第一篇:浅析提高薄壁零件加工质量的工艺控制论文(大全)
薄壁零件在加工的过程中,遇到的困难相对其他的零件而言肯定是非常多的,因为其生产工艺的发展受到了限制,但是在薄壁零件加工的过程中,技术人员还是对于其的精度、工艺技术进行了多方面的研究,使其在加工方面的难度降低了好多。
1.工艺路线的选择
在薄壁零件的加工过程中应当重点对工艺进行分析,并对在加工的过程中,对于薄壁零件的变形规律进行研究,要重点对加工过程中,保证零件的材料变形进行分析,确保零件的加工形状和质量能达到设计的标准。在粗加工和精加工之间可以适当的对半进行处理,是为了消除加工过程中所产生的切削力以及夹紧应力,还有就是要保证零件在进行装配和调试的过程中保证稳定性。合理的工艺路线在薄壁零件的加工过程中是非常具有研究意义的。
2.提升刚度
薄壁零件因为其自身的原因,它的刚度是比较差的,对薄壁零件的刚度的提高可以有效的消除加工的过程中由于加工工作对于工件精度的影响。同时也是可以消除交工的振动的。
3.适当的装夹
对零件进行装夹可以从夹紧和定位两方面进行分析。定位可以使零件稳定的处在某一状态,通过三点定位的方式对零件进行定位。夹紧力是在定位点上来实现的,能够获得最大的摩擦力又能减少接触的面积,这是装夹技术的重点的。
第二篇:薄壁零件加工教学
摘要:薄壁零件应用广泛,一般使用冲压机床加工,但薄壁零件的数控加工比较困难,因为其刚性差,易变形。教师可以利用手头的工具来加工“旋钮”薄壁零件,充分利用身边的资源向学生展示如何用数控铣床加工薄壁零件,让学生亲自加工来加强体会,了解薄壁零件的加工工艺和注意事项。
关键词:薄壁零件;加工工艺 ;电脑编程
中图分类号:g712文献标识码:a文章编号:1005-1422(2016)06-0084-03
一、引言
零件在加工过程中由于各种因素导致变形是无法消除的,零件在加工中变形的大小除了与零件本身材质、结构有关系外,也与加工中零件的装夹方式、刀具选用、切削用量及冷却液的选择等有很大的关系。材质、结构与其用途有关,有时是无法取代的,因此,我们在零件材料一定的情况下,必须从加工过程中想办法,比如采用正确的装夹方式、合理选用刀具、切削用量、冷却液等,这些是减少零件变形的关键所在。
薄壁零件变形最大,最难控制,主要原因是薄壁零件刚性差、强度弱,在加工中极易产生变形,使零件的形位误差增大,不易保证零件的加工质量。由于薄壁零件重量轻、结构紧凑,应用极为广泛。因此,为了让学生学习加工薄壁零件,笔者特意选择了结构不容易变形、精度要求不高、表面曲面粗糙度要求较高的旋钮图案(图1)。
二、工艺分析
零件材料为铝合金。
零件结构分析:零件总体结构比较简单,但属于薄壁腔体零件,壁厚仅有1mm。加工中要去除大部分材料,会产生铣削热量,从而导致零件产生热变形,这一点是我们制定工艺方案前必须考虑的。薄壁零件加工的影响因素主要还有以下几个方面:
① 装夹时零件产生弹性变形,严重影响加工表面的几何精度和位置精度;
② 切削力作用使零件产生变形;
③ 机床、附件、夹具本身刚性不足,影响加工精度;
④ 切削振动也是造成加工误差的重要原因;
⑤ 零件的厚度要保证均匀;
⑥ 保证零件表面的粗糙度。
上述诸原因,我们在加工前就要逐一解决,制定加工的方案。
我们加工采用的数控铣床是发那科系统的华亚数控铣床,转速最高为6000r/min,进给最高f为8000mm/min,装夹工件只有平口钳,铣刀材质为高速钢,毛坯为70x70x20mm。
三、加工过程
1.选择装夹方式
由于该零件属于腔体薄壁零件,在铣削加工中不能按常规采用平口钳装夹,因为平口钳装夹使零件受力情况不理想。零件在加工中随着大部分材料的去除,其垂直受力方向有变,因而产生变形。但是工件并没有对精度要求很高,保证视觉上的完整就可以了,我们也只有平口钳可以装夹,因此,在教学过程中,选择了平口钳装夹的方式。为了避免夹坏工件,要求力度不能太大,工件用铜片包裹装夹,装上平口钳以后用手大力摇不动就行。刚开始加工由于毛坯比工件高出8mm,所以只要装夹4~6mm就可以了。
2.对刀方法
无论正反面,都是利用平口钳的平面作为z轴高度基准来对刀,比如:毛坯安装以后,最高面到平口钳平面的高度为15.7mm,对刀的时候把这个高度差定为15mm,通过机床坐标来把z轴零点设在毛坯表面,更换刀具的时候统一用这种方法,避免了加工后的毛刺妨碍z轴对刀仪的摆放,又可以迅速更换刀具,保证了对刀的精度。
3.刀具选择
数控加工对夹具的要求可以从以下两个方面考虑:尽可能做到在一次装夹后能加工出全部或大部分待加工表面,尽量减少装夹次数,以提高加工效率和保证加工精度;尽量采用组合夹具、通用夹具,避免采用专用夹具。
刀具的选择要求如下:要根据零件材料的性能、加工工序的类型、机床的加工能力以及准备选用的切削用量,来合理地选择刀具。例如,对于铣削平面零件,可采用端铣刀和立铣刀;对于模具加工中常遇到的空间曲面和铣削,通常采用球头铣刀或带小圆角的鼻型刀。立铣刀有平头刀(r=0)、球头刀(r=r)和鼻型刀(r 内壁如何加工决定了壳体的厚度和零件变形的程度。由于毛坯的厚度有20mm,而零件高度是12mm,因此,在上表面加工外形时,我们特意把深度加工为14mm,反面加工的时候装夹好,简单地对xy轴进行对刀,z轴则要利用平口钳的平面来对刀计算高度,用铣平面把多余的材料切掉,通过不断的z轴零点的调整来保证零件12mm的高度,然后再换上分中棒进行精确分中。这里的关键是在z轴的对刀上,比如:使用z轴对刀仪来对刀,对刀仪放在平口钳的平面上,对好以后的高度是50mm,而工件z轴零点距离平口钳的平面是5mm,那么刀具最低点离工件零点是50-5=45mm,只要在机床输入“z45.”就完成z轴对刀了。之后更换的刀具也是使用同一种方法去对刀,同样是输入“z45.”,这样就保证了统一的基准,缩小了零件厚度的误差,避免换刀以后对刀出现大的误差而导致工件严重报废。
对刀以后将是对内壁进行加工,切削用量图7对切削力的影响是至关重要的。精加工薄壁零件一般应降低和控制切削用量,增加切削次数,匀速切削,以便减少切削力和切削热。若切削面积相等,增加走刀量比增加切削深度的切削力小。而切削速度对切削力的影响是不断变化的,一般应采用较高的切削速度。所以选用合理的切削参数是传统加工薄壁零件时所应考虑的重要措施之一。因此,在加工内壁时无论使用何种刀具切削深度都要较少,机床的转速只有6000r/min,选择加工的层高参数是平时使用的层高的一半以下,而进给量是平时的一倍以上,加工时再根据实际加工来调整进给量。加工旋钮上表面时,底部留了3mm高,1mm的余量,在反面加工时采用双面对称去除余量方法,即在加工中交错进行薄壁两面的加工(caxa制造工程师中的等高精加工使用xy优先加工方法),但是,在这之前要先进行粗加工,余量留0.5~1mm为好,通过提高零件薄壁的刚性来减少零件的变形,最终我们就可以加工出想要的工件了(图7)。
四、结束语
以上介绍了加工薄壁零件在有限的条件和资源下需要注意的一些方法和技巧,但在专业生产中确实有许多的不足之处,笔者也在不断努力,在教学工作中尽自己最大的能力,充分利用手头的资源让学生了解基本的加工过程还是非常有必要的。同时不得不指出,在实际数控加工中,加工的方法是相当灵活的。总之,只有通过不断地探索,勇于尝试不同的方法,善于发现问题的所在,逐渐积累经验,才能有助于提高编程加工效率,提高实际应用水平。
第三篇:浅析薄壁零件提高加工精度的措施
浅析薄壁零件提高加工精度的措施
天津机电工艺学院 朱 会
摘要: 本文较为详尽地介绍了在数控车床加工中,关于如何提高薄壁零件表面加工精度的问题。分析影响加工精度的种种因素,并提出改进的办法给出具体的解决措施。简单易懂,语言明确、严谨,针对性强。较为适用于实际的生产。
关键词: 加工精度 薄壁零件 数控车床
日常的生产中越来越多的出现了薄壁零件的加工,这种零件广泛地应用于各行各业之中,其体积小、质量轻、结构紧凑等优点,已经成为今后产品的发展趋势。但是,对于薄壁零件的加工在车削工艺中是较有难度的,因为壁薄,刚性差、强度低、变形较大,在加工操作中不易保证加工质量,表面精度较难掌握。对于大批量的生产,我们可以采用数控车床的加工特点,比如机床加工精度高、生产效率高等特点,在工件的装夹、加工用刀具、程序的编制等方面进行努力,找到有效克服零件变形影响的方法,保证加工零件的精度要求。
1、分析影响薄壁零件加工精度的因素
1.1易受力变形:因工件壁薄,在夹紧力的作用下容易产生变形,从而影响工件的尺寸精度和形状精度。(如图1所示)
图1
我们都知道三爪自定心卡盘上装夹,零件只受到三个爪的夹紧力,夹紧力不均衡,从而使零件变形。如果将零件上的每一点的夹紧力都保持均衡,也就是说,增大零件的装夹接触面,而减少每一点的夹紧力。
1.2易受热变形:因工件较薄,切削热会引起工件热变形,使工件尺寸难于控制。
1.3易振动变形:在切削力(特别是径向切削力)的作用下,容易产生振动和变形,影响工件的尺寸精度、形状、位置精度和表面粗糙度。
2、提高薄壁零件的加工精度的措施 2.1改变装夹方式
回转体薄壁零件由于内外圆直径差很小,强度低,若卡盘上夹紧力过大,零件就会产生变形,产生极大的形状误差。如果我们采用开缝套或扇形软卡爪,通过实际生产证明此方法对零件的变形很小,有效的改善了加工质量。
薄壁零件由于工件较薄,刚性较差,如果采用常规方法装夹工件及切削加工,将会受到轴向切削力和热变形的影响,工件会出现弯曲变形,很难达到技术要求。因此,需要进行优化夹具设计工作,设计适合零件的专用夹具。
2.2合理选择刀具的几何角度
在薄壁零件的车削中,合理的刀具角度对车削时切削力的大小,车削中产生的热变形、工件表面的微观质量都是至关重要的。刀具前角大小,决定着切削变形与刀具前角的锋利程度。前角大,切削变形和摩擦力减小,但前角太大,会使刀具的楔角减小,刀具强度减弱,刀具散热情况差,磨损加快。所以,一般车削钢件材料的薄壁零件时,用高速刀具,前角取6°~30°,用硬质合金刀具,前角取5°~20°。
刀具的后角大,摩擦力小,切削力也相应减小,但后角过大也会使刀具强度减弱。在车削薄壁零件时,用高速钢车刀,刀具后角取6°~12°,用硬质合金刀具,后角取4°~12°,精车时取较大的后角,粗车时取较小的后角。车薄壁零件的内外圆时,取大的主偏角。
2.3选用合理的切削用量
薄壁零件车削时变形是多方面的,装夹工件时的夹紧力,切削工件时切削力,工件阻碍刀具切削时产生的弹性变形和塑性变形,使切削区温度升高而产生热变形。所以,我们要在粗加工时,背吃刀量和进给量可以取大些;精加工时,背吃刀量一般在0.2~0.5mm,进给量一般在0.1~0.2mm/r,甚至更小,切削速度6~120m/min,精车时用尽量高的切削速度,但不易过为高。如上述所说 的,合理选择好切削用量,从而到达减少零件变形的目的。
2.4程序混编
在合理选用刀具、优化车削专用夹具的基础上,再采取G92、G76混用数控编程,可以避免因切削量过大,而产生的薄壁零件变形,以达到提高螺纹加工精度和质量的目的。这种方法设计合理,易于实现,可减轻工人劳动强度,获得良好的经济效益。
3、实际生产中薄壁零件应用较广,如图例1-1所示
图1-1 盘形薄壁零件
用传统的方法,采用内孔及端面定位,先加工外圆φ80-0.30,再车右端面至长5-0.15;调头装夹,再加工φ55-0.20,长3-0.12。用这种方法变形大,精度低,结果不太令人满意。那么我们在加工工艺不变的情况下,稍稍改变刀具的一些切削角度,如增大前角以减小轴向分力。结果变形量有所减小,但平面度仍达不到技术要求。用前后两把刀同时加工该工件的方法(图1-2所示)。加工后工件变形极小,平面度符合要求,合格率在96%以上。
图1-2
具体操作方法如下:
1.工件加工在多刀自动车床上进行,主轴转速为960r/min; 2.右平面刀装于前刀架上,用于右端面加工;
3.左平面刀装于后刀架上,用于加工内端面及φ55-0.20外圆; 4.调整好前后刀架动作时间,使前后两刀同时触及工件开始切削。待加工至要求尺寸,分别退刀恢复原位;
5.两刀片材料均为W18Cr4V,刀杆材料为45号钢; 6.刀具几何参数及切削用量 :
(1)右平面刀:前角r0=14°,后角a0=3°,主偏角kr=95°,副偏角κ'r=4°,刃倾角λs=-2°,纵向断屑槽宽4mm。切削用量ap=0.4mm,f=0.25mm/r,Vc=200mm/min;
(2)左平面刀:前角r0=14°,后角a0=3°,副前角r'0=16°,副后角a'0=8°,主偏角κr=95°,副偏角κ'r=0°,刃倾角λs=0°,横向断屑槽宽4mm。切削用量ap=0.4mm,f=0.25mm/r,Vc=200mm/min
4、加工时的几点注意事项
4.1工件要夹紧,以防在车削时打滑飞出伤人和扎刀;
4.2在车削时使用适当的冷却液(如煤油),能减少受热变形,使加工表面更好地达到要求;
4.3安全文明生产。
5、结束语
通过实际加工生产,以上措施很好地解决了加工精度不高等问题,减少了装夹辅助时间,减轻了操作者的劳动强度,减少了变形的可能性,从而保证了加工精度,同时提高了生产效率并保证加工后零件的质量,经济效益十分明显。
参考文献
1、数控机床加工工艺,华茂发,北京机械工业出版社,2004.2、《CAD/CAM与制造业信息化》,北京《CAD/CAM与制造业信息化》杂志社,2005.3、车工工艺与技能训练,唐支岐,北京中国劳动社会保障出版社,2004.4、数控车床编程与操作,宋小春,张木青主编,广东经济出版社,2002.
第四篇:毕业论文-零件的数控加工工艺编制
X X X X 职 业 技 术 学 院
论文题目:系 别:专 业:学 制:学 号:姓 名:指导教师:
2011
毕 业 论 文
零件的数控加工工艺编制 数控与材料工程系 数控技术 三 年
年 10 月
摘要
本次设计主要是对数控加工工艺进行分析与具体零件图的加工,首先对数控加工技术进行了简单的介绍,然后根据零件图进行数控加工分析。第一,根据本零件材料的加工工序、切削用量以及其他相关因素选用刀具及刀柄和零件的轮廓特点确定需要7把刀具分别为外圆粗车刀、外圆精车刀、外切槽刀、外螺纹刀、内镗孔刀、内切槽刀。第二,针对零件图图形进行编制程序,此零件为轴类零件,外轮廓由直线、圆弧和螺纹组成,零件的里面要镗出一个锥孔,在加工过程中,工件需要调头钻孔再镗孔,第三,早钻孔对刀时要先回参考点,要以孔中心作为对刀点,刀具的位置要以此来找正,使刀位点与换刀点重合。
关键字:刀具的确定、走刀路线的选择、刀具的对刀点、工件的定位。
-I 第1章 数控加工基础
1.1 数控机床简介
1.1.1、数控机床特点
随着数控技术的发展,采用数控系统的机床品种日益增多,有车床、铣床、镗床、钻床、磨床、齿轮加工机床和电火花加工机床等。此外还有能自动换刀、一次装卡进行多工序加工的加工中心、车削中心等。
1)具有高度柔性、适应性强 2)生产准备周期短 3)工序高度集中
4)生产效率和加工精高、质量稳定 5)能完成复杂型面的加工 6)技术含量高
7)减轻劳动强度、改善劳动条件 8)有利于生产管理
1.1.2、数控机床的分类
数控设备的种类很多,各行业都有自己的数控设备和分类方法。在机床行业,数控机床通常从以下不同角度进行分类。
1.按工艺用途分类
按其工艺用途可以划分为以下四大类:
(1)金属切削类 指采用车、铣、镗、钻、铰、磨、刨等各种切削工艺的数控机床。它又可分为两类:
①普通数控机床 ②数控加工中心(2)金属成形类 指采用挤、压、冲、拉等成形工艺的数控机床,常用的
第2章 数控车削加工工艺及程序编制
工艺分析是工艺员的中心工作也是设计者设计的一个重要环节,它是对工件进行数控加工的前期准备。合理正确的工艺分析也是编制数控加工程序的重要依据。故工艺分析是数控加工不可缺少的。
正确合理的工艺分析需完成如下工作步骤和内容。
零件尺寸的正确标注:由于加工程序是以准确的坐标点来编制的,因此,各图形几何元素间的相互关系一定要明确;各种几何元素的条件要充分,应无引起冲突的多余尺寸或影响工序安排的封闭尺寸等;构成零件轮廓的几何尺寸的条件应充分。
识读零件:零件图纸直接反映零件的结构,而零件的结构决定工艺分析的合理性,所以我们要保证良好的零件结构。
工艺步骤:制定数控加工程序、划分工步、工序,确定对刀点、换刀点,刀具补偿,选择切削刀具、冷却液,编制工艺文件等。
编制加工程序:将工艺分析融入加工程序,并对其程序进行校验和优化。
2.1 零件工艺分析
零件结构分析
1.如图所示零件便面由柱面,圆锥面,顺圆弧,逆圆弧及外螺纹构成,外螺纹绞复杂其中多个直径尺寸由较高的精度,表面粗糙,零件图尺寸编注完整,符合数控加工尺寸标注要求,轮廓描述清楚完整,零件材料为45钢,毛胚为ф
刀,刀尖圆弧半径应小于轮廓最小圆角半径,取re=0.15~0.2mm。
2.3刀具卡片
2.4确定工件的定位与装夹方案
在数控车床上工件定位安装的基本原则与普通机床相同。工件的装夹方法影响工件的加工精度和效率,为了充分发挥数控机床的工作特点,在装夹工件时,应考虑以下几种因素:
1.尽可能采用通用夹具,必须时才设计制造专用夹具; 2.结构设计要满足精度要求; 3.易于定位和装夹; 4.易于切削的清理;
5.抵抗切削力由足够的刚度;
工件的定位与基准应与设计基准保持一致,应防止过定位,对与箱体工件最好选择“一面两销”作为定位基准,定位基准在数控机床上要仔细找正。
由于这个工件是个实心轴,末端要镗一个30的锥孔,因轴的长度不是很长,所以采用工件的右端面和48的外圆作定位基准,使用普通三爪卡盘夹紧工件,取工件的右端面中心为工件坐标的原点,对刀点在(100.1000)处。
2.5 切削加工顺序的安排
①先粗后精 先安排粗加工,中间安排半精加工,最后安排精加工和光整加
切槽
螺纹加工
速度,以v(m/min)表示。其计算公式:
v=πdn/1000(m/min)式中:d——工件待加工表面的直径(mm)n——车床主轴每分钟的转速(r/min)
根据零件的结构特点,外轮廓用采用90度外圆车刀,轮廓粗加工时留1mm的精车余量,粗加工时选主轴转速为s=800r/min,精加工选择1000 r/min,由公式计算得:切削速度v 粗加工:v=150(m/min)精加工:v=188(m/min)
2.7 数控加工工艺文件的填写
2.7.1.工艺过程卡片
2.7.2.机械加工工序卡片
2.8 保证加工精度的方法
为了保证和提高加工精度,必须根据生产加工误差的主要原因,采取相应的误差预防或误差补偿等有效的工艺途径措施来直接控制原始误差或控制原始误差对零件加工精度的影响。
2.8.1刀具半径的选定
1.刀具的半径R比工件转角处半径大时不能加工。2.刀具较小时不能用较大的切削量加工(刀具刚性差)。
2.8.2采用合适的切削液
1.切削液主要用来减少切削过程中的摩擦和降低切削温度。合理使用切削液,对提高刀具耐用度和加工表面质量、加工精度起重要的作用。
2.非水溶性切削液:切削油、固体润滑剂,非溶性切削液主要起润滑作用。3.水溶性切削液:水溶液、乳化液,水溶性切削液有良好的冷却作用和清洗作用。
故本设计加工时采用水溶液进行冷却。
2.9数控加工程序
本零件采用电脑软件编程,由于程序过多,这里只打出一部分,这里只展示左端部分的程序
O1234 T0404 M03 S1200 M08 F1500 G00 X77.917 Z13.100 G00 Z6.549 G00 X71.414
G01 X56.600 Z5.841 G01 Z-15.700 F10.000 G01 X60.000 G01 X61.414 Z-14.993 F20.000 G01 X71.414 G00 Z6.549 G01 X57.014 F5.000 G01 X55.600 Z5.841 G01 Z-16.200 F10.000 G01 X60.000 G01 X61.414 Z-15.493 F20.000 G01 X71.414 G00 Z6.549 G01 X56.014 F5.000 G01 X54.600 Z5.841 G01 Z-16.700 F10.000 G01 X60.000 G01 X61.414 Z-15.993 F20.000 G01 X71.414 G00 Z6.549 G01 X55.014 F5.000 G01 X53.600 Z5.841
G01 X0.000 Z5.300 G01 X50.600 F10.000 G01 Z-18.700 G01 X58.600 G01 Z-36.000 G01 X60.014 Z-35.293 F20.000 G01 X70.014 G00 Z5.507 G01 X1.414 F5.000 G01 X0.000 Z4.800 G01 X49.600 F10.000 G01 Z-19.200 G01 X57.600 G01 Z-36.000 G01 X59.014 Z-35.293 F20.000 G01 X69.014 G00 Z5.007 G01 X1.414 F5.000 G01 X0.000 Z4.300 G01 X48.600 F10.000 G01 Z-19.700 G01 X56.600
G01 X1.414 F5.000 G01 X0.000 Z2.800 G01 X45.600 F10.000 G01 Z-21.200 G01 X53.600 G01 Z-36.000 G01 X55.014 Z-35.293 F20.000 G01 X65.014 G00 Z3.007 G01 X1.414 F5.000 G01 X0.000 Z2.300 G01 X44.600 F10.000 G01 Z-21.700 G01 X52.600 G01 Z-36.000 G01 X54.014 Z-35.293 F20.000 G01 X64.014 G00 Z2.507 G01 X1.414 F5.000 G01 X0.000 Z1.800 G01 X43.600 F10.000 G01 Z-22.200
G00 Z1.007 G01 X1.414 F5.000 G01 X0.000 Z0.300 G01 X40.600 F10.000 G01 Z-23.700 G01 X48.600 G01 Z-36.000 G01 X50.014 Z-35.293 F20.000 G01 X71.414 G00 X77.917 G00 Z13.100 G00 X100 Z100 T0404 M03 S1200 G00 X70.318 Z11.144 G00 Z0.707 G00 X59.414 G01 X-1.414 F5.000 G01 X0.000 Z0.000 G01 X40.000 F10.000 G01 Z-24.000 G01 X48.000
9X23.84 G1 Z-23.8 X21.52 X18.692 Z-22.386 G0 Z2.5 X25.76 G1 Z-14.341 X24.6 Z-15.965 Z-23.8 X23.44 X20.612 Z-22.386 G0 Z2.5 X27.68 G1 Z-11.653 X25.36 Z-14.901 X22.532 Z-13.487 G0 Z2.5 X29.6 G1 Z-8.965 X27.28 Z-12.213 X24.452 Z-10.799 G0 X19.5
第3章 加工成果
3.1仿真软件介绍
3.1.1软件简介
市面上的仿真软件有很多,例如:南京斯沃和上海宇龙、斐克,这里我们选用斯沃,南京斯沃软件技术有限公司开发的,是结合机床厂家实际加工制造经验与高校教学训练一体所开发的国内第一款自动免费下载更新的数控仿真软件。通过该软件可以使学生达到实物操作训练的目的,又可大大减少昂贵的设备投入。斯沃数控仿真(数控模拟)软件包括16大类,66个系统,121个控制面板。具有FANUC、SIEMENS(SINUMERIK)、MITSUBISHI、FAGOR、美国哈斯HAAS、PA、广州数控GSK、华中世纪星HNC、北京凯恩帝KND系统、大连大森DASEN、南京华兴WA、江苏仁和RENHE、南京四开、天津三英、成都广泰GREAT、巨森数控JNC编程和加工功能,学生通过在PC机上操作该软件,能在很短时间内掌握各系统数控车、数控铣及加工中心的操作,可手动编程或读入CAM数控程序加工,教师通过网络教学,可随时获得学生当前操作信息。斯沃数控仿真软件也是目前国内唯一自动免费下载更新的数控仿真软件。
3.1.2 斯沃界面
打开软件,选择GSK980TD
工作界面
3.对刀,输入刀补
4.开始加工
车外轮廓
钻孔
钻一个ф20深度为29的孔
完成内轮廓加工
至此整个零件仿真加工完成。
参考文献
[1]《数控加工编程及操作》,顾京主编,高等教育出版社,2003 [2]《数控机床编程与加工技术》,李年芬,北京科技出版社 2005 [3]《数控机床加工工艺与编程》杨琳,北京中国劳动社会出版社 2005
第五篇:第12章典型零件加工工艺作业
第12章典型零件加工工艺作业
1.顶尖在轴类零件加工中起什么作用?在什么情况下需进行顶尖孔的修答:轴类零件最常用两中心孔为定位基准,既符合基准重合的原则,并能够研?有哪些修研方法?
在一次装夹中加工出全部外圆及有关端面,又符合基准统一的原则,所以顶尖在轴类零件加工中上重要的定位元件,起主要起定位作用。
当加工高精度轴类零件时,中心孔的形状误差会影响到加工表面的加工精度,另一方面,当零件进行热处理后,中心孔表面会出现一定的变形,因此,要在各个加工阶段对中心孔进行修研。
修研的方法有三种:用硬质合金顶尖修研;用油石、橡胶砂轮或铸铁顶尖修研;用中心孔磨床磨削。
2.主轴的机械加工工艺路线大致过程是怎样安排的?
答:机床主轴一般是结构复杂,精度要求较高,其机械加工工艺路线为:备料-正火-车端面和钻中心孔-粗车各外圆-调质-半精车-精车-表面淬火-粗、精磨外圆表面-磨内锥孔等几个主要工序。
3.分析主轴加工工艺过程中如何体现基准统一、基准重合、互为基准的原答:主轴在加工过程中,各主要加工表面的精加工均采用锥心轴或锥堵等代则?它们在保证主轴的精度要求中都起了什么重要作用?
替内孔轴线,采用两顶尖支承定位。一般在精加工完两端的锥孔后,两端用锥堵中心孔定位作为定位基准,这样充分体现了基准统一和基准重合的原则; 而在精加工两端锥堵时,又是以轴上的精加工的主要加工外圆作为基准的,体现了互为基准的原则。通过采用这些加工措施,充分保证了主轴的轴颈相对于支承轴颈的同轴度和端面对轴心线的垂直度等相互位置精度。
4.精磨主轴内锥孔的工序是怎样进行?
答:主轴锥孔对主轴支承轴颈的径向跳动,是机床的主要精度指标,因而锥孔的磨削是主轴加工的关键工序之一。在精磨主轴内锥孔时在专用的磨主轴锥孔夹具上进行。如图1所示。
前后支架和底座固定在一起前支架由带锥度的巴氏合金衬套支撑主轴工件前锥轴颈,后支架由镶有尼龙的顶块支撑工件。必须保证工件轴线与砂轮轴线等高,以免将锥孔母线磨成了曲线。浮动夹头的锥柄装在磨床主轴的锥孔内,工件尾端夹于卡头弹性套内,用弹簧把弹性套连同工件向左拉,并通过钢球压向镶有硬质合金的锥柄端面以限制工件的轴向窜动。
图1 磨主轴锥孔夹具
1一弹性套;2一钢球;3一弹簧;4一浮动夹头:5一底座;6一支承架
5.箱体零件的结构特点及主要技术要求有哪些?这些要求对保证箱体零件答:箱体是机器中箱体部件的基础零件,由它将有关轴、套和齿轮等零件组在机器中的作用和机器的性能有何影响?
装在一起,使其保持正确的相互位置关系,彼此按照一定的传动关系协调运动。箱体零件的结构特点是:构造比较复杂,箱壁较薄且不均匀,内部呈腔形,在箱壁上既有许多精度较高的轴承支承孔和平面,也有许多精度较低的紧固孔。箱体类零件需要加工的部位较多,加工的难度也较大。其主要技术要求有:(1)支承孔的精度和表面粗糙度。箱体上轴承支承孔应有较高的尺寸精度和形状精度以及较小的表面粗糙度值,否则,将影响轴承外圈与箱体上孔的配合精度,使轴的旋转精度降低,若是机床主轴支承孔,还会影响其加工精度。
(2)支承孔之间的孔距尺寸精度及相互位置精度。箱体上有齿轮啮合关系的相邻孔之间,应有一定的孔距尺寸精度及平行度的要求,否则会使齿轮的啮合精度降低,工作时产生噪声和振动,并降低齿轮使用寿命,箱体上同轴线孔应有一定的同轴度,否则不仅给轴的装配带来困难,还会使轴承磨损加剧,温度升高,影响机器的工作精度和正常运转。
(3)主要平面精度和表面粗糙度。箱体的主要平面是装配基准面和加工中的定位基准面,它们应有较高的平面度和较小的表面粗造度数值,否则将影响箱体与机器总装时的相对位置和接触刚度以及加工中的定位精度。
(4)支承孔与主要平面的尺寸精度和相互位置精度。箱体上支承孔对装配基面要有一定的尺寸精度和平行度要求,对端面要有一定的垂直度要求。如果车床床头箱主轴孔轴心线对装配基面在水平面内有偏斜,则加工时会使工件产生锥度。
只有满足了这些技术要求才能保证箱体上孔的配合精度、相对位置精度和接6.孔系加工方法有哪几种?举例说明各加工方法的特点及其适用性。答:孔系是指一系列具有相互位置精度要求的孔.箱体零件的孔系主要有平行(1)平行孔系的加工。平行孔系的主要技术要求是各平行孔轴心线之间及中心线与基准面之间的尺寸精度和相互位置精度。加工中常用找正法,镗模法和坐标法。找正法是在通用机床上加工箱体类零件使用的方法,可分为划线找正法,心轴块规找正法和样板找正法,适用于单件小批量生产。用样板找正法时,样板上孔系的孔距精度比工件孔系的孔距精度高,孔径比工件的孔径大。将样板装在工件上,用装在机床主轴上的千分表定心器,按样板逐一找正机床主轴的位置进行加工。该方法找正快,不易出错,工艺装备简单,孔距精度可达上±0.05 mm,常用于加工较大工件。
用镗模法加工孔系时,工件装夹在镗模上,镗杆由模板上的导套支承。加触刚度,使轴装配较为容易。
系、同轴系和交叉孔系。
工时,镗杆与机床主轴浮动连接。影响孔系的加工精度主要是镗模的精度。用镗模法孔距精度较高,这种方法定位夹紧迅速,不需找正,生产效率高,普遍应用于成批和大量生产中。
坐标法镗孔是在普通镗床、立式铣床和坐标镗床上,借助测量装置。按孔系间相互位置的水平和垂直坐标尺寸,调整主轴的位置,来保证孔距精度的镗孔方法。孔距精度取决于主轴沿坐标轴移动的精度。可用于加工孔距精度要求特别高的孔系,如镗模、精密机床箱体等零件的孔系。
(2)同轴孔系加工。同轴孔系的主要技术要求是孔的同轴度。保证孔的同轴度有如下方法:1)镗模法;在成批生产中,采用镗模加工,其同轴度由镗模保证。2)利用已加工过的孔作支承导向法;这种方法是在前壁上加工完毕的孔内装入导向套,支承和引导镗杆加工后壁上的孔,3)利用镗床后立柱上的导向套支承镗杆法;用这种方法加工时镗杆为两端支承,刚度好,但后立柱导套位置的调整复杂,且需较长的镗杆。该方法适用于大型箱体的孔系加工。4)采用调头镗法。当箱体箱壁距离较大时,可采用调头锤法。即工件一次安装完毕,镗出一端孔后,将工件台回转1800,再镗另一端的同轴线孔。这种加工方法锤杆悬伸短,刚性好,但调整工作台的回转时,保证其回转精度较麻烦。(3)交叉孔系的加工。交叉孔系的主要技术要求是各孔的垂直度,主要采用机床本身的回转精度和光学瞄准器定位等方法加工。
7.举例说明安排箱体加工顺序时,一般应遵循哪些主要原则?
答:为了便于安装,箱体一般采用分离式的。分离式箱体的主要加工部位有:轴承支承孔,接合面、端面及底面等。
整个加工过程分为两个大的阶段,先对箱盖和底座分别进行加工,然后对装配好的箱体进行整体加工。第一阶段主要完成平面,连接孔、螺纹孔和定位孔的加工,为箱体的对合装配做准备。第二阶段为在对合装配后的箱体上加工轴承孔及端面,在两个阶段之间安排钳工工序,将箱盖与底座合成箱体,用锥销定位,使其保持一定的相互位置,以保证轴承孔的加工精度和拆装后的精度。这样安排符合箱体加工中的先加工平面、后加工支承孔的原则,也符合粗加工与精加工分开的原则,可以保证箱体轴承孔的加工精底和轴承孔的中心高等尺寸达到要求。
为了保证达到这些要求,加工底座的结合面时,应以底面为精基准,这样可使结合面加工时的定位基准与设计基准重台,有利于保证结合面至底面的尺寸精度和位置精度。箱体对合装配后加工轴承孔时,仍以底面为主要定位基准,并与底面上的两定位销孔组成一面两孔的定位方式,既符合基准统一的原则,也符合基准重合的原则,有利于保证轴承孔轴心线与结合面的重合度和与安装基面的尺寸精度及位置精度。
8.怎能样防止薄壁套筒受力变形对加工精度的影响?
答:为防止薄壁套筒受力变形,在加工时要注意以下几点:①为减少切削力和切削热的影响,粗、精加工应分开进行。使粗加工产生的热变形在精加工中可以得到纠正。并应严格控制精加工的切削用量,以减少零件加工时的变形。
②减少夹紧力的影响,工艺上可以采取以下措施:改变夹紧力的方向,即变径向夹紧为轴向夹紧,使夹紧力作用在工件刚性较好的部位;当需要径向夹紧时,为减少夹紧变形和使变形均匀,应尽可能使径向夹紧力沿圆周均匀分布,加工中可用过渡套或弹性套及扇形夹爪来满足要求;或者制造工艺凸边或工艺螺纹,以减少夹紧变形。
③为减少热处理变形的影响,热处理工序应置于粗加工之后、精加工之前,以便使热处理引起的变形在精加工中得以纠正。
9.深孔加工中首先应解决哪几个主要问题,两种排屑方式的特点如何? 答:钻深孔时,要从孔中排出大量的切屑,同时又要向切削区注放足够的冷却润滑液。普通钻头由于排屑空间有限,冷却液进出通道没有分开,无法注入高压冷却液。所以,冷却、排屑是相当困难的。另外,孔越深,钻头就越长,刀杆刚性也越差,钻头易产生歪斜,影响加工精度与生产率的提高。所以,深孔加工中必须首先解决排屑、导向和冷却毫米几个主要问题,以保证钻孔精度。保持刀具正常工作,提高刀具寿命和生产率。
常用的排屑方式有外排屑和内排屑两种,外排屑时,刀具结构简单,不需用专用设备与专用辅具,排屑空间较大,但切屑排出时易划伤孔壁。内排屑时,将增大刀杆外径,提高刀杆刚度,有利于提高进给量和生产率。冷却排屑效果较好,刀杆稳定,可提高孔的精度和降低孔的表面粗糙度值。
10.滚齿与插齿加工分别用于什么场合?
答:滚齿用于加工精度在7~9级,最高可达4~5级,齿面Ra为1.6~0.4微米的外齿轮;插齿机主要加工精度在7~8,最高可达6,齿面Ra为1.6~0.2米的外齿轮的双连具轮和内齿轮。滚齿是在滚齿机上进行,主要用于滚切直齿和斜齿外啮合圆柱齿轮及蜗轮的轮齿。滚齿的加工精度一般在7~9级,最高可达4~5级,齿面粗糙度值Ra可达1.6~0.4μm。滚齿可作为剃齿或磨齿等齿形精加工之前的粗加工和半精加工。
插齿是在插齿机上进行,主要用于加工直齿圆柱齿轮的轮齿,尤其适合加工内齿轮和多联齿轮的轮齿,还可加工斜齿轮、人字齿轮、齿条、齿扇及特殊齿形的轮齿。插齿加工精度一般在7~8级,最高可达6级,齿面粗糙度值Ra可达1.6~0.2μ m,可作为齿轮淬硬前的粗加工和半精加工。加工较大模数齿轮时,插齿因插齿机和插齿刀的刚性较差,切削时又有空行程存在,生产率比滚齿低;但加工较小模数齿轮,尤其是宽度较小的齿轮时,其生产率不低于滚齿。
11.剃齿原理是什么?它能提高齿轮工件哪些方面的精度? 答:剃齿加工原理相当于一对斜齿轮副的啮合过程,能进行剃齿切削的必要条件是齿轮副的齿面间有相对滑移,相对滑移的速度就是剃齿的切削速度。剃齿刀在加工过程中,在齿面上产生相对滑动,从齿面上刮下很薄的切屑,在啮合过程中逐渐将余量切除。
剃齿能校正前一工序中留下的齿形误差、基节误差、相邻周节误差和齿圈的12.分析珩齿与磨齿有什么异同点?
答:珩齿的加工原理与剃齿相同,珩齿可修正齿形淬火后引起的变形,减小径向圆跳动。
齿面表面粗糙度值,提高相邻周节的精度,并能修正齿轮的短周期分度误差,加工成本低、效率高。磨齿是精加工精密齿轮、特别是加工淬硬的精密齿轮的常用方法,对磨前齿轮的误差或热处理变形有较强的修正能力,但生产率比珩齿低得多,加工成本高,据齿面渐开线形成原理的不同,磨齿可分为成形磨齿和展成磨齿两种。
13.对不同精度的圆柱齿轮,其齿形加工方案如何选择?
答:齿轮加工的工艺路线一般为:毛坯制造与热处理一齿坯加工一轮齿加工一齿端加工一轮齿热处理一精基准修正一轮齿精加工一检验。
对8级精度以下的调质齿轮,用滚齿或插齿就能达到要求,对于淬火齿轮,可采用滚(或插)齿一齿端加工一热处理一修正内孔的方案,但淬火前应将精度相应提高一级,或在淬火后珩齿。
对6~7级精度的齿轮,可用剃一珩齿方案,即滚齿(或插齿)一齿端加工一剃齿一表面淬火一修正基准一珩齿。也可用磨齿方案,即滚齿(或插齿)一齿端加工一渗碳淬火一修正基准一磨齿。剃一珩方案生产率高,广泛用于7级精度齿轮的成批生产中;磨齿方案生产率较低,一般用于6级精度以上或低于6级精度但淬火后变形较大的齿轮。
对5级以上的高精度齿轮,一般应取磨齿方案。