第一篇:什麽是水体生态修复技术,有哪些具体技术
什麽是水体生态修复技术,有哪些具体技术
利用植物或微生物对水体中的污染物进行处理,从而使水体得到净化,这一用生态—生物的方法来修复水体的技术,廉价实用,适用我国江河湖库大范围的污水治理。
1.生物膜法处理技术
生物膜法是指用天然材料(如卵石)、合成材料(如纤维)为载体,在其表面形成一种特殊的生物膜,生物膜表面积大,可为微生物提供较大的附着表面,有利于加强对污染物的降解作用。其反应过程是:①基质向生物膜表面扩散,②在生物膜内部扩散,③微生物分泌的酵素与催化剂发生化学反应,④代谢生成物排出生物膜。
生物膜法主要工艺方法有生物廊道、生物滤池、生物接触氧化池等。生物膜法具有较高的处理效率,对于受有机物及氨氮轻度污染水体有明显的效果。它的有机负荷较高,接触停留时间短,减少占地面积,节省投资。此外,运行管理时没有污泥膨胀和污泥回流问题,且耐冲击负荷。日本、韩国等都有对江河大水体修复的工程实例。
2.人工湿地处理技术
人工湿地的原理是利用自然生态系统中物理、化学和生物的三重共同作用来实现对污水的净化。这种湿地系统是在一定长宽比及底面有坡度的洼地中,由土壤和填料(如卵石等)混合组成填料床,污染水可以在床体的填料缝隙中曲折地流动,或在床体表面流动。在床体的表面种植具有处理性能好、成活率高的水生植物(如芦苇等),形成一个独特的动植物生态环境,对污染水进行处理。
人工湿地的显著特点之一是其对有机污染物有较强的降解能力。废水中的不溶性有机物通过湿地的沉淀、过滤作用,可以很快地被截留进而被微生物利用;废水中可溶性有机物则可通过植物根系生物膜的吸附、吸收及生物代谢降解过程而被分解去除。随着处理过程的不断进行,湿地床中的微生物也繁殖生长,通过对湿地床填料的定期更换及对湿地植物的收割而将新生的有机体从系统中去除。由于这种处理系统的出水质量好,适合于处理饮用水源,或结合景观设计,种植观赏植物改善风景区的水质状况。其造价及运行费远低于常规处理技术。这种技术已经成为提高大型水体水质的有效方法。英、美、日、韩等国都已建成一批规模不等的人工湿地。
3.土地处理技术
土地处理技术是一种古老、但行之有效的水处理技术。它是以土地为处理设施,利用土壤—植物系统的吸附、过滤及净化作用和自我调控功能,达到某种程度对水的净化的目的。土地处理系统可分为快速渗滤、慢速渗滤、地表漫流、湿地处理等几种形式。国外的实践经验表明,土地处理系统对于有机化合物尤其是有机氯和氨氮等有较好的去除效果。德、法、荷等国均有成功的经验。
信息来源环保英才网:http:///
第二篇:生态修复技术在水体污染治理中的应用
湖南农业大学课程论文
学 院:资源环境学院 班 级:09级环工一班 姓 名: 聂 坚 学 号:200940408114 课程设计题目: 水体中生态修复技术的应用 课程名称: 课程论文 评阅成绩: 评阅意见:
成绩评定教师签名: 日期: 2011年12月4日
水体中生态修复技术的应用
聂坚
200940408114
2009级环工1班
【摘要】:生态修复技术是一项正在不断得到研究和发展的新技术,具有广阔的前景。本文简要介绍目前主要的几种生态修复技术的概念,原理及其在水体污染治理中的应用。
关键词:生态修复,水体污染治理
前 言: 目前我国水生态系统受损严重,超过6O%的河流、湖泊和湿地生态系统的结构和功能遭到不同程度的破坏。随着水生态修复理论的不断完善和深入。近年来生态修复技术在水体污染治理这个方面发展较快。水体污染的生态修复技术是生态工程技术的一个分支,其基本含义是根据水生生态学及恢复生态学基本原理,对受损的水生态系统的结构进行修复,促进良性的生态演替。达到恢复受损生态系统生态完整性的一种技术措施。根据水生态系统所受胁迫的主要类型。水生态修复技术大体可划分为两类, 第一类是利用生物生态方法治理和修复受污染水体的技术。第二类是与生态友好的水利工程技术。这两类水生态修复技术目前在我国都有应用。并且已产生了较好的经济社会和环境效益。也为新时期水利科技发展奠定了基础[1][2][3]。
1.生态修复的概念
1.1生态修复(Ecological Remediation):
所谓生态修复是指对生态系统停止人为干扰,以减轻负荷压力,依靠生态系统的自我调节能力与自组织能力使其向有序的方向进行演化,或者利用生态系统的这种自我恢复能力,辅以人工措施,使遭到破坏的生态系统逐步恢复或使生态系统向良性循环方向发展;主要指致力于那些在自然突变和人类活动活动影响下受到破坏的自然生态系统的恢复与重建工作,恢复生态系统原本的面貌,比如砍伐的森林要种植上,退耕还林,让动物回到原来的生活环境中。这样,生态系统得到了更好的恢复,称为“生态修复”。
2.污染水体中生态修复的方法
2.1河流水体污染治理 在河流存在的生物包括浮游生物、底栖动物、附着植物、巨型植物。污染河流的生态修复就是充分利用河流中的这些生物和河流的理化特征如流速、溶解氧等来恢复河流生态[4] 这些方法有:(1)河道补水技术。通过抽水贮存措施,或者由水工构筑物合理运行来加大枯水流量,增加河流的稀释能力,从生态工程的角度,则应在流域内种草植树,增加地下水的涵养量。贮水工程应优先考虑地下工程,以减少水分蒸发损失。
(2)人工增氧。增氧是近年来污染河流中一种应急方法,尤其对城市水环境的整治起到了一定的作用。从生态工程学的角度,应当充分利用天然水坝的跌水、水闸泻流等人工水上娱乐设施进行增氧。河流水域应设计以人工增氧为主的梯级复氧来改善水环境质量,对滞流区域可采取人工曝气的方法进行,如可用曝气机进行曝气[5]。
(3)修建净水湖。把天然河道功能进行专门的限定,设置一些专门用来承纳污水的河道和一些人工净化湖,对承污河道和人工净化湖则采用以稳定塘为基础的逐极净化技术进行水质恢复。
(4)生态工程技术。恢复河岸植被,利用芦苇等水生植物提高水域进化能力,恢复河道天然湿地。利用生物膜自净原理在河道内铺设一些卵石,进而改变水环境生态链结构的单一性。
(5)底泥疏浚。将水体中的污染底泥直接从河道取出,进而解决内原释放而造成的二次污染。将取出污泥进行浓缩,然后施用于农田作肥料,改善土质[6]。.2 湖泊水库污染治理
湖泊水库有一定的环境容量,对外界的污染缓冲作用很强。其水动力学过程决定着水体内部各种物质和能量的输移转化过程,在很大程度上影响着湖泊水库的水质变化过程。
(1)利用浮床陆生植物治理富营养化水域。浮游陆生植物采用生物调控法,利用水上植物技术,在以富营养化为主体的污染水域水面种植植物、蔬菜、花卉或绿色植物等各种适宜的陆生植物,通过植物根系的吸收和吸附作用,富集N、P等元素,降解、富集其他有害有毒物质,并以收获植物的形式将其搬离水体[7]。
(2)建立环湖湿地保护带
构建滨岸渔带水生植被工程包括两大部份:一是湖岸湿地保护带工程,二是滨岸带高等水生植物恢复和控制工程。湿地和水生高等植物能起物理阻制作用,削浪,促使沉积,降低沉积物再悬浮,大量吸收水体和沉积物中的营养盐,改变水生网络结构同时又有资源利用价值[8]。
(3)底泥生态疏浚。湖泊底泥是水生态系统的重要组成部份,是湖泊营养物质循环的中心环节,也是水土界面物质积极交换带。生态疏浚目的在于清除高营养盐的表层沉积物质,在对底泥进行疏浚时,采用特殊技术和装置密闭以及抽吸是关键,以免扰动底泥,降低疏浚效果。
(4)生物操纵法:生物操纵的对象主要集中于鱼类,特别是浮游生物食性的鱼类,即通过去除食浮游生物者或添加食鱼动物降低浮游生物食性鱼的数量,使浮游动物的生物量增加和体型增大,从而提高浮游动物对浮游植物的摄食效率,降低浮游植物的数量,具体方法为:(1)投放鱼食性鱼类间接控藻;(2)人工去除浮游动物食性鱼类以间接控藻,解决水体富营养化的问题[9]。
2.3 地下水污染治理
地下水污染有有机污染和无机污染,无机污染主要由一些重金属引起,有机污染主要来自一些化工生产。污染物在土壤中可能以4种不同的形式存在:自由状态、土壤空隙中的蒸汽状态,溶于孔隙水中和吸附于土壤颗粒表面。4种形式之间存在着互相转换和平衡关系[10][11]。
(1)气提技术,利用真空泵和井,在受污染区域诱导产生气流,对其进行相的转变,将有机污染物汽化,提到地面,再进行处理。利用气提技术的前提条件是土壤中污染物质具有挥发性,伴随着气体在土壤中的流动,污染物被抽提出来[12][13]。
(2)空气吹脱技术,是在一定的压力条件下,将压缩空气注人受污染的区域,将溶解在地下水中的挥发性化合物,吸附在土壤颗粒表面上的化合物,以及阻塞 在土壤空隙中的化合物驱赶出来[14]。
(3)生物修复技术,是利用微生物降解地下水中污染物,将其最终矿化。生物修复技术分地面生物处理和原位生物修复。地面生物处理是把受污染的土壤挖出来在地面进行处理,原位生物处理是在基本不破坏土壤和地下水自然环境的条件下,原地进行处理。该技术不足之处在于过程缓慢。
(4)植物修复技术,是利用植物的根系,通过植物的生长将污染物进行转化。对于无机污染物例如重金属,植物通过吸收把污染物转化为植物自身的组成,然后通过收割植物将污染物去除。对于有机污染物植物可以通过吸收将其转化为自身组成,也可以通过植物的根系进行降解[15]。
3.总 结:
以上介绍了在不同的受污染水体中几种常用的生态修复技术,并对其原理和应用进行了简要的描述。对受污染的水体进行生态修复已经是经济发展及环境建设的迫切需要
4.参考文献: [1] 郑天柱.污染河道的生态恢复机理研究[J].环境科学动态,2002,3. [2] 董哲仁.受污染水体的生物—生态修复技术[J].水利水电技术,2002, 2.[3] 陈荷生.太湖生态修复治理工程[J].长江流域资源与环境,2001, 3.[4] 张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002.[5] 许春华,周琪,宋乐平;人工湿地在农业面源污染控制方面的应用[J];重庆环境科学;2001年03期
[6] 戴雅奇,熊昀青,由文辉;疏浚对苏州河底栖动物群落结构的影响[J];华东师范大学学报(自然科学版);2003年03期
[7] 程英;裴宗平;;湖泊污染特征及修复技术[J];现代农业科技;2008年02期
[8] 唐林森;陈进;黄茁;;人工生物浮岛在富营养化水体治理中的应用[J];长江科学院院报;2008年01期
[9] 周小平,王建国,薛利红,徐晓峰,杨林章;浮床植物系统对富营养化水体中氮、磷净化特征的初步研究[J];应用生态学报;2005年11期
[10] 安贞煜;洞庭湖生态系统健康评价及其生态修复[D];湖南大学;2007年
[11] 旋莹;湿地生态系统处理废水的研究[J];农业环境科学学报;1987年02期
[12] 朱长军,张娟,李文耀;地下水污染的混合有限分析法数值模拟[J];河北建筑科技学院学报;2004年03期
[13] 黄禹忠,何红梅,诸林;原油稳定装置污染源分析与控制[J];化学工程师;2002年06期 [14] 傅菁菁, 汪;吹脱法及其工程应用[J];建设科技;2002年08期
[15] 蔡顺香,颜明娟,黄东风,林诚;水葫芦富集砷、汞、铅、镉、铬含量分析[J];福建农业科技;2005年03期
第三篇:景观湖泊水体生态过滤处理技术
景观湖泊水体生态过滤处理技术
近三十年来,随着社会经济的发展,工业生产废水、生活污水、农业养殖污水的大量排放以及对水资源过度的开发利用,使得大量的氮、磷及有机质等营养物质富集,导致我国大部分浅水湖泊及河道呈现富营养化污染状态,水质恶化。同时水体中外源有机污染物的积累也会引起水中溶解氧的消耗,导致水体缺氧并滋生厌氧微生物,水体透明度变差、颜色发暗,甚至有异味,严重的可造成水体发黑发臭,成为黑臭水体,丧失水体功能。湖泊因其多为近于封闭的静止或缓流的浅层水体,具有流动性较差、水体流速低、水动力条件较差、水体自净能力有限等特点,因而一旦受到外界污染则很难自行修复,从而成为富营养化和黑臭问题的集中爆发点。
为此,国务院颁布实施的《水污染防治行动计划》(“水十条”)明确指出,人民政府是整治黑臭水体的责任主体,由住房城乡建设部牵头,会同生态环境部、水利部、农业部等多部委指导地方落实并提出目标:2017年年底前,地级及以上城市实现湖泊河流水域面无大面积漂浮物,河岸无垃圾,无违法排污口,直辖市、省会城市、计划单列市建成区基本消除黑臭水体;2020年年底前,地级以上城市建成区黑臭水体数量均控制在10%以内;到2030年,全国城市建成区黑臭水体总体得到消除。
众所周知,湖泊水体污染实则是水体生态系统平衡遭到破坏,污染负荷超出水体的自净能力,仅靠水体原有的生态系统难以完成净化过程。目前常见的水体污染治理技术大致可分为物理法、化学法及生物法。其中物理法主要包括截污、清淤、引水等水利工程,以及气浮、增氧、人工造流等措施;化学处理法涉及絮凝沉降、药物灭藻等措施;而生物法是利用特定的水生生物包括植物、动物、微生物及原生动物、后生动物等,通过其新陈代谢过程对水体污染物进行吸收、转化或降解,达到减少或消除水体污染,去除水体营养物质及有机污染物,主要包括微生物处理、水生动植物操纵调控等方法。但因湖泊水体污染治理是一个很复杂的事情,污染物的来源和影响因素比较多,存在周期性反复的问题,而水处理中常用的物理过滤、化学处理及生物降解均存在各自的优势、不足和适用条件,很难彻底解决湖泊水体富营养化与发黑发臭的问题,使得湖泊水体污染治理成为一个极为困难的过程。
“三分治理、七分养护”,这是水体生态修复处理的经验总结,也充分说明了水体污染重在预防,包括采取控源截污、清淤疏浚、生态护坡等工程措施,尽可能削弱甚至避免水体受污染。而一旦湖泊水体出现了污染,水生态系统平衡遭到破坏,则其治理将是相对较难的一个过程,唯有在去除水体污染物的基础上构建完善的水体生态平衡系统,增强水体的生态恢复与自净能力,才能从根本上解决湖泊水体的富营养化及水质黑臭的问题。
生态过滤技术(Ecological Filtration Technology,简称EFT)是从水环境生态平衡原理出发,模拟自然生态系统的自净功能,采用工程技术措施将微生物、原生动物、湿生植物等生物体与生物填料、过滤介质等载体有机结合,互为共生,形成具有高度生物活性的微生态平衡系统—仿自然生态处理系统,对污染水体进行净化的新型生物治污技术。
生态过滤技术(EFT)创造性地将人工湿地工艺与生物接触氧化法有机结合,依靠互生作用及协同效应,持续净化水体污染,改善水动力,提升水体复氧效率,优化生物种群结构,增强水体自净与修复功能,从根本上解决湖泊河流水体水质恶化与水体修复问题。并且生态过滤技术(EFT)引入生态景观设计理念,在增强水体抗污染与自净能力同时,具有较高的景观绿化效果和观赏价值,而且无二次污染,能耗低,占地面积少,特别适合用于中小型湖泊、河流水体污染治理与生物修复,并且在湖泊、河流生态引水领域以及雨水回收利用、海绵城市建设、农村生活污水处理等方面也表现出了广阔的应用前景。
需要注意的是,生态过滤技术(EFT)宜与外源截污、内源清淤工程措施结合起来,否则会由于外源污染物的不断注入、内源污染物的不断释放而影响湖泊水体净化效果。当然对于不具备截污条件、不适合内源清淤处理的水体也可直接采用该生态过滤技术(EFT)原位将污染的湖泊水净化处理后再进入水体,全面提升水体水质指标。
第四篇:清华大学:城市水环境整治水体修复技术的发展与实践
清华大学:城市水环境整治水体修复技术的发展与实践
清华大学环境学院 刘翔
我国城市河流有90%左右受到污染,出现水体滞流、多处于厌氧状态、复氧能力差、淤积严重、透明度低、甚至发生黑臭等现象。由于城市水体污染负荷远远超过城市有限受纳水体的环境容量和自净能力,导致河水中COD、NH3—N等污染物严重超标,水生生态系统结构破坏,生物多样性锐减,城市水体的生态功能和使用功能日益衰退,水体修复和水生态功能恢复的难度明显加大,城市河流水环境生态系统处于失衡状态。同时,城市污水中氮磷污染物未经有效去除,又成为城市水体发生富营养化的重要诱因,造成水体生态功能的衰退甚至丧失,水生生态环境的破坏已经成为城市生态文明建设的主要障碍。“有水皆污”、“河道黑臭”已经成为许多城市面临亟待解决的环境顽疾。城市水环境综合整治和水体修复技术是破解上述难题的有效方法,国家重大水专项城市主题在“十一五”期间重点针对城市水体修复技术开展了研究集成和示范应用,突破了44项关键技术,建立了25项示范工程,取得了良好的效果,为我国水体修复积累了技术集成方案和工程实践经验。1城市水体修复的科学原理与技术思路
城市水体修复技术是指根据生态学和环境学的原理,综合运用水生生物和微生物的方法,使污染水体得到改善或恢复所采用的技术。其特点是充分发挥现有水环境工程的作用,综合利用流域内的湿地、滩涂、水塘、堤坡及水生生物等自然资源及人工合成材料,对城市水域自恢复能力和自净能力进行强化恢复或提升。
生态修复是相对于生态破坏而言的,生态破坏就是生态系统结构和功能的破坏,因而生态修复就是恢复生态系统合理的结构、高效的功能和协调的关系,就是重建受损生态系统的功能以及相关的物理、化学和生物特性。其本质是恢复系统的必要功能并使系统达到自我维持的状态。修复的目的就是要再现一个自然的、能自我调节的生态系统,使它与它所在的生态景观形成一个完整的统一体。但要将一个受损的生态系统的结构与功能恢复到受损前的水平是一项艰巨、困难和漫长的工作。从一定意义上讲,修复又可定义为使受损的生态系统的结构与功能最大限度地接近受损前的水平。就是针对具体受损的生态系统,找出目前环境条件的限制性因素,根据生态工程学原理,对该系统实施种群组建或重建,恢复其原有的生物 多样性,使其达到具备自我维持与自我调节的能力。因此,要从生态、社会需求出发,实现生态修复所期望达到的生态-社会-经济效益;恢复能够达到上述效益的生态系统的结构和功能;通过对系统物理、化学、生物甚至社会文化要素的控制,带动生态系统的恢复,达到自我维持的状态。
基于上述原理,城市水体修复的总体技术思路为:控源为本,调配优先,多元为辅,强化应急,景观共建。
控源为本:城市水体的水质改善应以污染源控制为根本,控源以水环境容量为目标,在此基础上实现水体收纳污染负荷的总量和浓度控制。
调控优先:大多数城市水体最主要的问题是由于生态基流不足而引起的水流缓滞,导致水体的自净能力退化甚至丧失,进而引发一系列的水环境问题。因而水质改善最有效的方法就是通过水系调配或是引入其他水源(例如满足补水水质要求的再生水和城市雨水径流),改善水动力流态,实现水体的良性循环。
多元辅助:在实现控源和调配目标的基础上,可以通过多元生态系统构建、河水充氧、底质控制等辅助技术促进和提升水质改善和生态修复的效果。
强化应急:人工强化处理方法是针对河水(包括循环和旁路)的人工处理技术,通常投资和成本较高,一般常用于需要紧急应对的场合(例如污染事故,黑臭河道等)。
景观共建:城市水体大多具有一定城市景观功能,在采用生态处理技术时,可考虑与景观建设相结合,起到良好的感官效果。2水体修复技术的研究进展
城市水体修复技术按照治理对象可以分为河道底质改善、河道生态修复、河流水动力调控和河水强化处理等4类技术,整体技术体系构成如图1所示。2.1城市河流水动力调控技术
自然状况下,河流具有一定的自净能力,水体中的溶解氧足以满足自净过程中微生物分解有机物需要的氧量。但是当水体受到严重污染或超负荷污染时,过量的有机物排入水中,大气复氧不能及时补充消耗的溶解氧,溶解氧含量大幅降低,出现缺氧或无氧的河段,从而威胁好氧生物的生存。另外,水体中溶解氧过低,导致厌氧细菌繁殖,形成厌氧分解,产生甲烷、硫化氢等气体,发生黑臭问题。此时,必须采取必要的措施以改善水质。该类技术包括水量水质调配和曝气复氧,见图2。
在污染严重的水体中,单靠自然复氧作用,河水的自净过程非常缓慢。故需要采用人工曝气弥补自然复氧的不足。河道人工曝气技术作为一种投资少、见效快、无二次污染的河流污染治理技术在很多场合被优先采用。河道人工曝气技术能在较短的时间内提高水体的溶解氧水平,增强水体的净化功能,消除黑臭,减少水体污染负荷,促进河流生态系统的恢复;另外,河道曝气技术因地制宜,占地面积相对较小,投资省、运行成本低,对周围环境无不良影响,如果与综合利用相结合,还可实现环境效益与经济效益的统一,有利于工程的长效管理。但是要真正发挥河流水体人工曝气复氧技术的实际效益,还必须制订应用该技术的具体方案,得出可行的增氧量、曝气方式、季节最优化组合,并充分考虑城市景观和经济性原则。常用曝气技术特点见表1。
2.2城市河道底质改善技术
在城市河道中,底泥是陆源性入河污染物(营养物、重金属、有机毒物等)的主要蓄积场所。在不同的环境影响(温度、风浪和溶氧等)条件下,底泥既可以净化湖泊水体,也可以因富含污染物而成为潜在的内源性污染源污染水体,增加上层水体污染负荷。底质改善技术则是有效遏制这类内源污染物释放的有效手段,常用的有底质清淤及原位修复技术、景观河道生态修复型底泥疏竣与处理处置技术等。
(1)底质清淤及原位修复技术。
底泥生态清淤采用生态清淤工程将污染最重、释放量最大的上层污染底泥依据环保要求移出水体,避免因河流、湖泊内的底泥释放和动力作用下的再悬浮和溶出后可能造成的河水富营养化和藻类产生和发展问题,从而达到控制底泥释放二次污染的目的。它是控制内源污染效果较为明显的工程技术措施之一。
在采用原位修复技术,利用研发的环境友好型双固定化功能载体及筛选的具有高效净化性能的功能生物,通过河道底质良性生境的构建、定向强化净化及底质基质促进剂的使用,进行污染底质原位生态固化-覆盖联合修复。
(2)景观河道生态修复型底泥疏竣与处理处置技术。底泥也是水生态系统重要的环境要素之一,其理化特性直接影响水生态系统的结构与功能;可以考虑河湖底泥疏浚与底栖生态重建的优化协同,避免过量疏浚造成的河湖底泥生态支持力下降、疏浚底泥易地处理的环境和经济成本问题,发展可实施精准疏浚的河湖底泥生态修复型疏浚技术。
(3)底质基改造与污染生态修复技术。
从单一的清淤、硬底化、引水冲污、曝气增氧等治理技术研究转为对多项治理技术的集成应用研究,以降低河道治理的投资、运行成本和保证持续稳定的治理效果。对底泥治理技术的研究和应用表明,相对于物理、化学修复,对目前以有机物含量高、Eh 偏低的重污染为特点的城市河道底泥,在改善基底理化环境基础上,采用生物修复,特别是植物修复方法可能更加适宜。
(4)疏浚底泥与处理处置技术。
根据疏浚底泥自然沉降速率设计水力疏浚底泥排泥场,避免水力清淤污泥随自然澄清液回流再次排入水体。针对清淤污泥,开发了高效脱水以及制建材、制陶粒等资源化利用技术,实现了疏浚底泥的可持续管理。
(5)底泥污染抑制剂技术。
针对底泥在厌氧条件下释放污染物导致水体水质恶化的问题,开发出具有强氧化作用、高效释氧作用、物理阻隔作用和化学固化作用等的底质抑制剂(材料),对抑制黑臭、应对突发污染事故等具有显著、快速的控制效果。2.3城市河道生态修复技术
(1)复合型生态浮岛水质改善技术。
以水生植物的优选和可修复水体生物多样性的生态草植入为主要组成部分,对氮、磷营养物和有机物等均有一定的去除效果,可改善水体水质,提高水体透明度,控制水体富营养化(减缓藻类的增长速率、减弱藻类暴发程度),减少以再生水为补给水源的景观水体换水 频率。无外部水源补充条件下,夏季可延缓藻类暴发时间1~2 d,暴发峰值也可降低约30%。该技术尤其适合北方地区以再生水为主要补给水源的滞流/缓流景观水体水质的保持与改善。
(2)多级复合流人工湿地异位修复技术。
通过多级复合流人工湿地的构建,解决了传统人工湿地的运行效果不稳定、脱氮效果一般、填料易堵及冬季处理效果差等多项难题,使其出水主要水质指标稳定达到地表水Ⅳ类标准。该技术对COD、总氮、总磷具有较好去除效果,在进水水质波动较大,水质较差的条件下,出水水质仍可稳定达到地表水Ⅳ类要求,多级潜流湿地示范工程在稳定运行阶段对COD、TN和TP的去除率可达到70%~90%。该技术主要用于景观水体的水质改善及长期保持,适用于征地方便的地区。
(3)城市黑臭河道原位生态净化集成技术。
包括底泥污染控释与底质生境改善、黑臭河水生物栅净化与控藻、黑臭河水生态接触氧化等。形成了城市黑臭河道原位生态净化集成技术体系,将浮船式增氧机作为混凝药剂的投加、溶解、搅拌、反应的动力设备,从而把增氧和混凝有效地结合起来;科学控制增氧机与生态浮床之间的距离,消除增氧机对生态浮床上植物生长及其净化污染物的负面影响;利用生态浮床水下部分的接触沉淀和物理吸附作用,促进化学混凝后水体的加速和稳定澄清,防止增氧机工作及水流搅动引起的絮体再悬浮,保障工程效果的长效性。按该方法设计的技术系统具有集成化程度高、投资和能耗低、易于操作、便于管护、快速长效等优点。
(4)景观河道生态拦截与旁道滤床技术。
生态滤床是在自然湿地结构与功能的基础上通过人工设计的污水处理生态工程技术,利用系统中的基质、水生植物、微生物的物理、化学、生物三重协同作用,来实现对污染物的高效降解,以达到净化水质的目的,具有投资少、运行维护费用低、管理简单、景观生态相容性好、自然社会效益好等优点,已被广泛应用于处理各类型污水。
生态滤床一般通过旁河的形式,将河水引入滤床中,系统内填充具有脱氮除磷功能较强,且比表面积大的多孔介质,使其具备了良好的水力学性能,能较好地截留河水中的颗粒物。通过植物选择、碳源调控、溶解氧调控、前置或后置强化除磷等手段,提高其脱氮除磷效率。(5)生态护坡技术。
生态护坡工程是一项建立在可靠的土壤工程基础上的生物工程,是实现稳定边坡、减少水土流失和改善栖息地生态等功能的集成工程技术。其目的是为了重建受破坏的河岸生态系统,恢复固坡、截污等生态功能。2.4城市河水强化处理技术
(1)城市河湖水系原位强化处理关键技术。
开发缓流水体强化循环流动和生物接触氧化技术,强化水体流动,削减水中污染物和营养盐含量,改善水质。提出了不同流速对常见水华藻类和混合藻类的影响,并提出了水华控制流速;对不同填料进行了接触氧化试验,筛选了最佳填料,对主要污染物的去除效果进行了研究,主要污染物去除率为叶绿素40%、COD 50%、TN 20%、TP 40%、NH3_N 60%。
(2)河道水体侧沟强化治理集成技术。
针对生活污水、含有大量的工业废水、难以生物降解成分含量高、底泥污染严重、河道水体黑臭、油类物质浓度偏高现象显著等,提出以侧沟化学絮凝(即一级强化处理)和接触氧化修复相结合的方式,对黑臭水体进行处理,可有效抑制黑臭现象。
(3)景观水体化学-微生物-水生植物复合强化净化与藻类过度生长控制技术。
针对景观河道水体自净能力差、富营养化现象严重、藻类过度生长等现状,通过微生物、化学、水生植物复合强化集成技术进行水质净化及控制的原位修复技术研究,已研发出“改善景观水体水质的药剂投加方法及设备”和“富营养化水体治理的方法和设备”,可有效改善水体富营养化状态。
(4)污水处理厂尾水人工湿地深度处理技术。
技术从工艺创新、碳源补充、填料选择、防堵塞等研究,保证反硝化反应的顺利进行必须有充足的碳源提供,添加PHA聚羟基脂肪酸酯、PBS聚丁二酸丁二醇酯等五种有机物作为 碳源,研究了各种碳源的反硝化速率以及硝酸盐氮的去除情况,得到麦秆、PBS和PHA添加后出水符合一级A的标准;在城市污水处理厂尾水达到一级A标准时,出水水质可达到:COD为18~32mg/L,氨氮低于0.5 mg/L,总氮为1.5~3.5mg/L,总磷为0.1~0.3 mg/L,除总氮偶尔较高外,达到地表水体V类标准。
(5)污水处理厂尾水多点放流生态拦截技术。
选取最优填料组合,通过生态拦截填料的拦截吸附降低尾水中的污染负荷,尾水长期流过填料后填料表面的生物膜可以进一步降解尾水中的污染物质。污水处理厂尾水排放后由大阻力配水系统将尾水均匀分布到第一级生态填料区上,经过底部布水廊道升流至第二级生态填料区,通过二级填料的尾水最终通过生态透水砖实现污水处理厂尾水深度净化后的分散排放。该方法可有效降低污水处理厂尾水排放对河流水质产生的不利影响。3城市水体修复技术的实践与成效 3.1城市水体修复技术的应用
水专项城市主题“十一五”期间建立了示范工程25项,修复城市河流超过50 km,水体总面积超过7 km2,所涉及的流域分布以及所应用的关键技术类型分布如图3所示。
3.2城市水体修复技术应用效果
(1)太湖流域示范区主要水质指标提高一个等级,满足V类水标准。水体黑臭现象消除,水质好转,COD、氨氮、总氮、总磷均有明显降低,溶解氧有所提高。生态修复时氮、磷的年去除能力分别达到0.1 kg/m2和0.02 kg/m2。水生生物中浮游植物多样性及清洁水体指示种增加,浮游动物由原生动物为主转为轮虫为主,鱼类、底栖生物数量明显增多。
黑臭河道治理效果:溶解氧由0.5 mg/L提高至6 mg/L(平均),浊度下降80%,总磷下降60%,COD和氨氮去除50%~60%,氧化还原电位、透明度大幅提高,黑臭得以遏制,原本爆发性生长的藻类得到有效控制。
(2)海河流域示范区水质均满足IV类水体标准,水体臭味消失、透明度明显改善,河道浮萍及藻类生长得到有效抑制,沉水植物开始自我恢复,示范段河道内水生动物(如鱼类、底栖动物)数量也明显增多。
示范工程中集成了喷泉曝气、潜流湿地及其他几项关键技术,实现了各单项技术的优势互补。经过实际运行,对COD、TN、TP年均去除率分别可达80%、90%和75%左右,出水水质达到了地表水Ⅳ类要求,优势显著。
(3)三峡库区示范区污染物减排量(COD)约占2010年三峡库区重庆段城镇污染物排放量的15.1%。库区内城市水体水质提升了一个等级,基本达到了水体功能水质要求,水系基本畅通,流速提高近一倍,消除黑臭,与修复前水体表面较脏乱现象对比,修复后,水体清澈,表面无污物。
(4)巢湖流域示范区水质达地表Ⅳ~V类标准,水生湿生植物种类由14种增加到60种,浮游藻类多样性增加,原生动物的生物量和密度都明显高于恢复前,底栖动物种类数量也有较大提升,水生态系统结构和功能逐渐得到恢复。
水体COD、TN和TP分别下降了49.4%、7.5%和66.8%,经过生态工程净化,COD、TN和TP的去除率分别为22.4%,50.4%和39.1%,水质提高一个等级。
(5)温州九山外河、温州山下河、南宁可利江河道、南宁心圩江河道、昆明盘龙江示范河段彻底消除了黑臭,主要指标达到V类水标准要求;扬州鸿泰支河、曲江湖、南京江心洲、内秦淮河中段等轻度污染景观水体修复,主要水质指标达到IV类,常规污染物削减率平均达到30%。4展望
发达国家城市河流治理已经完成了由污染治理到水体修复的过程,水环境得到较好的改善,莱茵河、泰晤士河的治理就是成功的案例。近年来,先进国家在河流水污染治理技术方面,已由单纯的“污染控制”技术发展为“水生态的修复与恢复”,实现由以“水污染控制”为目标向以“流域水生态系统健康保护”为目标的转变。陆续开展了生态河床、生态堤岸等生态恢复技术研究工作,如日本的多木川、淀川等多条河流的生态修复,取得了良好的生态效益和环境效益。在技术体系上,河流的水质改善技术总体上呈现出多元化、集成化和系统化的发展趋势,主要是从流域污染特点出发,以流域为尺度构建水污染控制和水环境改善的技术体系,从而达到了流域水环境质量改善的最终目的。
我国城市水体修复技术在“十一五”期间得到了全面的发展和应用,也取得了较好的治理效果,但是还未根本解决城市水体污染问题。在后续的集成应用和工程实践中,应遵循“控源为本,调配优先,多元为辅,强化应急,景观共建”的技术思路,进一步加强对水体修复技术的综合集成和组合应用,强调协同控制作用,注重水体修复工程的运行管理和长效机制,必将推动我国城市水环境的改善和水生态文明的建设进入良性循环的轨道。
本文来源于《给水排水》杂志2015年第5期。
第五篇:激光强化、修复技术2
修复的重要意义:金属工模具的失效事实上均因其表层局部材料磨损等原因而报废,而且金属工模具的加工周期很长、加工费用极高(尤其是精密复杂模具或大型模具制造加工费高达数十万元乃至数百万元)。因此,对金属工模具真正承受磨损作用的特定部位进行表面强化(“用劲用在点子上”),以大幅度延长、提高工模具的使用寿命,无疑是一种具有重要经济意义的方法。另外,大多数工模具只因表面很薄一层材料被磨损后即失效报废,因此,只须对模具及关键金属零部件表面磨损局部区域进行修复,并在修复过程中把模具表面真正实际承受磨损的表面“换成”特殊高耐磨材料(“好钢用在刀刃上”),就可“变废为宝”,不仅使模具得到修复,而且由于修复后的新模具表面“刃口部位”使用了特殊高耐磨材料,修复后的模具的使用寿命还将较原模具大幅度提高,经济效益巨大(例如:修复一根电厂电机大型轴包括各种准备时间在内也仅需数天时间,但可创造上百万元的经济效益)。
模具工作面金属医生/激光强化处理技术及装备
可对金属工件出现磨损、划伤、针孔、裂纹、缺损变形、硬度降低、沙眼、损伤等缺陷进行沉积、封孔、补平等修复功能。还可在金属表面形成耐磨层、耐蚀层、耐热层、耐氧化层、耐冲击层、防滑层、高粘合层、可焊层、导电层等强化作用。这样就决定了本设备应用的广泛性和先进性。成为各行各业必备的设备。
1、模具制造行业
塑料模表面的打毛,增加美感和使用寿命;头盔塑料模具分型面堆焊修复;铝合金压铸模具分流锥表面强化;模具腔超差、磨损、划伤等修复与强化。
2、塑料橡胶工业
橡塑机械零部件修复,橡胶、塑料件用的模具超差、磨损与修补。
3、航空、航天业
飞机发动机零部件、涡轮、涡轮轴修复或修补,火箭喷嘴表面强化修理,飞机外板部件修复,人造卫星外壳强化或修复,钛合金件的局部渗碳强化,铁基高温合金件的局部渗碳强化,镁合金的表面渗A1等防腐蚀涂层,镁合金件局部缺陷堆焊修补,镍基/钴基高温合金叶片工件局部堆焊修复,如:叶片叶冠阻尼面与叶尖的磨损和导叶的烧蚀等。
4、汽车与机车的制造与维修行业
汽车制造和维修工业中,用于凸轮、曲轴、活塞、汽缸、离合器、摩擦片、排气阀等补差和修复,汽车体的表面焊道缺陷补平修正。
5、船舶、电力行业
电曲轴、轴套、轴瓦、电气元件、电阻器等修复,电气铁路机车轮与底线轨道连接片的焊接,电镀厂导.电辊、金属氧化处理铜铝电极的制作焊接。
6、机械工业
修正超差工件和修复机床导轨、各种轴、凸轮、水压机、油压机柱塞、气缸壁、轴颈、轧辊、齿轮、皮带轮、弹簧成形用的芯轴、塞规、环规、各类辊、杆、柱、锁、轴承等。
7、铸造工业
铁、铜、铝铸件砂眼气孔等缺陷的修补,铝模型磨损修复。
8、化学工业
反应器搅拌轴及浆可焊上耐磨耐蚀层。用此方法可加工泵柱塞、泵叶轮、泵壳体、密封环、轴套、阀门密封面、阀杆、阀芯、风机叶片、压缩机十字头、耐酸泵柱塞叶轮、套筒及环状零件等。
9、金属、动力、冶金、煤炭工业
送风机零件、翻斗车零件、分粒过滤网、各种冲磨及冲头、煤炭运输丝杆、传送零件、蒸汽阀、重载荷轴承以及轧辊的表面强化、管材生产线V形传辊的表面强化、线材生产线导卫锟的表面强化、轧辊的表面毛化处理、轧辊表压挤伤沟(坑)的在线修复、轧辊颈轴磨损的修复、钼顶头的表面强化、燃烧机、加热机、退火罐、排气管道、冶金炉风嘴、铸磨等修复。
10、水泥工业
水泥干燥设备、鼓风机叶片、传送零部件、齿轮轴、滚炉拖轮、各类轴承、轴套等强化或修复。
11、建筑业
建筑机械零部件、水泥搅拌浆、砖成型机的桥与心轴强化等修复
12、造纸工业
造纸烘缸、压辊、轴颈、齿轮轴、皮带轮等修复。
13、印刷工业
印刷机油墨滚筒、印刷辊轮表面强化与修复
14、食品工业
食品机械零部件的维修,食品模具修补是最佳的方法。若用其他焊接修补会烧伤模具。
15、印染工业
印染机械零部件的修复,特别是对印染设备修复与防腐,更有它的特色。
16、其它行业 兵器工业
在电力、石油、冶金、汽车等许多工业部门及兵器工业中,材料表面的耐烧蚀涂层的研究越来越受到人们的重视。如大口径火炮的内膛表面,在射击时遭受火药爆炸产生的高温气体的强烈烧蚀,是影响炮管使用寿命的一个重要因素,通常比磨损或疲劳破坏严重得多。
长期以来,炮管镀铬作为一种防烧蚀的方法在国内外广泛应用,但镀铬层往往存在许多固有裂纹,而且很脆,加之镀铬层的显微组织为沿镀铬层厚度方向生长的柱状晶,其耐蚀性能较差,容易脱落。采用电火花表面合金化的方法获得的耐烧蚀涂层与镀铬涂层和未处理的基材相比,基材3次烧蚀循环就严重氧化脱落一层氧化皮;镀铬层处理后烧蚀2次循环时产生明显宏观裂纹并开始剥落,至27次循环时,镀铬层几乎全部脱落;而电火花强化层至30次烧蚀循环后,仅表面颜色变暗,涂层厚度无明显减薄,更无裂纹和剥落现象。这表明电火花表面合金化是获得耐烧蚀涂层的好办法。航空工业中的应用
•如今我们采用金属医生技术对多种航空航天、汽车、电机等上使用的铝合金部件的疏松、气孔和表面裂纹等缺陷进行了修复。经过装机使用,效果非常好。
•铝合金表面修复
铝及其合金表面自然形成一层强韧性的氧化膜,由此造成在实际焊接过程中很难防止暴露区域的氧化行为。电阻点焊焊接铝合金也是非常困难的,尽管该技术可以实现铝合金的焊接,因为表面氧化膜的存在导致表面电阻发生变化[12]。与铁不同,铝只有一种同素异形体,这样在冷却时就无相转变发生而造成显微结构的变化。铝合金强化的方式主要有变形强化、固溶强化和析出强化。常规焊接方法一般会在焊接时由于热输入的热量会恶化变形强化或析出强化的铝合金。
•弧焊和点焊是铝合金焊接中较常采用的焊接技术。最近由于激光技术的迅速发展,激光焊接技术得到迅猛的发展并在铝合金的焊接上的应用越来越广泛。然后,由于铝合金种类的不同而存在不同的问题。如,有研究表明在焊接AA6xxx系列铝合金由于存在较大的凝固温度区间而极易形成诸如裂纹等缺陷,在焊接AA5083时由于Mg含量在3~6%之间极易形成疏松缺陷。以上缺点的存在,导致铝合金的激光焊接比较于钢铁材料的焊接而言要复杂得多。
•而且,氧与铝之间的高活性会导致铝合金产品在铸造过程中极易发生疏松和气孔等缺陷,如图1为某型号发动机铸造件表面上形成的缩孔,图2为ZL104铝合金中形成的疏松缺陷。疏松和气孔的存在会严重降低制件的服役性能,甚至造成事故。但由于这些铝合金制件多为薄壁件且一般已经加工成成品,常规的焊补手段很难做到对基材不产生热损伤。而金属医生技术却可以很好的解决这一问题。?如今我们采用金属医生技术对多种航空航天、汽车、电机等上使用的铝合金部件的疏松、气孔和表面裂纹等缺陷进行了修复。经过装机使用,效果非常好。图3为我们在某航空发动机部件上使用金属医生技术进行修复后的截面图。
图1 航空发动机上铸造Al合金表面的气孔缺陷
图2 ZL104合金上形成的疏松
图3 Al-Si合金表面的HEMAA涂层
钛合金的表面渗碳和修复
•钛及其合金由于其突出的综合性能而广泛应用于航空航天、化学、汽车制造以及核工业领域。但钛合金由于不耐磨,因此需要进行表面渗碳处理以提高其表面耐磨性。
常规渗碳方法有电镀、渗碳炉渗碳、放电加工、PVD、CVD等方法,但这些方法均没有易加工、处理温度低、可高速以及大面积处理等优点。采用电火花渗碳形成渗碳层,其渗层深约5μm,经电子探针和X射线分析确认是碳向钛基体梯度渗入生成的TiC层。该方法属于扩散处理的一种,得到的硬化层与涂层处理得到的硬质层不同,具有与一般的梯度膜同样良好的致密性,硬度为Hv2200 基材约为Hv200。经摩擦实验发现,电火花加工处理可降低钛的摩擦系数,提高耐磨性。另外,经处理的表面耐盐水和硫酸的腐蚀性能也优于纯钛。•另外,我们还对飞机的钛合金防冰壳体、铁基高温合金以及镁合金零部件进行了电火花强化处理。•表面渗碳
•钛合金在制作成转动部件后进行应用非常具有吸引力,如汽车的阀门、化工用的泵阀以及飞机使用的部件。然而钛合金的耐磨性非常差,因为它在运动过程中极易发生粘着磨损。
钛及钛合金的渗碳可以在非氧化性气氛的环境下实现。根据Ti-C相图可以发现,Ti-C相图有别于Ti-O相图与Ti-N相图,C在Ti中的固溶度非常小。TiC化合物的厚度一般在1~10μm。但一旦TiC形成后,再形成更深的渗碳层就非常不容易。渗碳温度一般在1050℃的温度下进行,同时需要有渗碳介质存在才能完成渗碳过程。
图4为Ti-C相图。其中γ相为TiC1-x,此处x在一定范围内变化。
传统的渗碳处理工艺是不能完成对指定区域的渗碳。而金属医生恰好可以实现在常温下对指定区域的渗碳。
•钛合金表面的渗碳实验采用碳棒作电极,钛合金作为基体材料。图5为渗碳结束后得到的硬度分布曲线,表层的显微硬度可以到达Hv1500,由表及里存在梯度逐渐降低到基材的位置。在合金化过程中将发生如下化学反应过程:
C+α―Ti→αTi(C)(1)C+Ti→TiC(2)
如今该工艺已经成功的应用到化工厂阀门表面的渗碳和某型号飞机用钛合金部件的表面强化处理上。图6即为我们对某化工厂阀门表面进行渗碳处理的实物图,图7中黑色区域即为渗碳强化处理区域。
图4Ti-C相图图5 TC4钛合金表面渗碳层的显微硬度
图6 采用金属医生进行合金化渗碳处理的阀门(黑色区域为处理部位)
钛合金的修复
航空航天部件上使用的钛合金基本上是采用热处理强化的高强度钛合金进行制造的。这些部件由于在操作运转、腐蚀、磨擦等工况的作用发生磨损和损伤。然而,每年均有大量昂贵的鱼雷、药筒以及刮伤的钛合金部件由于摩擦而表面形成缺陷需要修复。同时有一部分钛合金存在铸造缺陷需要进行修复。一部分钛合金部件可以采用传统的焊接技术进行修复。由于传统的焊接方法会对基材产生大量的热损伤,而且这种热损伤常常是有害的,会造成部件的变形、腐蚀敏感性增强、热影响区的强度下降、吸氢/氮/氧等后果。而且,一些高强钛合金如武器或飞机发动机上使用的Ti-6A-2Sn-4Zr-6Mo合金、被认为是不可焊合金。基于以上原因,这些部件的修复一般不考虑采用常规的焊接技术进行修复的办法。图7为由于磨损和龟裂造成的缺陷。图8为在Ti6Al4V基材上进行金属医生后得金相照片。
图7磨损与减尺后的Ti6Al4V-涡轮销轴
图8在Ti6Al4V表面上制备出的金属医生涂层
电厂中的应用
•金属医生是一种微脉冲焊接技术,它利用电路短路产生的高脉冲电流,瞬间将电极材料的尖端熔化,从而在微小的局部区域进行小面积的增厚。由于放电局限于电极的尖端和工件表面上的微小区域,使得该工艺的热输入量非常小,不会造成对基材组织的影响,或者对基材的组织影响非常小。金属医生在难修复或难于制备涂层的材料上,尤其是在热影响区的影响不得不考虑的场合,显示出无可比拟 的优越性。金属医生不需要进行前/后热处理。因此,该技术在修复大型、高附加值、难拆卸的设备部件上的应用价值越来越明显。由于不见在尺寸恢复/强化时处于环境温度,从而避免产生热变形和热应力等问题。本文主要介绍使用金属医生技术在电站汽轮机、核电站、水利部门、航空航天上由于腐蚀而造成的部件的损伤失效的性能恢复与强化上的典型应用。
•山东某电厂蒸汽轮机壳体密封面采用电火花修复技术进行了修复,取得了良好的经济效益。该厂10万千瓦发电机组蒸汽机转速为 10000r/min,工作压力为 1.47MPa。由于铸铁壳体密封面因高压蒸汽冲蚀泄露,末级排气部位高压蒸汽(686 ~ 784kPa)串入压力为-89.6kPa 的真空密封带。采用电火花设备成功修复了严重冲蚀的铸铁密封面,保证了设备的正常运行。
汽轮机类部件激光/金属医生修复
激光再制造技术在钢铁冶金行业中的应用
•钢铁冶金行业是国家的基础行业,同时属于国家的重工业,且其设备繁杂、种类多、吨位重。由于摩擦、磨损等各种原因的存在,要维持设备的正常运转,每年
将消耗大量的备品备件。据统计,2003年济南钢铁股份公司达到年产量334万t钢的规模,而公司每年用于设备修理的备品备件制造费用就高达1.2亿元,备品备件修旧利废数量达150t以上,创经济效益2000万元左右。因此,减少备品备件的消耗和对已使用设备的再制造修复对降低生产成本,提高企业的经济效益具有积极的促进作用,且降低成本的空间很大。其中激光再制造技术对做好备品备件的修理、修复工作,对企业节能降耗具有非常现实的意义。激光再制造技术的主要种类 1.激光淬火
激光淬火技术是利用聚焦后的激光束入射到钢铁材料表面,使其温度迅速升高到相变点以上,当激光移开后,由于仍处于低温的内层材料的快速导热作用,使受热表层快速冷却到马氏体相变点以下,进而实现工件的表面相变硬化。如大型轧辊表面激光熔凝淬火的最大淬硬层深度可以达到2毫米以上。② 激光熔覆与合金化
激光熔覆技术是采用激光束在选定工件表面熔覆一层特殊性能的材料, 以改善工件表面性能的工艺。对于冶金行业轧辊、导位、输送辊、夹送辊、剪刃等大量易损件来说,激光熔覆与合金化技术的最大好处是将轧辊的整体合金化变成表面合金化或者熔覆,使轧辊等易损件的使用寿命大幅度提高的同时,生产成本增加有限。显然,合金粉末的设计、选择与使用正确与否是该项技术能否成功的关键。③激光焊接
激光焊接是激光材料加工技术应用的重要方面之一。其原理是将高强度的激光辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。由于其独特的优点,已成功地应用于微、小型零件的精密焊接中。如目前我国钢铁行业处于主导地位的典型冷轧工艺路线是:转炉冶炼-炉外精炼-初轧开坯-热连轧-酸洗-冷轧-退火-平整-镀锌(锡)-成产品。在此典型的冷轧工艺中,带材焊接设备必不可少。在运行过程中,先行钢带与后行钢带必需进行焊接,才能保证生产线的连续作业。硅钢板带在线运行时,需经多次“S”型弯曲变形和承受一定的运行张力,从而对焊缝的性能和质量有很高要求。激光再制造技术在钢铁冶金行业中的应用
1、轧辊的修复与强化
冶金行业生产设备大部分是在高(交变)应力、高热应力的恶劣环境下工作,如连铸辊、校直辊、槽型辊、半钢辊、铸管模、热(冷)轧工作辊、高炉溜槽、料钟等。在这些设备中,各种轧辊无疑是其中最关键的设备零件,其消耗量大,价格昂贵,寿命长短不仅与产品成本密切相关,而且直接决定钢铁制品的质量,尤其是表面质量和板型。采用激光堆焊修复各种轧辊,其中以小型轧辊和局部修复更为擅长。性能如能新件。
激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。
激光毛化汽车板由于涂漆后反射映像光泽度高,在国外被称为“镜面钢板”,它是生产高级轿车面板的优质板材。因此,激光毛化冷轧薄板(带)是汽车、家电、电子和轻工业生产需求的重要原材料。
2、各种轴类零件磨损、抱瓦、裂纹的修复
各种轴类零件经激光堆焊处理后堆焊层无粗大的铸造组织,堆焊层及界面组织细
密,晶粒细化,无孔、砂眼、夹杂、裂纹等缺陷,性能如同新件。
3、冶金行业中的各种高附加值的大、中、小型齿轮类零件的修复与强化
激光堆焊技术可使各种高附加值的大、中、小型齿轮类零件性能得到恢复。验收指标仍按原制造标准进行。
4、高压高速风机叶片的修复
叶片因其工作环境较为恶劣,叶轮叶片进风口部位易严重腐蚀与磨损,一般使用3 000~4 000 h即因叶轮叶片腐蚀与磨损失去平衡而报废。采用激光堆焊技术可以使修复层与原基材为冶金结合,硬度达到HRC55左右。服役性能如同新件。激光再制造技术的成本分析
激光加工最大的成本在于设备的一次性投资比较昂贵,一旦设备投入之后,在不考虑设备投入成本的前提下,运行成本比较低。由于钢铁冶金设备中的轧辊、轴类零件、叶片以及齿轮等都是高附加值的零件,激光加工的费用均在原值的25%以下。而且激光加工的周期短,可以大大节约维修的时间,从而保证了及时生产,并且性能如同新件。
高附加值铸件、特种零件、泵阀等部件表面缺陷的无损修复。关键件的失效分析与诊断。
轴头的激光堆焊修复
液压件的激光粉末熔敷强化