第一篇:基因工程制药的研究论文
第1篇:基因工程制药技术的探讨基因工程在生物制药领域的主要应用是基因工程制药。基因工程制药是指人们按照一定的医学目标,将特定的外源基因导入宿主的基因组成,由宿主产生特定蛋白药物的一种制药方式。
1基因操作技术
1.1基因大分子分离技术基因大分子分离技术实际上是指基因组DNA和质粒(plasmidDNA)的分离。基因组DNA分离的方法主要有PCR扩增技术、Southern杂交等。其中,基因文库是建立在DNA重组基础上的,它不同于基因克隆和基因库,主要是指将某种重组的DNA序列在某宿主体内进行克隆增值。质粒分离的方法主要包括酸酚法、质粒DNA释放法和去污裂解法等。质粒通常被用作基因工程中的表达载体或克隆载体。
1.2技术PCR技术是一种在细胞外模拟DNA复制过程的核酸扩增技术。PCR技术可以分为定量PCR技术和定性PCR技术。定量PCR技术是以实时PCR为代表,其基本原理是将荧光标记分子引入PCR反应体系中,以此实现对反应过程中每一时刻的荧光信号积累的实时检测,并计算PCR的产物量,或借助标准曲线法实现对初始模板量的计算。PCR技术分为反转录PCR、反向PCR、锚定PCR和多重PCR。反转录PCR(RT-PCR)是一种利用极少量的mRNA来构建庞大数量的cDNA文库的方法。
1.3基因芯片技术基因芯片实际上是生物芯片中的一种。该技术主要包括样品的制备、核酸方阵的构建和杂交、杂交图谱的检测和读出。根据用途的不同,又可以将基因芯片技术分为诊断芯片技术、测序芯片技术和表达谱芯片技术。其中,表达谱芯片技术作为一种应用最广泛的技术,它不仅可以用于药物的研究和筛选,还可以应用于分析基因的供能和探讨疾病的发生机制等方面。就该技术的具体应用而言,它主要包括以下两方面:①确定药靶基因。将正常的人体细胞与病变或异常的细胞作对比,并找出其中的差异,从而确定药靶基因。②实时监测药物治疗前后的基因状态。
检测基因表达有三方面的作用:①通过监测基因用药前后的基因表达状况,可以了解药物作用的机理及其对细胞的影响。②可以实现对药物毒理的研究。③有助于药物筛选。
1.4外源基因导入技术外源基因导入技术是将合成的新型基因导入宿主细胞中,然后通过基因在宿主体内的表达,由宿主产出有关的蛋白质药物。根据宿主细胞类型的不同,可以将基因的表达分为真核细胞表达系统和原核细胞表达系统。外源基因在宿主细胞内表达时,通常会将一个目的蛋白的基因与一个报告蛋白的基因相互融合,即形成融合蛋白,从而用于蛋白的纯化和检测。常用的报告蛋白有硫氧还蛋白、谷胱甘肽S-转移酶和β-半乳糖苷酶等。
2基因工程药物
2.1抗生素类传统的抗生素类药物是通过微生物发酵或化学合成手段实现的,其生产效率低,成本较高,不适合大规模生产。利用基因技术可以实现对生产抗生素类药物菌种的基因改造,使生产菌种的活性增强,生产产品的目的性增强、表达水平提高,从而在降低生产水平的前提下大量生产抗生素类药物。例如,我国王以光利用基因工程(基因重组技术)改造了螺旋霉素产生菌,大大提高了丙酰螺旋霉素的产量。
2.2活性多肽类活性多肽类在人体内的含量比较低,但是,其却在人体代谢过程中发挥着重要的调节作用,比如激素等。这些物质同样可以作为医学药物来治疗有关物质失衡(过多或过少)所造成的各类疾病。这类物质通常产于各类动物的脏器,成本较高,生产也比较复杂,无法大批量生产。但是,基因工程的诞生为其实施提供了一定的可能性,通过基因重组技术可以使某些微生物产生特定的活性多肽类物质。例如,可以将胰岛基因导入大肠杆菌中,由大肠杆菌生产胰岛素;也可以将生长基因导入酵母菌中,量化生产生长基因,将生长素用于临床治疗。
除了上述两种基因工程药物之外,还有细胞免疫调节因子、疫苗和基因治疗产品等多种基因工程药物。这些药物都极大地弥补了制药领域的不足,给人们的健康带来了巨大的帮助。
3结束语
综上所述,基因工程在生物制药领域发挥着至关重要的作用。它不仅可以为临床疾病的治疗提供大批量的生物药物,还可以有效地诊断和预防当下一些棘手的疾病,比如艾滋病、遗传病和癌症等。因此,为了促进我国生物制药领域的进一步发展,有关方面的研究人员要不断学习基因工程方面的知识,并要将其切实应用到生物制药中。
第2篇:基因工程制药的概况研究基因工程制药是随着DNA重组技术的发展而发展的。基因工程技术(Geneticengineering)是现代生物技术的核心,其快速发展,使得融入了包括医学、生物学、化学和物理学等多学科最新研究成果的生物制药也已成为近些年来发展虽快的高新技术产业之一。不断研制成功并投放市场的生物技术药品和诊断试剂在为人们诊病、治病的同时,更给人们带来了攻克和治愈各种疑难疾病的希望。基因工程制药已经成为利用现代生物技术生产的最重要的产品,并成为衡量一个国家现代生物技术发展水平的一个最重要的标志,生物制药已成为制药业中发展最快和技术含量最高的领域[1]。从1982年第一个新生物技术药物基因重组人胰岛素上市至今,生物制药产业只有20余年历史,约有100余种产品,但这些产品在治疗肾性贫血、白细胞减少、癌症、器官移植排斥、类风湿关节炎、糖尿病、矮小症、心肌梗死、乙肝、丙肝、多发性硬皮病、不孕症、粘多糖病、法布莱氏病、囊性纤维化、血友病、银屑病和脓毒症等,在很多领域特别是疑难病症上,起到了传统化学药物难以达到的作用。本文简要介绍以基因工程蛋白质药物为主的基因工程制药的概况。
1基因工程产业化过程中存在的问题
1.1重复投资,缺乏创新90年代以来涉及基因工程药物的企业大量涌起,但大多是仿制,很少拥有独立知识产权的药品。基因工程制药企业往往是多家生产一种产品,造成不良竞争,企业也得不到合理的利润,故对产品的研发投入更不上,很难进入良性发展轨道。
1.2开发能力落后我国在生物技术“上游”已与国外差距缩小,但“下游”技术仍有很大差距,如工艺设备、分析仪器主要依赖进口。又如高产率的分离纯化处理工艺,蛋白产品的稳定性及制剂的配方,高质量的控制鉴别和测试,执行GMP的操作规范等方法,都与国际水平存在差距。
1.3融资困难,资金不足基因工程制药产业是高科技产业,具有高投入,高风险的特点,目前其资金的主要来源还是银行贷款。这种单一的融资渠道,使的企业资金不足,很难拥有竞争力。
2增强生物基因制药产业价值的发展思路
通过上述分析,我们可以了解到,生物基因制药产业的产业链发展不完善,产业化水平较低。基于网络效应与互补性理论对生物基因制药产业的分析,本文提出以下增强生物基因制药产业价值的发展思路。
2.1加快技术创新与技术互补提高产业化水平由于一种生物基因药物的从研发到上市一般情况下需要5-10年的时间,而药品的专利期为20年,在基因药物的研发期间,需要投入大量的成本,而且成功率较小,风险较大,因此制药公司都努力使企业的研发成本降到最低,为了达到这种效果,制药公司可以和学校进行产学研结合,技术互补,联合协作,形成战略联盟,加快药物的开发进程,使药物尽快上市,实现产品价值。
2.2采取多种互补营销形式,做大企业规模目前生物基因制药企业大部分为中小型企业,生产规模和经济效益无法与国内外大公司抗衡,面对这种现状,要采取一定措施,进行优势资源互补,扶持现有优势企业做大做强。采取市场互补性营销方案,通过重点医药企业相互合作,实现市场的发展和繁荣。加大吸引外资力度,与国际跨国公司进行战略联盟,依靠其雄厚的资金和先进的管理经验,提升研发技术水平,提高产品质量和竞争力[2]。利用资源互补,加大对医药工业园的支持力度,吸引产业链中各环节强势企业进驻医药产业,调整生物基因制药产业结构,发挥医药工业园的聚集作用和集群效应,加速基因制药产业链的孵化与构建,以增强生物基因制药产业价值创造能力。
2.3加大R&D的投入,建立科研成果快速转化的机制是否具有研究、开发能力是衡量医药企业竞争力的重要因素。,药品知识产权保护是我们面临的严峻问题。因此,鼓励技术创新,加大R&D的投入,提高科研开发人员的积极性,建立一支具有较强实力的药物创新、研发队伍显得非常紧迫。在研发方面,应注重与世界各地的高科技人才的合作,借助外脑,进行虚拟研发;在政府的支持与投入下,与科研机构合作,扩大资金、技术实力,集中优势资源,建立多学科参与、多部门合作的创新体系;建立科研成果转化机制,缩短药品开发周期,提高开发效率,形成一种集产、学、研、商和风险投资为一体多赢的研究与开发局面。美国、德国政府立法规定企业每年R&D投入不能低于年销售额的3%,且用于R&D的费用均免征税收[3]。我国也应颁布类似的法令和优惠政策,强制并鼓励企业创新。
2.4制定人才发展战略,加大人力资源的开发利用力度能否吸收和培养科技人才,推进企业的技术进步和产品升级,是企业保持核心竞争力并立于不败之地的关键。据报道,我国加入WTO后的第一个星期里,国外大型公司在北京中关村就挖走了大量国内企业优秀人才。现代市场的竞争,实质上是人才的竞争[4]。因此,企业必须树立以人为本、人才至上的观念,建立人才激励机制,制定人才发展战略,广招贤才,引进具有国际先进管理经验的人才和系列项目,以提高企业的核心竞争力。
2.5建立风险投资机制国外的大量实践证明,风险投资是解决高技术产品商品化、产业化过程中资金困难的有效途径。当前,我国应营造良好的国际风险投资环境,鼓励风险投资,吸收国外风险投资家进入我国市场,利用风险投资促进基因工程产业化发展,从而建立具有国际竞争力的企业集团。同时,我国应尽快建立适合我国高科技产业发展的融资体制,解决资金瓶颈问题,使我国的高科技产业发展步入快车道。
2.6加大对高新技术企业的优惠政策利用税收、信贷、土地资源等政策性优惠,提高企业的创新能力和规模化生产能力,提高其市场竞争力。加强对国家一类新药的市场保护机制,将国家一类新药自动列入国家基本用药目录,优先考虑国家一类新药的各地招标和进入地方/医保用药目录,为我国创新药品的市场发展提供较好的生存条件,鼓励企业的产品创新。
近两年,我国科技部生物工程中心组织力量对全国400多家单位和几十家生物技术企业做过一次调查,在咨询了300多位海内外专家的基础上,置定了21世纪初的生物技术发展战略。我国采取的措施主要是立足创新、集成应用、需求向导和重点突破的战略[5]。集成应用一方面集成现有成熟技术,另一方面是多学科、多领域的集成。要实现这一宏伟的战略目标,除制定具体对策外,要走官、产、学、研、资相结合的道路。先建小企业,慢慢发展壮大。力争在今后10到15年之内,我国生物技术产业的整体水平,尤其是基因制药水平能步入世界发达国家行列,而且生物技术产业能够成为国民经济的支柱产业之一。让我们共同努力,刻苦工作,迎接具有中国特色的生物技术产业的新纪元。
第二篇:基因工程论文
基因工程论文
一. 定义
基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段
二,基本操作步骤:
1.提取目的基因:一条是从供体,的DNA中直接分离基因;另一条是人工合成基因(1)直接分离基因:最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。
(2)工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。
2.目的基因与载体结合:将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。
3.将目的基因导入受体细胞:目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。
4.目的基因检测与表达:在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。
三.基因工程应用:
1.与医药卫生
(1)生产基因工程药品(2)基因诊断(3)基因治疗
2.与农牧业、食品工业
(1)农业:培育高产、优质或具特殊用途的动植物新品种。
(2)畜牧养殖业:培育体型巨大、品质优良的转基因动物;利用外源基因在哺乳动物体内的表达获得人类所需要的各种物质,如激素、抗体及酶类等。(3)食品工业:为人类开辟新的食物来源。
3.与环境保护
(1)用于环境监测:用DNA探针可检测饮水中病毒的含量
(2)用于被污染环境的净化:分解石油的“超级细菌”;“吞噬”汞和降解土壤中DDT的细菌;能够净化镉污染的植物;构建新的杀虫剂;回收、利用工业废物等。
生物081 马明臣 0802030119
第三篇:基因工程论文
浅谈基因工程的应用
及发展前景
姓名:**** 课堂编号:*** 学号:******** 专业年级:******** 指导老师:*** 摘要:20世纪70年代以来基因工程技术在世界范围内迅速兴起,为揭开生命世界的奥秘打开了一条通道,它被人们寄予着缓解饥饿与贫困的期待,也凝聚这人们改善生活质量,提高生活水平的美好憧憬,这就是基因工程赖以存在与发展的意义所在。
关键词:基因工程 农业 医学 环保 前景
Abstract:70 years since the 20th century,genetic engineering technology in the world is rising rapidly,to uncover the mysteries of life and the world opens up a channel,it is the people sent to the expectations of hunger and poverty relief,but also unite the people improve their quality of life,improve living standards good vision,and this is genetic engineering which the meaning of existence and development.基因工程,又称DNA 重组技术,是指在基因水平上,以人工的方法取得目的基因,在体外重组于载体上,形成重组DNA分子,然后将重组DNA 分子转入受体细胞进行复制、转录和翻译,从而产生人们所需要的目的基因的产物。基因工程技术打破了天然物种屏障,人们可以按照主观愿望,将来自不同生物体的DNA 片段组合到一起,并获得新的表达产物。
基因工程技术的不断发展使其在农业、医学、环保等方面取得了广泛的应用,带来了巨大的科学价值和经济效益。基因工程通过基因重组实现产品的改良,例如获得杀虫或抗病活性,产生更多的代谢产物,或产生新型代谢产物等。通过基因工程技术产生的基因工程体一般可以产生经济或社会效益,或具有明显的产生经济或社会效益的潜力。以下通过基因工程在农业、医学和环保三个方面来说明基因工程的应用及发展前景。基因工程用于农业方面
农业是目前基因工程技术引用最广泛的领域之一,农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。例如:中国科学院把抗病毒基因转到了水稻的细胞里,由此培育出的植株可以抵抗水稻常见的一些病害,并能稳定遗传抗虫。同时,植物基因工程技术的兴起为创造植物雄性不育系提供了新的策略和可能[1]。人们采用特异性启动子与RNA酶基因构建嵌合基因这一策略来实现创造雄性不育系。事实证明,这在烟草、油菜、小麦、水稻和一些果树雨中中取得了成功。
另一方面,转基因技术的实现也为农业创造高质量、高产量的新品种。转基因技术能培养出多种快速生长的转基因鱼、转基因羊、产奶量高的转基因牛等[2]。随着生活水平的提高,人们越来越关注农业产品的口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以很好地改善植物的品质,在人们的不断努力下,越来越多的基因工程农业产品进入了市场,利用基因工程改良作物品质也取得了不少进展,如美国Florida Gainesville大学的科学家将外源高分子量面筋蛋白基因导入普通小麦中,获得了含量更多的高分子量面筋蛋白质的小麦,这样的小麦面筋蛋白具有良好的延伸性和弹性[3]。基因工程用于医学方面
目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我国科学家应用安福隆治疗慢性乙型病毒性肝炎患者45 例,第1个月每天肌肉注射1 次安福隆500 万u,后改为隔天肌肉注射1次,疗程为6个月;与给予甘利欣、维生素C等保肝药物治疗的对照组47例进行了比较。结果治疗组肝功能复常率、HBVDNA 阴转率、HBeAg 阴转率、HBeAb 阳转率均明显高于对照组并有显著统计学意义。该临床研究证明安福隆治疗慢性乙型病毒性肝炎疗效确切[4]。
同时了,基因工程的发展使得基因诊断得到广泛的应用。一些遗传病和癌症的发病与基因的突变有关,在基因水平可以做出正确的诊断。常用的方法有DNA分子杂交,检测基因的缺失、重排、基因拷贝数扩增等。在多聚酶链式反应技术发明后,使基因诊断方法趋于简便。可以不必做DNA分子杂交,而直接从扩增的DNA分子做酶切分析。有的不需做酶切而从扩增片段的长度就可作为找诊断指标。用PCR法扩增片段做RFLP分析,又成俄日扩增片段长度多态性——AmpFLP [5]。
基因工程用于环保方面
工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的超级细菌,用之清除石油污染,在数小时内可将水上浮油中的2 /3烃类降解完,而天然菌株需1年之久。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。
生物柴油作为一种新型可再生能源,其生产原料主要为含油植物,如大豆、油菜、棕榈和蓖麻等。此外,将含油微藻作为生物柴油原料,也在逐渐成为一个新的研究领域。用微藻生产生物柴油具有更多优势,科学家利用小球藻生产的生物柴油,不仅具有传统化石柴油相当的密度、粘度和热值,而且具有更低的冷滤点和良好的发动机低温启动性能[6]。
目前国外已有许多公司开始利用基因工程研究生物柴油及其他生物燃料,圣地亚哥蓝宝石能源生物科技公司称,他们有望在2011年前销售由藻类生产出的“汽油”;科罗拉多州的Solix 生物燃料公司的第一个试点工厂,计划于今年夏天正式投产营运[7]。鉴于基因工程所开发的生物燃料是能源发展的大势所趋,致力于开发并大量生产生物燃料的公司,最后获得的不仅仅是可观的利润,他们还将创造历史。基因工程的发展前景
由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。
但是,任何科学技术都是一把双刃剑,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。基因工程这一生物技术最大的特征就在于它与人类的生命健康和生活质量息息相关,而且这种相关性要强于其他任何科学技术。在解决这些伦理问题之前,我们必须要先确立解决这些伦理问题的基本思路。只有把基本思路规划好,才能有针对性的解决问题,避免走弯路。解决基因工程伦理问题的基本思路可以概括为四个基本原则,即不伤害原则、有利原则、尊重原则以及公正原则[8]。
还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。
基因工程技术还在发展阶段,它的许多用途和功能仍有待我们去发掘,趋利避害是我们发展基因工程技术的基本原则,让基因工程技术成为社会发展与人们生活水平提高的福音。
参考文献:
[1]孙明 《基因工程》 高等教育出版社 2005 [2]孟瑞芝 浅谈基因工程在农业生产中的应用 2009 [3]陈慧 基因工程技术在食品营养品质、风味改良中的应用 牧与饲料科学 2010 31(4)27-28 [4]贾志杰 我国基因工程药物研究与应用新进展 长春中医药大学学报 2010 26(2)290-291 [5]翟中和 《生命科学和生物技术》 山东教育出版社 1996 [6]郑明刚 基因工程在生物柴油原料中的应用研究 农业基础科学 2010 22-26 [7]方陵生 源自基因工程的新一代生物燃料 世界科学 2009 8-10 [8]赵宏韬 浅析基因工程伦理中的有利原则 东方企业文化 2010 202 [9]闫新甫 《转基因植物》 2002 [10]韦凯 植物基因工程的应用及其发展 魅力中国 2009 45
第四篇:基因工程论文
学号:13054107
基因工程结课论文
靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体构建
院(系)名
称: 理学院 专业
名
称: 生物科学 学
生
姓名: 姜己玉 所
在班
级: 13-1
目录
摘要............................................................................................................................................2 第一章 绪论..............................................................3 1..1RNAi的研究进展....................................................3 1.1.1RNAi的分子作用机制...........................................3 1.1.2 RNAi 的特点..................................................3 1.1.3 siRNA简介.........................................................3 1.1.4 s iRNA 的设计原则..........................................3 1.2 用于 RNA i 的载体....................................................4 1.2.1 载体的选择..................................................4 1.2.2 质粒人工构建的目的.................................................4 1.3 MRP1 的研究进展......................................................4 第二章 实验材料与方法.....................................................5 2.1 实验材料.............................................................5 2.1.1 宿主菌.............................................................5 2.1.3 载体通用引物................................................5 2.1.5 主要仪器..........................................................5 2.2 试验方法.........................................................5 2.2.1 shRNA 的设计与退火..................................................5 2.2.2 合成干涉片段的退火..........................................6 2.2.3 重组载体的构建..............................................6 2.2.4 菌落PCR初步筛选阳性重组子..................................7 2.2.5 测序鉴定重组载体...............................................7 第三章 结果与分析.........................................................8 3.1 质粒经HindⅢ和BamHI双酶切后胶回收结果...........................8 3.1.1 质粒经HindⅢ和BamHI双酶切后结果.............................8 3.1.2 目的片段的回收................................................8 3.2 重组质粒的菌落PCR...................................................8 3.3 重组质粒大量提取......................................................8 3.4 重组质粒测序结果.................................................8 参考文献..................................................................9
摘 要
癌症严重威胁着人类的健康,其发病率呈上升趋势。化疗作为其常规临床治疗手段,在癌症治疗中具有手术和放射治疗不能替代的作用。肿瘤细胞的多药耐药性(multidrug resistance, MDR)是导致肿瘤细胞化疗失败的主要原因。肿瘤细胞产生多药耐药的原因较为复杂,多药耐药相关蛋白1(Multidrug Resistance-associated Protein 1,MRP1)的过度表达是导致其产生多药耐药的主要原因之一。RNA干扰(RNA interference,RNAi)是近年来发现的能快速、高效、特异的沉默目的基因表达的技术,如能通过RNAi技术沉默MDR1基因,逆转肿瘤细胞的多药耐药性将为改善癌症病人的化疗效果奠定基础。
目的:本课题选用pRNAT-H1.1/shuttle-RFP表达穿梭载体。构建针对mrp1 mRNA的RNA干扰表达载体。
方法:将预先根据MRP1基因序列设计合成的编码siRNA的cDNA序列与pRNAT-H1.1/shuttle-RFP质粒载体连接,构建靶向mrp1 siRNA重组质粒。将重组质粒转化E.coli DH5α后大量提取重组质粒,经菌落 PCR和 DNA测序分析检测重组载体构建结果。
结果:成功构建靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体。为下一步抑制mrp1基因在肿瘤细胞中的表达奠定基础。
关键词:RNA干扰;MRP1;pRNAT-H1.1/shuttle-RFP质粒;穿梭载体
第1章 绪 论
1.1 RNAi的研究进展
RNA干扰(RNA interference , RNAi)是由双链RNA分子介导的序列特异性转录后基因沉默过程,为一种双链RNA分子在mRNA 水平上关闭相关基因表达的过程,是一项新兴的基因阻断技术。RNAi有望成为分析人类基因组功能的有力工具,在肿瘤病因、免疫机制及治疗等方面的研究上有广阔的发展前景。
1.1.1 RNAi的分子作用机制
RNAi的作用机制在众多学者的努力研究下日渐明朗。不同生物体内的RNA干扰作用机制也各有不同,但是主要可以分为两种类型:特异效应作用机制与非特异效应作用机制。特异性效应一般发生在短双链RNA(21~23nt)上,非特异性效应发生于长双链RNA(30nt以上)。
1.1.2 RNAi的特点
RNAi具有高效性,也就是说与细胞内的mRNA的量相比,注入细胞内的siRNA的量要少得多。但由于循环放大机制的存在,仍可以有效地阻断目的基因的表达;同时,RNAi也具有高特异性,小干扰RNA由dsRNA降解得到的,除在序列识别中不起主要作用的正义链3′端的两个碱基以外,其余碱基均为必需。
1.1.3 siRNA简介
RNA干扰作用是通过siRNA(small interfering RNA,siRNA)这类小RNA分子作为较稳定的中间介质实现的。通过对植物的研究证明,双链RNA复合体降解为35nt左右的小RNA分子后通过序列互补与mRNA结合,进而降解mRNA。
1.1.4 siRNA的设计原则
RNAi 作用的成功与否,关键在于siRNA序列的结构,不同结构的siRNA序列沉默基因的效率差别很大,2001年,Elbashir S M等[应用化学合成法合成了siRNA,并发现可以诱导哺乳动物发生RNAi,他们进而据此提出了siRNA 设计方法:1)从起始密码下游50~100nt开始搜索siRNA以避免出现于5′或3′端的UTRs 的蛋白结合位点,;
2)搜索5′AA(N19)UU序列,如果没有相应序列,可以选择5′AA(N21)或5′NA(N21);3)G/C含量在32%~79%之间[16]; 4)要确定siRNA对靶基因的特异性,可以利用Blast软件在基因组中进行比对,;5)设置在基因组中无对应序列的siRNA的对照siRNA。但是,Elbashir S M等的设计方法siRNA 筛选效率仍然很低,要更好的掌握RNAi。
1.2 用于RNAi的载体
基因工程中,携带目的基因进入宿主细胞进行扩增和表达的工具,称为载体。是指能够运载外源DNA片段进入受体细胞,具有自我复制能力,使外源DNA片段在受体细胞中得到扩增和表达,不被受体细胞的酶系统所破坏的一类DNA分子。载体具有以下的功能:(1)运送外源基因高效转入受体细胞;(2)为外源基因提供复制能力或整合能力;(3)为外源基因的扩增或表达提供必要的条件。
1.2.1载体的选择
质粒是为一种1-200kb不等的双链、闭环的DNA分子。是染色体外稳定遗传,并能以超螺旋状态存在于宿主细胞中的因子。RNA干扰实验通常选用质粒作为载体。质粒载体是为适应实验室操作在天然质粒的基础上人工构建的。但是,天然质粒的缺点是分子量大,拷贝数低,所以为使分子量尽可能减少,必须去掉大部分的非必需序列,以便于基因工程操作。
1.2.2 质粒人工构建的目的
天然存在的野生型质粒由于分子量大、拷贝数低、单一酶切位点少、遗传标记不理想等缺陷,因而不适合用作基因工程的载体,必须对之进行改造构建
1.3 MRP1的研究进展
MRP1的底物 直接通过细胞毒性分析和底物刺激的ATP酶测量进行识别MRP1的底物的,底物是由大量的多样化的疏水复合物,有机阴离子结合物以及阴离子非结合性底物所组成。典型的结合型底物包括:谷胱甘肽,葡糖醛酸和硫酸盐结合物,MRP1的组织分布 MRP1在体内的表达可以说是无所不在。
第2章 实验材料与方法
2.1 实验材料
2.1.1 宿主菌
E.coli DH5α:为感受态宿主菌由北京鼎国生物技术有限责任公司提供。
2.1.2 质粒载体
pRNAT-H1.1/shuttle-RFP质粒。pRNAT-H1.1/shuttle-RFP质粒特性如下:pRNAT-H1.1/shuttle 是一种腺病毒siRNA穿梭质粒,shRNA的表达由人的转录启动子H1 Promoter启动,H1启动子属于PolⅢ启动子,该启动子总在其下游的固定距离开始转录合成RNA,转录过程遇到4~5个连续的U即终止,非常精确;同时CMV Promoter为真核生物启动子,可在该质粒中高效启动红色荧光蛋白的表达;MCS为多克隆位点。
2.1.3 载体通用引物
正向引物(M13):5′-GTTTTCCCAGTCACGAC-3′ 反向引物(Rev):5′-GAGTTAGCTCACTCATTAGGC-3′
2.1.4 主要试剂、具酶及仪器
质粒快速提取试剂盒,Sanprep柱式DNA胶回收试剂盒,10×PCR buffer,dNTP,Marker(1kb,100bp),Goldview DNA染料,EDTA Bio Basic Inc 溶菌酶,LiCl Amresco RNase Sigma bacto-typtone Bio Basic Inc bacto-yeast extract Bio Basic Inc PEG8000,HindⅢ NEB,BamHI NEB,T4DNA连接酶 NEB,Taq酶,微量振荡器(MM-2型),微量振荡器(MM-2型),恒温空气摇床,电子天平,紫外分析仪(ZF型),低温离心机(SK18),低温离心机(SK18),PCR仪(9600型),ABI 恒温磁力搅拌器(2003-16),恒温水浴锅,自动双重纯水仪
2.2 实验方法
2.2.1 shRNA的设计与退火
根据siRNA设计原则[34],根据MRP1靶序列,设计合成四对互补反向重复脱氧核糖核酸序列,中间间隔9nt茎环序列(TTCAAGAGA),5′端带有BamHⅠ酶切位点,3′端带有HindⅢ酶切位点,用BLAST进行同源性分析,确定与其他基因无同源性。shRNA的 5
DNA模板由上海生工合成,单链干涉片段退火后形成双链。根据2个靶序列设计的2对DNA干涉片段mrp1-1,mrp1-2。
2.2.2 合成干涉片段的退火
合成片段的退火体系:各管混匀后90℃保温3分钟,37℃保温1h,再取5μL退火溶液加45μL 灭菌双蒸水混匀,使干涉片段终浓度为8ng/μL。
2.2.3 重组载体的构建
(1)将含有pRNAT-H1.1/shuttle-RFP质粒的大肠杆菌接种入盛有200mL LB培养基(含2μg/mL氨苄青霉素)的500mL三角瓶中,置37℃振荡培养过夜(置摇床中160r/min)。(2)实验前预先配制溶液Ⅱ,溶菌酶。预冷溶菌酶、溶液Ⅰ和溶液Ⅲ。取出菌悬液,观察菌体生长状况,将菌悬液分装于两个250ml离心桶中,调平。预冷离心机至4℃,4℃下8000r/min离心5min,弃上清,得菌体。(3)加预冷的溶液Ⅰ50ml于每离心桶,混匀,洗涤沉淀。8000r/min离心5min,弃上清,得沉淀。此步骤的目的为出去培养基,以获得更纯的细菌沉淀物。(4)用17ml溶液Ⅰ吹散重悬细菌沉淀物,加3ml新配制的溶菌酶溶液,温和混匀,室温放置10min,裂解大肠杆菌。(5)加40ml新配制的溶液Ⅱ,以使菌体破碎,释放质粒DNA等内容物。缓慢颠倒数次,防止破坏基因组DNA,室温放置3min。(6)加30ml预冷的溶液Ⅲ,缓慢颠倒数次,防止SDS破坏基因组DNA,冰浴放置15min。4℃下以10000r/min离心10min,然后将上清液全部倒入新离心桶中。(7)将上清液在4℃下以10000r/min离心10min,然后将上清液经8层纱布过滤至新离心桶中。(8)加0.6倍体积(约54ml)的异丙醇,充分混匀,室温放置15min,以沉淀核酸。8000r/min离心15min,小心倒掉上清,敞开瓶口倒置于纸巾上,使残余上清液流尽,晾干。(9)加15ml水再加15ml LiCl(预冷)混匀,静置沉淀15min,4℃下10000r/min离心15min,以出去蛋白质和RNA。(10)倒上清于新的离心桶中,加30ml异丙醇,剧烈震荡,静置沉淀15min,在4℃下以10000r/min离心15min。再次沉淀核酸。(11)弃上清,得到沉淀的核酸。敞开瓶口倒置于纸巾上使残余上清液流尽。(12)用70%乙醇洗涤沉淀,4℃下以10000r/min离心5min,弃去乙醇,离心桶敞口倒置于纸巾上,使乙醇挥发殆尽。此步骤可以沉淀DNA。(13)加2ml无菌水溶解沉淀,将液体吸到10ml离心管中,再吸2ml ddH2O冲洗瓶壁,随后将洗液加到同一10ml离心管中,随后加100µl RNaseA,37℃,水浴30min。以使RNA彻底分解。(14)加等体积含13%(w/v)聚乙二醇(PEG 8000)的1.6mol/L NaCl,充分混合,用微量离心机于4℃以12000转/分,离心15分钟,以回收质粒DNA。(15)沉淀用3ml70%乙醇重悬清洗,以除去PEG,12000r/min离心8min。(16)重复上步操作,将离心管倒扣于纸巾上10min,加1ml H2O溶解,用等体积酚/氯仿/异戊醇再抽提一次蛋白质,室温下8000r/miin离心10min。(17)小心吸上清与另一离心管中,加2倍体积的预冷无水乙醇,再加0.1体积的NaAC(3mol,pH5.2),冰上沉淀20min,4℃下10000r/min离心15min,使DNA沉淀出来。(18)去上清加入3ml 70%乙醇重悬清洗,10000r/min 离心15min,晾干,用500µl无菌水溶解沉淀。
2.2.4菌落PCR初步筛选阳性重组子
灭菌牙签挑取LB筛选平板上圆滑单菌落,先在预先分隔并标记的另一LB平皿上划板,然后点入制备好的PCR反应混合液,开始扩增。PCR反应条件为:94℃预变性2分钟;94℃ 变性30s,55℃ 退火30s,72℃ 延伸45s,共35个循环;72℃ 延伸1分钟,4℃保存,1.2%琼脂糖凝胶电泳检测PCR产物。划板的平皿于37℃培养12-16h。
2.2.5 测序鉴定重组载体
将小提鉴定结果正确的质粒送交上海生工生物工程技术服务有限司,以载体反向引物为测序引物。将经鉴定后未发生突变的H1.1-
1、H1.1-2靶向MRP1基因siRNA重组质粒的宿主菌摇瓶扩大培养后,进行质粒大量提取,方法如2.1.2.3.1所述。
第3章 结果与分析
3.1 质粒经HindⅢ和BamHI双酶切后胶回收结果
3.1.1 质粒经HindⅢ和BamHI双酶切后结果
pRNAT-H1.1/shuttle-RFP质粒经HindⅢ和BamHI双酶切,结果显示单酶切产物大小约为6200bp,双酶切产物略小于单酶切产物,与预期结果相符。
3.1.2 目的片段的回收
目的片段回收 ,结果显示回收产物大小约为6Kb,与预期结果相符。
3.2 重组载体的菌落PCR 重组载体菌落 PCR电泳,结果显示PCR扩增产物,电泳分析发现阳性产物可以扩增出560bp大小的条带,假阳性产物不能扩增出560bp大小的条带,与预期结果相符,可以初步筛选出阳性产物。
3.3 重组质粒大量提取
重组质粒大量提取后的电泳,结果显示pRNAT-H1.1/shuttle-RFP 重组质粒大小约为6.2kb,与预期结果相符。
重组质粒大提并稀释50倍以后在紫外分光光度仪Genespec上测其OD值。
3.4 重组质粒测序结果
pRNAT-H1.1/shuttle-RFP重组质粒测序鉴定,结果显示重组质粒的碱基序列与预期结果一致,未发生碱基突变,说明pRNAT-H1.1/shuttle-RFP重组质粒构建成功。
参考文献
[1] 张淑华.小干扰RNA靶向VEGF基因在体内外抑制乳腺癌细胞增殖的研究[D].青岛:青岛大学硕士,2007.[2] Sharp PA.RNA interference-2001.Genes Dev.2001, 15: 485-490.[3] 康洁, 刘福林.RNAi的抗病毒作用及其机制[J].现代免疫学, 2004, 24(5): 439-441.[4] 林少微,王雪华,郑高哲等.RNAi的研究进展 [J].中国医药导报, 2007, 4(29)_3.[5] 黄艳敏,贾欣秒.RNA干扰技术的研究进展 [J].河北化工, 2009, 32(1):213-216.[6] 邓庆.E2F8及肿瘤-睾丸(CT)基因在肝癌中作用的研究[D].上海交通大学硕士.2009.[7] 赖长城.人类Pin1在食管癌组织中的表达[D].福建:厦门大学硕士.2008.[8] 魏群,分子生物学实验指导(第二版)[Q]2007,11:3.[9] 陈爱葵,李梅红.RNAi的研究及应用 [J].广东教育学院学报, 2008, 28(3):5.[10] 王光海.MRP1与肺癌耐药.临床肺科杂志[J].2005,5,(3):367.
第五篇:基因工程论文
淮阴工学院生物课程论文 引言(或绪论)
第 1 页
共 7 页
基因工程也称遗传工程,它主要是指通过DNA重组技术,对生物特定的基因进行复制(克隆)、改造(修饰、重组)或人工合成新的基因,以达到改造生物性状乃至创造新的物种的目的。基因工程就是在基因水平(分子水平)上对生命体的操作。基因技术将可能给人类在疾病防治、健康保健直至延年益寿方面带来的革命性变化勾起了人们对未来美好生活的无限憧憬。
1.1 基因工程应用于植物方面
农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。
1.2 基因工程应用于医药方面
目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核 淮阴工学院生物课程论文
第 2 页
共 7 页
甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。目前,应用基因工程研制的艾病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。
1.3 基因工程应用于环保方面
工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2 /3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。基因工程存在的争议
目前普遍的看法是,人类在基因技术如何影响人类社会传统伦理道德方面的研究远远落后于对基因技术本身的研究。塞莱拉基因公司老板文特尔就曾郑重指出,人类 淮阴工学院生物课程论文
第 3 页
共 7 页
基因图谱虽然由人类各国共享,但决不能滥用。我认为所有的科学创造、发明都应该以改善人类生活为目的,基因工程方面的研究也如此。我们应鼓励基因科学的深入发展,国家也应该加大投入。但是克隆人以及一些武器发展方面的问题,就要靠社会的约束和管理,要靠人类自己的抉择,毕竟科学都是有正反两面性的。就基因工程技术本身而言,也存在着不少争议,不得不让人重视。
2.1 对遗传工程的生物能否给予专利保护
就像过去欧洲圈占无生命的公有资源土地一样,“圈地运动”同样存于今天:美国一家公司用一种植物为原料制成抗癌物质,赚取上亿美元,而这一植物的自然资源地的人们却没有拿到一分钱补偿,这时就涉 及到生物遗传资源能否拥有私有知识产权的问题。
2.2 要不要反对生物剽窃
不少发展中国家拥有原始遗传资源,而发达国家却拥有生物技术革命的手段,可以把基因库资源变成商品。印度有一种讷木树,一家西方公司从其中分离出有效成份,申请和获得多项讷木提取液生产工艺的专利,这种被生物资源地称之为“生物剽窃”的做法是否妥当。
2.3 人类能否成为知识产权
美国卫生研究院从巴拿马妇女血液中分离一种病毒,可以生成研究艾滋病和白血病的抗体,并申请专利;印度近亲结婚多,成为国际基因勘察目标,对遗传缺陷和遗传基因感兴趣的“基因猎手”们蜂拥而至。这些做法在世界上正受到强烈的抵制,1994 年,40 多个国家的妇女反对美国公司申请和获得乳腺癌基因的专利,因为这些基因是自然产物,不是人类发明,不应成为知识产权。
2.4 基因工程会不会给地球带来严重的环境后果
基因可以随着技术的发展和人类的应用而产生流动,这种“基因流”就带来“遗传污染”。比如消化木质素的遗传工程酶对造纸业有极大的价值,可一旦这种细菌进入森林,则导致森林毁灭。更可怕的是基因武器,故意释放危险的遗传工程病毒,造成世界污染。
2.5 遗传工程使动物受难
在科学实验中插入突变基因的小鼠,常常发生没有后腿、面裂、脑缺,世界动物 淮阴工学院生物课程论文
保护协会对这些实验一直都持反对态度。
第 4 页
共 7 页
2.6 转基因动物的争论
有两种意见:一种是称赞转基因动物突破传统技术,产生全新的生物,带来无限商机,是一个进化的表现,是一个革命;另一种理论表示这在道德上违反了生物类群的遗传本质,对进化历史和传统饲养的彻底背离。
2.7 遗传工程食品会不会危及人类健康
致敏性生物基因的遗传工程食品会引发人群严重变态反应。
2.8 遗传工程动物器官移植的新忧虑
这项技术可能导致动物跨种系传播,造成全球扩散,比如艾滋病。人类很久以来所追求和艰难保存的个人和公共的安全,可能在追求完美自身的遗传改造过程中不可逆地丧失。在这种情况下,生物技术虽然有一个清楚的开端,目前却没有一个清楚的结尾。对于这些争议,作为科技界,应该在保持清醒头脑和良知的同时做出认真选择,让基因工程趋利避害,真正为社会和人类服务。转基因食品的隐患
虽然转基因食品研究历史只有短短几十年,但其提高产量、增强自身抗病抗虫等优点较为明显,另一方面,其潜在的风险,如过敏性、毒性及对环境影响也令世人关注。
3.1 毒性问题
一些研究学者认为,对于基因的人工提炼和添加,可能在达到某些人们想达到的效果的同时,也增加和积聚了食物中原有的微量毒素。
3.2 过敏反应问题
对于一种食物过敏的人有时还会对一种以前他们不过敏的食物产生过敏,比如:科学家将玉米的某一段基因加入到核桃、小麦和贝类动物的基因中,蛋白质也随基因加了进去,那么,以前吃玉米过敏的人就可能对这些核桃、小麦和贝类食品过敏。
3.3 营养问题
科学家们认为外来基因会以一种人们目前还不甚了解的方式破坏食物中的营养成分。淮阴工学院生物课程论文
3.4 对抗生素的抵抗作用
第 5 页
共 7 页
当科学家把一个外来基因加入到植物或细菌中去,这个基因会与别的基因连接在一起。人们在服用了这种改良食物后,食物会在人体内将抗药性基因传给致病的细菌,使人体产生抗药性。
3.5 对环境的威胁
在许多基因改良品种中包含有从杆菌中提取出来的细菌基因,这种基因会产生一种对昆虫和害虫有毒的蛋白质。在一次实验室研究中,一种蝴蝶的幼虫在吃了含杆菌基因的马利筋属植物的花粉之后,产生了死亡或不正常发育的现象,这引起了生态学家们的另一种担心,那些不在改良范围之内的其它物种有可能成为改良物种的受害者。淮阴工学院生物课程论文
结
论
第 6 页
共 7 页
生物技术是20世纪末期在现代分子生物学等生命科学的基础上发展起来的一个新兴技术领域,目前人们常说的生物技术一般指基因工程技术,是现代生物技术的核心。利用基因工程技术改变基因组构成而形成的动植物、微生物及其产品被称为转基因生物产品。由于基因工程技术在生产上的应用打破了无中间天然杂交的屏障,不同物种间的遗传物质可以互相交流,因此人们有理由相信这种技术的实际应用会对人类、动植物、微生物及其生态环境构成危险或潜在风险,即生物安全。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。淮阴工学院生物课程论文
参 考 文 献
第 7 页
共 7 页 楼士林,杨盛昌,龙敏南,等.基因工程[M ].北京:科学出版社,2002.李庆军,董艳桐,施冰.植物抗虫基因的研究进展[ J ].林业科技, 2002, 27 3 吴乃虎,基因工程原理.北京:科学出版社,1998 4 张慧展,基因工程.上海:华东理工大学出版社,2005