90%时,就用被截留物质的分子量表示膜的截留性能,称为膜的截留分子量.实际上,所用的物质并非绝对球形,膜孔径也绝非绝对均一,所测定的截留率不能绝对表示膜的分离性能.70.膜分离过程模型:⑴浓差极化:①在操作过程中,由于膜的选择透过
性,被截留组分在膜料液侧表面积累形成浓度边界层,其浓度大大高于料液的主体浓度,在膜表面与主体料液之间浓度差的作用下,将导致溶质从膜表面向主体的反向扩散.②危害:膜面处浓度Ci增加,使得渗透压↑:在一定操作压力下,溶剂的透过速率↓,Ci增加,导致溶质的透过↑,截留率↓.③避免:可通过提高操作温度`对膜定期清洗等措施来避免浓差极化.⑵凝胶极化:膜表面的浓度超过溶质的溶解度时,溶质析出,形成凝胶层.当料液中含有菌体`细胞或其他固形物时,也会形成凝胶层.71.模装置的工作形式-超滤膜装置:一般用来完成目标物的浓缩和目标
物脱出小分子杂质,分别称为浓缩和洗滤.浓缩:①开路循环:循环液中溶质浓度不断上升,若流量和压差不变,透过通量将随操作时间不断降低.②闭路循环:循环液中溶质浓度增加更快,通过通量小于开路循环.优点是膜组件内流速可不单纯依靠料液泵供应.③连续浓缩:容易实现自动化.但透过通量很低,为改善通量,一般设计成多段串联组合.72.乳状液膜制作过程:⑴首先把两种互不相容的液体在高剪切下制成油包水小液滴;⑵其次在温和搅拌下将油包水乳液分散在第三相[料液相即外相]中;⑶乳状液滴内被包裹的相为内相,内相外相之间为液膜.73.载体促进传递机制有不同表现形式:同相迁移[促进并流]`逆向迁移[促进逆流].74.盐析:De:在高浓度的中性盐存在下,Pro[酶]等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程.虽然方法经典,但主要用于Pro分离与回收.75.盐析过程:是对[生物大分子在水ag中存在状态:⑴两性电解质,由于静电力的作用,分子间相互排斥,形成稳定的分散系.⑵Pro周围形成水合膜,保护了Pro粒子,避免了相互碰撞.]破坏的过程:原因:⑴盐离子与Pro表面具有相反电性的离子基团形成离子对,部分中和了Pro电性,稳定的双电层被破坏,Pro分子间斥力减弱而相互聚拢.⑵中性盐亲水性比Pro大,盐离子在水中发生水合使Pro脱去水合膜,暴露疏水区域,疏水相互作用产生沉淀.76.盐溶液对Pro溶解度影响:中性盐加入Pro溶液时可能出现:⑴”盐溶”现象:较低盐浓度(0.15-0.2mol/kg)下,Pro溶解度随盐浓度增大而增大.⑵”盐析”现象:高盐浓度下,Pro溶解度随盐浓度增大而下降.77.盐析方法分类:⑴β盐析法:在一定离子强度下,改变pH和温度进行盐析[逐步向Pro溶液中加入预先调好pH的饱和硫酸铵ag,调节温度,Pro便沉淀出来].由于溶解度随温度变化缓慢,且变化幅度小,因此分辨率更高,常用于纯化.⑵KS盐析法:在一定pH和温度下,改变体系离子强度进行盐析的方法[粗制品中逐步加入固体硫酸铵,加到一定饱和度时,Pro便沉淀出来].由于Pro对离子强度的变化非常敏感,易产生共沉淀现象,因此常用于提取液的前处理.78.影响盐析的因素:⑴Pro浓度:①高浓度Pro可节约用盐量,但过高
会发生严重沉淀.②低浓度Pro用盐量较多,共沉作用少.⑵盐种类的影响:阳离子:NH4+>K+>Na+>Mg2+.阴离子:SO42+>CHCOO->Cl->NO2->ClO3-.⑶温度:①低离子强度/纯水中:蛋白质溶解度随温度↑而↑.②高浓度:随温度↑而↓.⑷pH的影响:等电点附近Pro溶解度小,是盐析沉淀适合的pH.79.盐析沉淀操作:lg:硫酸铵步骤:
⑴取一部分料液,将其分成等体积的数份,冷却至0℃.⑵用W=[505(S2-S1)]/(1-0.285S2)式计算饱和度达到20%-100%时所需加入的硫酸铵量,并在搅拌条件下分别加到料液中,继续搅拌1h以上,使沉淀达到平衡.⑶3000g下离心40min后,将沉淀溶于2倍体积的缓冲ag中,测定其中Pro总浓度和目标Pro浓度[如有不溶物,可离心去除].⑷分别测定上清液中Pro的总浓度和目标Pro的浓度,比较沉淀前后Pro是否保持物料守恒,检验分析结果的可靠性.⑸以饱和度为横坐标,上清液中Pro总浓度和目标Pro浓度为纵坐标作图,图中纵坐标为上清液中Pro的相对浓度[与原料液浓度之比].80.@@沉淀生成过程:Pro分子通过接触而聚集,形成微细颗粒,微细颗
粒继续生长成为大颗粒沉淀.⑴扩散控制过程:生长出去,布朗粒子的扩散,推动粒子的生长.这一过程称为[异向生长].⑵剪切作用生长过程:在搅拌作用下,粒径1μm以上的粒子生长主要起因在于剪切作用引起的颗粒间互相碰撞,发生凝聚.这一过程称为[同向凝聚]…同向凝聚速率很低,是沉淀过程的控制步骤.因此,搅拌混合非常重要,沉淀放大设计时,单位体积的搅拌功率是放大的基准,一般在放大后不变.81.色谱分离法概念:是一种物理的分离方法,利用不同物质在两相[固
定相和流动相]中具有不同的分配系数,并通过两相不断的相对运动而实现分离的方法.82.色谱过程:⑴物质分子在相对运动的两相间分配平衡的过程.在混合物中,若两个组分的分配系数不等,则被流动相携带移动的速率不等,即形成差速迁移而被分离.@⑵经色谱柱的分离,各组分将分别流过检测器,检测器将流动相中各组分浓度变化转变成电信号.随时间变化的曲线,称为色谱流出曲线,或称色谱图.83.[色谱术语]色谱图和色谱峰:⑴组分流经检测器时响应的连续信号产生的曲线为色谱图.⑵流出曲线上的突起部分为色谱峰.84.[色谱术语]⑴正常色谱峰近似于对称形正态分布曲线[高斯曲线].⑵不对称色谱峰有两种:前沿峰[较少]`和拖尾峰.⑶不对称峰的原因复杂:进样体积`浓度`柱温`柱污染`样品溶液离子强度`柱极性等.85.[色谱术语]对称因子[判断是否对称]:fS=W0.55h/2A=(A+B)/2A 完全对称:fS=1.00;对称峰: fS =0.95-1.05;前沿峰: fS <0.95;拖尾峰fS >1.05.86.[色谱术语]色谱基线:色谱操作条件下,仅有流动相通过检测器时,反应检测器噪声随时间变化的曲线.稳定的基线是一条直线.87.[色谱术语]基线噪音:与被测样无关的检测器输出信号引起的基线波动,基线波动的大小就是噪声的大小.基线漂移:基线随时间的增加朝单一方向的偏离.88.[色谱术语]峰高h:从色谱峰顶点到基线的距离.峰高一般用mm或检测器输出信号单位表示.峰高可作为定量测定的依据之一.89.[色谱术语]峰底宽度W:在色谱峰两边的转折点[也叫拐点,即E和F]所画的切线与基线相交的截距IJ.两个拐点E和F之间的距离为EF=2σ,分别位于约0.607h处.峰宽直接体现出色谱条件的影响.90.[色谱术语]峰面积A:色谱峰与基线延长线所包围的面积.91.[色谱术语]保留指数:它是与被测物质具有相同调整保留时间的假想的正构烷烃的碳数乘以100.92.[色谱术语]分离度RS:相邻两个组分的色谱峰,其保留时间差与两
峰峰底宽平均值之商.93.[分配色谱]⑴正相色谱:极性固定相+非极性流动相
用于分离极
性化合物,极性小的组分先流出.⑵反相色谱:非极性固定相+极性流动相 用于分离非极性化合物,极性大的组分先流出.94.载体:载体是惰性的,无吸附能力,可吸留较大固定相液体.⑴硅胶:使
用前:酸洗—水洗—醇洗—干燥—水混—调浆[展开剂]—装柱.⑵硅藻土:是目前应用最多的载体.处理方法同上,浆态上柱,压平.⑶纤维素:也较为常用,酸洗+水洗.95.选择展开剂[流动相]时,首先应选择各组分溶解度相差较大的溶剂.展开剂必须先用固定相饱和,方法是过量固定相加展开剂中,分液漏
斗分层出展开剂.96.凝胶[排阻]色谱:原理:待分离物质分子量大小不同,在凝胶柱经过
时,停留时间的不同得以分离.97.三种凝胶:⑴葡聚糖凝胶:应用最广①国外商品名Sephadex,由葡聚
糖交联而成.葡聚糖是蔗糖发酵后,分级,选取分子质量在3×104-5
×104的部分,经交联后得到不溶于水的葡聚糖凝胶.②交联度:交联
剂占原料总质量的百分比称为交联度.③常用G类Sephadex商品,Sephadex G-250含义为每克干胶吸水体积可达到25ml.⑵聚苯烯酰胺凝胶:①一种全化学合成的人工凝胶,由苯烯酰胺[单体]以亚
甲基双苯烯酰胺[双体]为交联剂,经催化聚合而成再经干燥成型处
理得到颗粒状干粉商品.②商品名:Bio-Gel P, P后编号×1000大致
反应其排阻极限.③如: Bio-Gel P-100表示其分离相对分子质量大约为100000.⑶琼脂糖凝胶:①用氯化十六烷基吡啶/乙烯醇等将海藻多糖琼脂中带负电基团的琼脂胶沉淀除去,得到中性多糖成分即为琼脂糖.②商品名:Sepharose 2B`4B`6B.表示琼脂糖浓度
为2%`4%`6%.
第四篇:生物安全研究技术
湖南农业大学课程论文
学院:生物安全科学技术学院班级:08级生物安全二班姓名:刘钊学号:200841633212
课程论文题目:转基因大豆安全性及检测技术研究进展 课程名称:生物安全研究技术
评阅成绩:
评阅意见:
成绩评定教师签名:
日期:年月日
转基因大豆安全性及检测技术研究进展
学生: 刘 钊
生物安全科学技术学院08生物安全二班 学号:20084163321
2摘要: 中国近年来转基因大豆进口激增,因此转基因大豆的安全性越来越引起人们关注。本文讲述转基因大豆对人类健康和生态环境的影响,以及转基因大豆检测技术研究进展。
关键词:转基因大豆、安全性、检测技术
一、转基因大豆产业化现状
1983年首次获得转基因烟草后,1986年抗虫和抗除草剂转基因棉花首次被批准进入田间试验,至今国际上已有近50个国家批准数千例转基因植物进入田间试验,涉及的植物种类有60多种。
近年来,转基因植物在全球的种植面积增长迅速,种植转基因植物的国家从1992年的1个增长到1999年12个,2001年进一步扩大到16个国家。全球转基因植物的种植面积1996年为170万公顷,1997年为1100万公顷,1998年增长到2780万公顷,1999年又比1998年增长44%,达到3990万公顷,2000年全球转基因作物种植面积是4420万公顷,2001年猛增至5260万公顷。美国转基因植物的商业化速度进展很快,其推广应用走在其他国家的前列。1994年美国Calgene公司研制的转基因延熟番茄首次进入商业化生产,到2000年5月就有47例转基因植物被批准进行商业化生产,其中大豆3例。1994年Monsanto公司抗草甘膦大豆,1997年DuPont公司高十八烯酸(油酸)大豆,1998年AgrEvo公司抗草丁膦大豆。2001年美国种植转基因植物达3570万公顷,占68%。
2001年主导的转基因大豆占据全球转基因作物的63%,所有的转基因大豆均为抗除草剂大豆。转基因大豆在2001年保持了最大种植面积的位置。从全球的情况来看,转基因大豆在2001年占有3330万公顷;转基因玉米980万公顷,占据全球转基因作物的19%;转基因棉花680万公顷,占13%;Canola油菜270万公顷,占5%。
在1996—2001的6年期间,抗除草剂品种已连续跃居主导而抗虫性则位居其次。2001年,抗除草剂大豆、玉米和棉花共占全部5260万公顷的77%;只有780万公顷种植了转Bt作物,相当于总面积的15%;而其中具Stacked基因的耐除草剂和抗虫棉花与玉米占据了全球2001年全部转基因作物面积的8%。需要注意的是,耐除草剂作物面积在1999和2001年间从2810万公顷增加到4060万公顷,与此同时,具Stacked基因的抗除草剂和Bt作物亦由1999年的290万公顷增至2001年的420万公顷;反之,全球转基因抗虫作物种植面积已从1999年的890万公顷减至2001年的780万公顷。
数据显示:在2001年,全球种植总面积7200万公顷的大豆中有46%是转基因品种。与此类似,3400万公顷棉花中的20%,2500万公顷油菜中的11%,以及1.4亿公顷大米中的7%皆为转基因品种。如果把全球这四大类作物面积合计起来,总面积达2.71亿公顷,其中19%即5260万公顷种植的属于转基因作物。
二、转基因大豆安全性评价
应用抗除草剂转基因作物具有极大的经济效益和社会效益,但也存在一定的风
险。种植抗除草剂转基因作物的最大风险之一是“杂草化”,包括抗性作物自身“杂草化”,抗性基因“漂移”到杂草上,导致抗性杂草的产生。还存在对环境的影响、食品的安全性、抗性基因的稳定性、加速抗性杂草发生等问题。Monsanto公司对培育的抗草甘膦转基因大豆品种40-3-2进行食品安全性评价,结果表明,转基因大豆品种的所有氨基酸的含量和普通大豆品种没有显著的差异;内源蛋白过敏原及其含量和普通大豆品种没有差异。研究结果还表明,CP4EPSPS和已知的毒蛋白的结构没有相似性,急性老鼠管饲法实验也表明CP4EPSPS无毒。然而,抗除草剂转基因作物的食品安全性也存在不可预见性,必须进行长期监控。
有试验表明转草甘膦大豆对高温的敏感性高于传统大豆,而且经过遗传修饰的往往不能获得高产,甚至比一些常规优良品种的产量还要低,因为一个作物内部的遗传背景并不能容忍一个外来基因,而且表达耐除草剂或Bt抗虫毒蛋白需要消耗代谢能量。有研究认为,草甘膦在所有农药中对人体健康危害居第三,草甘膦可使豆科植物产生一种植物雌激素,动物食用后会替代体内激素而破坏生殖系统。由于草甘膦能在土壤中存留很久,危害土壤中动物,污染地下水,并且能破坏土壤生化循环。需要指出的是:仅仅基于上述问题的考虑尚不能得出转基因作物安全与否的结论。每一种新研制的转基因作物都必须通过个案处理,评估其可能存在的风险,以确保进行环境释放和市场释放时转基因作物及其加工的食品具有高度的安全性。
大豆原产于中国,中国拥有丰富的野生大豆资源,几乎有大豆种植的地方就有野生大豆分布。由于栽培大豆和野生大豆间没有生殖隔离现象,一旦转基因逃逸到野生大豆群体中,野生大豆原始性状将受到破坏,其抗除草剂特性也可使其变为杂草,其孳生蔓延将给大豆生产造成损失,从而造成遗传多样性的丧失。因此,对我国来说,转基因大豆的安全管理尤为重要。
为防患于未然,原国家科委于1993年12月发布了《基因工程安全管理办法》,国务院在2001年5月颁布了《农业转基因生物安全管理条例》,建立农业转基因生物安全管理部际联席会议制度。农业部已于2001年7月发布《农业转基因生物安全评价管理办法》、《农业转基因生物进口安全管理办法》和《农业转基因生物标识管理办法》,并设立农业转基因生物安全委员会,负责农业转基因生物的安全评价工作。农业转基因生物安全委员会由从事农业转基因生物研究、生产、加工、检验检疫以及卫生、环境保护等方面的专家组成,这3个管理办法拟于2002年3月20日起正式施行。由于转基因大豆是第一批实施标识管理的农业转基因生物,而且近年来大豆的进口量居于农产品进口之首,转基因条例及其实施细则的出台必将对大豆产生深远的影响。
随着人们对转基因植物安全性认识的不断提高,将会有更多的国家和地区接受转基因除草剂大豆,转基因大豆的种植范围和面积将不断扩大,将带来更大的效益。目前,转基因大豆的主体是抗除草剂品种。今后,抗虫、改善营养成分(如脂肪酸组成)将是转基因大豆的重点。
美国杜邦公司已育成了抗营养因子(如寡糖、水苏糖、棉子糖和半乳糖等)水平较低的大豆新品系。在大豆油品质改良方面,也取得若干新进展。
三、转基因大豆检测技术及进展
随着各国转基因标识制度的相继建立和公众对转基因产品关注度的提高,对转基因检测技术的灵敏度和准确性提出了严格的要求,因此,各种转基因检测技术也就成了研究热点。近十几年来,我国农业转基因生物技术得到了飞速的发展,我国转基因抗虫棉花、延熟番茄、抗病辣椒、抗虫杨树和抗病番木瓜等已先后获得安全证书,进入了商业化生产。在转基因检测技术的研究方面,国外的科学研究处于本领域的前沿。目前主要主要的检测技术有:
1定性PcR检测技术
以PCR技术为基础的转基因产品(genetically modified organisms,GMO)定性检测根据其特异性的不同至少可以分为4类:筛查法、基因特异性方法、构建特异性方法和转化事件特异法方法。
筛查法:对转基因产品中的通用元件进行检测,包括启动子、终止子和标记基因。最常见的是对花揶菜花叶病毒CaMV35S启动子、农杆菌胭脂碱合成酶终止子T-NOS及报告基因新霉素磷酸基转移酶Ⅱ基因NPT-Ⅱ的检测。然而,仅鉴定筛选基因(如35S启动子,NOS终止子,报告基因NPT-Ⅱ等)已经不能满足转基因产品检测的要求。这是因为35S启动子存在于天然花椰菜花叶病毒,NOS终止子存在于植物病毒Ti质粒中,抗生素类报告基因自然界中也普遍存在,因而仅是检测筛选基因,极易出现假阳性结果,同时也达不到鉴定转基因植物的目的。
基因特异性方法:指对目的基因进行检测。目的基因可能源自天然,但通常会被轻微的修饰,比如序列缩短或密码子改变(Hemmer,1 997)。并且,能获取的基因的数量要比启动子和终止子多很多。因此,以目的基因为特征序列的基因特异法更具有特异性。
构建特异性方法:在转化载体中具有完整表达能力的目的基因的基因盒(genecassettle)上设计引物,是可以正确确定构建方式的检测方法,该方法具有更高的特异性。
转化事件特异法:通过扩增受体基因组和插入DNA的连接区域,鉴定含有相同外源DNA的不同 GMO(Anklam et al.,2002)。当一个外源基因能引起几种不同插入情况时,特异检测该转基因产品的最好办法就是扩增它的侧翼序列(受体基因组和插人 DNA的连接区域),因此侧翼序列对于被检测的转基因产品具有很好的特异性。定量PCR检测技术
定量PCR检测技术是对转基因产品进行定量标识的主要方法。传统PCR定量检测方法如内参照法、竞争法和PCR-ELISA法是终点检测,即PCR到达平台期后进行检测,此时PCR经过对数期扩增到达平台期,检测重现性较差。酶联免疫吸附检测技术
基于蛋白质检测的主要方法是酶联免疫吸附法(enzyme-linked immunosorbent assay,ELISA)。该法是依赖抗原(导入基因在受体作物中得到正确表达产生的蛋白质)和抗体能发生特异性结合的免疫学评估技术。品系特异性检测技术
对于单个性状的转基因作物来说,转基因作物的品系特异性检测技术就是转化事件特异性检测技术。而对于复合性状的转基因作物来说,品系特异性检测技术则与转化事件特异性检测技术不一样,这取决于复合性状转基因材料的获得方式上有所差异,一种方式是把2种具有单个转化事件的转基因作物通过传统的遗传杂交方式来获得的具有复合胜状的转基因作物新品种,另一种方式是对单个转化事件的转基因作物再进行一次基因工程转化而获得的具有复合性状的转基因作物新品种。对于前者就不能再用转化事件特异性的检测方式进行检测了,目前全球也还没有找到合适的品系特异性检测手段;对于后者还可以用转化事件特异性的检测方式进行检测。转基因产品种特异性检查技术
为内标基因种属特异性检测技术:了防止转基因检测过程中出现假阴性的结果,许多作物的内标(内参照)基因已经被广泛的接受和应用在转基因检测实践中。
标准物质制备技术:采用外标定量,需要已知浓度的检测物作为参照样品。检测转基因产品时,应尽量使用官方(如欧盟参考物和测量研究所,IRMM)核准的参照标准(CRMs)。
PCR抑制因子消除技术:在进行转基因食品的检测中,发现一些转基因食品中存在抑制PCR反应的抑制因子如大米(许文涛等,2007)。大部分PCR抑制因子(例如多糖,脲,腐酸或者血红素)都与DNA有相似的溶解性。使用经典DNA提取方法时这些物质不容易被完全除去(去污剂,蛋白酶和氯仿.异戊醇),这些物质成了 DNA最终提取液的污染物。现在已经开发出许多有针对性地去除这些污染物的方法。
当然除了以上介绍的几个主要的检测,还有其他的一些检测技术。
四、应对措施
转基因生物安全性的管理从一开始就受到世界各国的重视,我国20世纪90年代建立起来的农业生物安全管理法规已基本能满足从中间试验到商业化生产科学有序地管理的要求,2001年国务院又颁布了《农业转基因生物安全管理条例》,使得我国对转基因生物的安全管理更加完善具体。当前主要是如何提高这些管理措施的可操作性。比如,如何对转基因作物的生产、销售进行过程控制;如何提高转基因产品标识制度的可操作性等。目前,我国种植的主要是非转基因大豆。由于单户种植规模小、连续种植的重茬问题以及虫害等问题使我国的非转基因大豆在产量、品质和种植成本方面都无法和转基因大豆相比。在转基因大豆对人体和生态环境的确切影响尚未确定以及国际贸易中技术贸易壁垒的兴起的前提下,非转基因大豆的种植的经济效益可能会变得越来越好。我们应该重视解决我国非转基因大豆生产的现有问题,提高其产量和品质,同时基于对我国种质资源的保护、针对转基因大豆基因逃逸的潜在危险,应考虑在我国重点大豆生产地设立保护区,禁止除制成品外的所有转基因大豆籽粒和植株的进入。
第五篇:生物资产的税务处理
生物资产的税务处理
税法关于生物资产的概念和计税基础的确定等,都是借鉴和参考企业会计准则的有关规定。
根据企业会计准则的有关规定,生物资产是指有生命的动物和植物,分为消耗性生物资产、生产性生物资产和公益性生物资产。其中,消耗性生物资产,是指为出售而持有的、或在将来收获为农产品的生物资产。消耗性生物资产是具有生命的劳动对象,包括生长中的大田作物、蔬菜、可用材料以及存栏待售的牲畜等。与企业会计上的做法一样,对于消耗性生物资产,税法将其作为存货来看待,适用存货的有关规定,没有对其做专门的特殊规定。
公益性生物资产,是指以防护、环境保护为主要目的的生物资产,包括防风固沙林、水土保持林和水源涵养林等。由于公益性生物资产具有公益的目的,虽然会计上将其确认为企业资产,但实际上它属于不可变现的资产,因公益性资产而发生的支出,在企业所得税上,已经作为费用直接税前扣除,也不存在提取折旧的说法。所以,税法未对消耗性生物资产公益性生物资产的折旧、扣除等作出专门规定。
(一)生产性生物资产的计税基础
生产性生物资产是指为产出农产品、提供劳务或者出租等目的而持有的生物资产,包括经济林、薪炭林、产畜和役畜等,这与企业会计准则上关于生产性生物资产的界定完全一致。
生产性生物资产按照以下方法确定计税基础:
1.外购的生产性生物资产,以购买价款和支付的相关税费为计税
基础;
2.通过捐赠、投资、非货币性资产交换、债务重组等方式取得的生产性生物资产,以该资产的公允价值和支付的相关税费为计税基础。
(二)生物资产的折旧方法和折旧年限
生产性生物资产按照直线法计算的折旧,准予扣除。企业应当自生产性生物资产投入使用月份的次月起计算折旧;停止使用的生产性生物资产,应当自停止使用月份的次月起停止计算折旧。
企业应当根据生产性生物资产的性质和使用情况,合理确定生产性生物资产的预计净残值。生产性生物资产的预计净残值一经确定,不得变更。
生产性生物资产计算折旧的最低年限如下:
1.林木类生产性生物资产,为10年;
2.畜类生产性生物资产,为3年。