高三物理真题分类汇编专题曲线运动功和能(解析版)5篇范文

时间:2020-10-27 14:20:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高三物理真题分类汇编专题曲线运动功和能(解析版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高三物理真题分类汇编专题曲线运动功和能(解析版)》。

第一篇:高三物理真题分类汇编专题曲线运动功和能(解析版)

2019年高考物理试题分类解析 专题04 曲线运动 功和能 1.2019全国1卷25.(20分)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);

当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的v-t图像如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。

(1)求物块B的质量;

(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;

(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前后动摩擦因数的比值。

【答案】(1)根据图(b),v1为物块A在碰撞前瞬间速度的大小,为其碰撞后瞬间速度的大小。设物块B的质量为,碰撞后瞬间的速度大小为,由动量守恒定律和机械能守恒定律有 ① ② 联立①②式得③ 【解析】方程组解的过程,移项得 下式除以上式得,代入以上任一式得(2)在图(b)所描述的运动中,设物块A与轨道间的滑动摩擦力大小为f,下滑过程中所走过的路程为s1,返回过程中所走过的路程为s2,P点的高度为h,整个过程中克服摩擦力所做的功为W,由动能定理有 ④ ⑤ 从图(b)所给的v-t图线可得 ⑥ ⑦ 由几何关系⑧ 物块A在整个过程中克服摩擦力所做的功为⑨ 联立④⑤⑥⑦⑧⑨式可得⑩(3)设倾斜轨道倾角为θ,物块与轨道间的动摩擦因数在改变前为μ,有⑪ 设物块B在水平轨道上能够滑行的距离为,由动能定理有⑫ 设改变后的动摩擦因数为,由动能定理有⑬ 联立①③④⑤⑥⑦⑧⑩式可得⑭ 2.全国2卷18.从地面竖直向上抛出一物体,其机械能E总等于动能Ek与重力势能Ep之和。取地面为重力势能零点,该物体的E总和Ep随它离开地面的高度h的变化如图所示。重力加速度取10 m/s2。由图中数据可得()A.物体的质量为2 kg B.h=0时,物体的速率为20 m/s C.h=2 m时,物体的动能Ek=40 J D.从地面至h=4 m,物体的动能减少100 J 【答案】AD 【解析】从地面至h=4 m, ,又,得,A正确。

从地面至h=4 m,,因为,所以,即减少100J,D正确。

h=0时,,所以物体的速率为,B错误;

h=2 m时,物体的动能Ek=E总-EP=85-40=45 J,C错误。

所以答案为AD.3.全国2卷19.如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。则()A.第二次滑翔过程中在竖直方向上的位移比第一次的小 B.第二次滑翔过程中在水平方向上的位移比第一次的大 C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大 D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大 【答案】BD 【解析】根据“面积法”求位移,从图可以看出第二次滑翔过程中在竖直方向上的位移比第一次的大,A错误;

平均加速度,但,所以,C错误;

根据“斜率法”求加速度,从图可以看出,竖直方向速度大小为v1时,加速度,根据牛顿定律,所以,D正确;

因为第二次滑翔过程中在竖直方向上的位移比第一次的大,并且(为斜面倾角),所以第二次滑翔过程中在水平方向上的位移比第一次的大,B正确。

所以选BD.4.全国3卷17.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。距地面高度h在3 m以内时,物体上升、下落过程中动能Ek随h的变化如图所示。重力加速度取10 m/s2。该物体的质量为()A.2 kg B.1.5 kg C.1 kg D.0.5 kg 【答案】C 【解析】设上升时加速度为a1,下落时加速度为a2,外力为f,则a1=g+f/m,a2=g-f/m 根据动能定理,上升过程 下落过程,代入数据,解得。

5.全国3卷25.(20分)静止在水平地面上的两小物块A、B,质量分别为mA=l.0 kg,mB=4.0 kg;

两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0 J。释放后,A沿着与墙壁垂直的方向向右运动。A、B与地面之间的动摩擦因数均为u=0.20。重力加速度取g=10 m/s²。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。

(1)求弹簧释放后瞬间A、B速度的大小;

(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?(3)A和B都停止后,A与B之间的距离是多少? 【解析】(1)设弹簧释放瞬间A和B的速度大小分别为vA、vB,以向右为正,由动量守恒定律和题给条件有 0=mAvA-mBvB① ② 联立①②式并代入题给数据得 vA=4.0 m/s,vB=1.0 m/s(2)A、B两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a。假设A和B发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B。设从弹簧释放到B停止所需时间为t,B向左运动的路程为sB。,则有 ④a=ug=2m/s2 ⑤sB=10.5-20.52/2=0.25 ⑥t=vB/a=0.5s 在时间t内,A可能与墙发生弹性碰撞,碰撞后A将向左运动,碰撞并不改变A的速度大小,所以无论此碰撞是否发生,A在时间t内的路程SA都可表示为 sA=vAt– ⑦sA=40.5-20.52/2=1.75m 联立③④⑤⑥⑦式并代入题给数据得 sA=1.75 m,sB=0.25 m ⑧ 这表明在时间t内A已与墙壁发生碰撞,但没有与B发生碰撞,此时A位于出发点右边0.25 m处。B位于出发点左边0.25 m处,两物块之间的距离s为 s=0.25 m+0.25 m=0.50 m ⑨(3)t时刻后A将继续向左运动,假设它能与静止的B碰撞,碰撞时速度的大小为vA′,由动能定理有 ⑩或vA’===m/s 联立③⑧⑩式并代入题给数据得 故A与B将发生碰撞。设碰撞后A、B的速度分别为vA′′和vB′′,由动量守恒定律与机械能守恒定律有 联立式并代入题给数据得:+ 这表明碰撞后A将向右运动,B继续向左运动。设碰撞后A向右运动距离为sA′时停止,B向左运动距离为sB′时停止,由运动学公式 由④式及题给数据得 sA′小于碰撞处到墙壁的距离。由上式可得两物块停止后的距离 6.天津卷10.(16分)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板是与水平甲板相切的一段圆弧,示意如图2,长,水平投影,图中点切线方向与水平方向的夹角()。若舰载机从点由静止开始做匀加速直线运动,经到达点进入。已知飞行员的质量,求(1)舰载机水平运动的过程中,飞行员受到的水平力所做功;

(2)舰载机刚进入时,飞行员受到竖直向上的压力多大。

【解析】(1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为,则有 ① 根据动能定理,有 ② 联立①②式,代入数据,得 ③(2)设上翘甲板所对应的圆弧半径为,根据几何关系,有 ④ 由牛顿第二定律,有 ⑤ 联立①④⑤式,代入数据,得 ⑥ 7.江苏卷6.如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱(A)运动周期为(B)线速度的大小为ωR(C)受摩天轮作用力的大小始终为mg(D)所受合力的大小始终为mω2R 【答案】BD 【解析】周期,A错误;

线速度,B正确;

所受合力的大小始终为F向=mω2R D正确。

8.江苏卷8.如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中 (A)弹簧的最大弹力为μmg(B)物块克服摩擦力做的功为2μmgs(C)弹簧的最大弹性势能为μmgs(D)物块在A点的初速度为 【答案】BC 【解析】逐项判断 A.当加速度为0时,弹力等于摩擦力μmg,此位置不是最大弹力,A错误;

B.物块克服摩擦力做的功为μmgs+μmgs=2μmgs,B正确;

C.弹力做功=弹性势能,弹出时,所以弹簧的最大弹性势能为μmgs,C正确。

D.压缩过程,,解得,D错误。

9.2019年高考江苏省物理卷第10题.(8分)某兴趣小组用如图10-1所示的装置验证动能定理(1)有两种工作频率均为50Hz的打点计时器供实验选用:

A.电磁打点计时器 B.电火花打点计时器 为使纸带在运动时受到的阻力较小,应选择_______(选填“A”或“B”)(2)保持长木板水平,将纸带固定在小车后端,纸带穿过打点计时器的限位孔。实验中,为消除摩擦力的影响,在砝码盘中慢慢加入沙子,直到小车开始运动。同学甲认为,此时摩擦力的影响已经得到消除。同学乙认为还应从盘中取出适量沙子,直至轻推小车观察到小车做匀速运动。看法正确的同学是______(选填“甲”或“乙”)。

(3)消除摩擦力的影响后,在砝码盘中加入砝码,接通打点计时器电源,松开小车,小车运动,纸带被打出一系列点,其中一段如题10-2图所示。图中纸带按实际尺寸画出,纸带上A点的速度=______m/s.(4)测出小车的质量为M,再测出纸带上起点到A点的距离为L。小车动能的变化量可用算出。砝码盘中砝码的质量为m,重力加速度为g.实验中,小车的质量应(选填“远大于”、“远小于”或“接近”)砝码、砝码盘和沙子的总质量,小车所受合力的功可用算出。多次测量,若W与均基本相等则验证了动能定理。

【答案】(1)B(2)乙(3)0.31(0.30~0.33都算对)(4)远大于 【解析】用刻度尺测出A两边的两点间的距离为,则速度。

这是江苏省物理卷要求用刻度尺直接测量试卷上的实际长度了,所以老师一再要求学生高考时带齐文具包括刻度尺、三角板、量角器、圆规等,就有学生不以为然,果然吃亏。不听老人言吃亏在眼前嘛!10.2019年高考北京理综卷第21题.(18分)用如图1所示装置研究平地运动。将白纸和复写纸对齐重叠并固定在竖直的硬板上。钢球沿斜槽轨道PQ滑下后从Q点飞出,落在水平挡板MN上。由于挡板靠近硬板一侧较低,钢球落在挡板上时,钢球侧面会在白纸上挤压出一个痕迹点。移动挡板,重新释放钢球,如此重复,白纸上将留下一系列痕迹点。

(1)下列实验条件必须满足的有____________。

A.斜槽轨道光滑 B.斜槽轨道末段水平C.挡板高度等间距变化 D.每次从斜槽上相同的位置无初速度释放钢球(2)为定量研究,建立以水平方向为x轴、竖直方向为y轴的坐标系。

a.取平抛运动的起始点为坐标原点,将钢球静置于Q点,钢球的________(选填“最上端”、“最下端”或者“球心”)对应白纸上的位置即为原点;

在确定y轴时______(选填“需要”或者“不需要”)y轴与重锤线平行。

b.若遗漏记录平抛轨迹的起始点,也可按下述方法处理数据:如图2所示,在轨迹上取A、B、C三点,AB和BC的水平间距相等且均为x,测得AB和BC的竖直间距分别是y1和y2,则______(选填“大于”、“等于”或者“小于”)。可求得钢球平抛的初速度大小为____________(已知当地重力加速度为g,结果用上述字母表示)。

(3)为了得到平抛物体的运动轨迹,同学们还提出了以下三种方案,其中可行的是____________。

A.从细管水平喷出稳定的细水柱,拍摄照片,即可得到平抛运动轨迹 B.用频闪照相在同一底片上记录平抛小球在不同时刻的位置,平滑连接各位置,即可得到平抛运动轨迹 C.将铅笔垂直于竖直的白纸板放置,笔尖紧靠白纸板,铅笔以一定初速度水平抛出,将会在白纸上留下笔尖的平抛运动轨迹(4)伽利略曾研究过平抛运动,他推断:从同一炮台水平发射的炮弹,如果不受空气阻力,不论它们能射多远,在空中飞行的时间都一样。这实际上揭示了平抛物体_________。

A.在水平方向上做匀速直线运动 B.在竖直方向上做自由落体运动 C.在下落过程中机械能守恒(5)牛顿设想,把物体从高山上水平抛出,速度一次比一次大,落地点就一次比一次远,如果速度足够大,物体就不再落回地面,它将绕地球运动,成为人造地球卫星。

同样是受地球引力,随着抛出速度增大,物体会从做平抛运动逐渐变为做圆周运动,请分析原因。

【答案】21.(18分)(1)BD(2)a.球心 需要b.大于(3)AB(4)B(5)物体初速度较小时,运动范围很小,引力可以看作恒力——重力,做平抛运动;

随着物体初速度增大,运动范围变大,引力不能再看作恒力;

当物体初速度达到第一宇宙速度时,做圆周运动而成为地球卫星。

【解析】(1)斜槽末段水平保证钢球平抛。

(2)b.,所以,

第二篇:高三物理真题分类专题-曲线运动功和能(原卷版)

2019年高考物理试题分类解析

专题04

曲线运动

功和能

1.2019全国1卷25.(20分)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的v-t图像如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。

(1)求物块B的质量;

(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;

(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前后动摩擦因数的比值。

2.全国2卷18.从地面竖直向上抛出一物体,其机械能E总等于动能Ek与重力势能Ep之和。取地面为重力势能零点,该物体的E总和Ep随它离开地面的高度h的变化如图所示。重力加速度取10

m/s2。由图中数据可得()

A.物体的质量为2

kg

B.h=0时,物体的速率为20

m/s

C.h=2

m时,物体的动能Ek=40

J

D.从地面至h=4

m,物体的动能减少100

J

3.全国2卷19.如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。则()

A.第二次滑翔过程中在竖直方向上的位移比第一次的小

B.第二次滑翔过程中在水平方向上的位移比第一次的大

C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大

D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大

4.全国3卷17.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。距地面高度h在3

m以内时,物体上升、下落过程中动能Ek随h的变化如图所示。重力加速度取10

m/s2。该物体的质量为

A.2

kg

B.1.5

kg

C.1

kg

D.0.5

kg

5.全国3卷25.(20分)

静止在水平地面上的两小物块A、B,质量分别为mA=l.0

kg,mB=4.0

kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0

J。释放后,A沿着与墙壁垂直的方向向右运动。A、B与地面之间的动摩擦因数均为u=0.20。重力加速度取g=10

m/s²。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。

(1)求弹簧释放后瞬间A、B速度的大小;

(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?

(3)A和B都停止后,A与B之间的距离是多少?

6.天津卷10.(16分)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板是与水平甲板相切的一段圆弧,示意如图2,长,水平投影,图中点切线方向与水平方向的夹角()。若舰载机从点由静止开始做匀加速直线运动,经到达点进入。已知飞行员的质量,求

(1)舰载机水平运动的过程中,飞行员受到的水平力所做功;

(2)舰载机刚进入时,飞行员受到竖直向上的压力多大。

7.江苏卷6.如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱

(A)运动周期为

(B)线速度的大小为ωR

(C)受摩天轮作用力的大小始终为mg

(D)所受合力的大小始终为mω2R

所受合力的大小始终为F向=mω2R

8.江苏卷8.如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()

(A)弹簧的最大弹力为μmg

(B)物块克服摩擦力做的功为2μmgs

(C)弹簧的最大弹性势能为μmgs

(D)物块在A点的初速度为

9.2019年高考江苏省物理卷第10题.(8分)

某兴趣小组用如图10-1所示的装置验证动能定理

(1)有两种工作频率均为50Hz的打点计时器供实验选用:

A.电磁打点计时器

B.电火花打点计时器

为使纸带在运动时受到的阻力较小,应选择_______(选填“A”或“B”)

(2)保持长木板水平,将纸带固定在小车后端,纸带穿过打点计时器的限位孔。实验中,为消除摩擦力的影响,在砝码盘中慢慢加入沙子,直到小车开始运动。同学甲认为,此时摩擦力的影响已经得到消除。同学乙认为还应从盘中取出适量沙子,直至轻推小车观察到小车做匀速运动。看法正确的同学是______(选填“甲”或“乙”)。

(3)消除摩擦力的影响后,在砝码盘中加入砝码,接通打点计时器电源,松开小车,小车运动,纸带被打出一系列点,其中一段如题10-2图所示。图中纸带按实际尺寸画出,纸带上A点的速度=______m/s.(4)测出小车的质量为M,再测出纸带上起点到A点的距离为L。小车动能的变化量可用算出。砝码盘中砝码的质量为m,重力加速度为g.实验中,小车的质量应(选填“远大于”、“远小于”或“接近”)砝码、砝码盘和沙子的总质量,小车所受合力的功可用算出。多次测量,若W与均基本相等则验证了动能定理。

10.2019年高考北京理综卷第21题.(18分)

用如图1所示装置研究平地运动。将白纸和复写纸对齐重叠并固定在竖直的硬板上。钢球沿斜槽轨道PQ滑下后从Q点飞出,落在水平挡板MN上。由于挡板靠近硬板一侧较低,钢球落在挡板上时,钢球侧面会在白纸上挤压出一个痕迹点。移动挡板,重新释放钢球,如此重复,白纸上将留下一系列痕迹点。

(1)下列实验条件必须满足的有____________。

A.斜槽轨道光滑

B.斜槽轨道末段水平

C.挡板高度等间距变化

D.每次从斜槽上相同的位置无初速度释放钢球

(2)为定量研究,建立以水平方向为x轴、竖直方向为y轴的坐标系。

a.取平抛运动的起始点为坐标原点,将钢球静置于Q点,钢球的________(选填“最上端”、“最下端”或者“球心”)对应白纸上的位置即为原点;在确定y轴时______(选填“需要”或者“不需要”)y轴与重锤线平行。

b.若遗漏记录平抛轨迹的起始点,也可按下述方法处理数据:如图2所示,在轨迹上取A、B、C三点,AB和BC的水平间距相等且均为x,测得AB和BC的竖直间距分别是y1和y2,则______(选填“大于”、“等于”或者“小于”)。可求得钢球平抛的初速度大小为____________(已知当地重力加速度为g,结果用上述字母表示)。

(3)为了得到平抛物体的运动轨迹,同学们还提出了以下三种方案,其中可行的是____________。

A.从细管水平喷出稳定的细水柱,拍摄照片,即可得到平抛运动轨迹

B.用频闪照相在同一底片上记录平抛小球在不同时刻的位置,平滑连接各位置,即可得到平抛运动轨迹

C.将铅笔垂直于竖直的白纸板放置,笔尖紧靠白纸板,铅笔以一定初速度水平抛出,将会在白纸上留下笔尖的平抛运动轨迹

(4)伽利略曾研究过平抛运动,他推断:从同一炮台水平发射的炮弹,如果不受空气阻力,不论它们能射多远,在空中飞行的时间都一样。这实际上揭示了平抛物体_________。

A.在水平方向上做匀速直线运动

B.在竖直方向上做自由落体运动

C.在下落过程中机械能守恒

(5)牛顿设想,把物体从高山上水平抛出,速度一次比一次大,落地点就一次比一次远,如果速度足够大,物体就不再落回地面,它将绕地球运动,成为人造地球卫星。

同样是受地球引力,随着抛出速度增大,物体会从做平抛运动逐渐变为做圆周运动,请分析原因。

第三篇:高三物理真题分类专题-相互作用(解析版)

十年高考(2010-2019年)之高三物理真题精选分类汇编

专题02

相互作用

题型一、受力分析之黄金三角形的典型应用

1.(2019全国3)用卡车运输质量为m的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示。两斜面I、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g。当卡车沿平直公路匀速行驶时,圆筒对斜面I、Ⅱ压力的大小分别为F1、F2,则()

A.B.C.D.【考向】受力分析、矢量三角形法、共点力的平衡、牛三定律

【答案】D

【解析】对圆筒受力分析,圆筒受到重力、以及两斜面其支持力,如图所示;

结合矢量三角形法,将物体所受的三个力通过平移延长等手段放在一个封闭的三角形中,如图所示;

在红色的三角形中:

根据牛三定律:,故D选项正确;

2.(2019

年全国1)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一端悬挂物块N。另一端与斜面上的物块M相连,系统处于静止状态。现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°。已知M始终保持静止,则在此过程中()

A.水平拉力的大小可能保持不变

B.M所受细绳的拉力大小一定一直增加

C.M所受斜面的摩擦力大小一定一直增加

D.M所受斜面的摩擦力大小可能先减小后增加

【考向】受力分析、静摩擦力、动态分析

【答案】BD

【解析】假设经过一定时间后N

物体与竖直方向的夹角为θ,对N

受力分析如左图所示:

结合矢量三角形法,将物体所受的力放在一个封闭的力三角形中,当θ从0-45增大时,由几何关系得:

故:A错B对;

开始时,因为不确定静摩擦力的大小与方向,即开始时静摩擦力的大小可能沿斜面向上也可能沿斜面向下;所以对M受力分析可知,若起初M受到的摩擦力f沿斜面向下,则随着绳子拉力T的增加,则摩擦力f也逐渐增大;若起初M受到的摩擦力f沿斜面向上,则随着绳子拉力T的增加,摩擦力f可能先减小后增加。故本题选BD。

3.(2017年全国1)21.如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N。初始时,OM竖直且MN被拉直,OM与MN之间的夹角为()。现将重物向右上方缓慢拉起,并保持夹角不变。在OM由竖直被拉到水平的过程中()

A.MN上的张力逐渐增大

B.MN上的张力先增大后减小

C.OM上的张力逐渐增大

D.OM上的张力先增大后减小

【考向】受力分析、动态图解

【答案】AD

【解析】设OM上的张力为F1,MN上的张力为F2初始位置,F2=0,当运动到某一位置时,可能为

在OM被拉到水平位置时,三力关系如下:

从图可以看出,MN上的张力逐渐增大,OM上的张力先增大后减小

4.(2016全国2)质量为m的物体用轻绳AB悬挂于天花板上。用水平向左的力F缓慢拉动绳的中点O,如图所示。用T

表示绳OA段拉力的大小,在O点向左移动的过程中()

A.F逐渐变大,T逐渐变大

B.F逐渐变大,T逐渐变小

C.F逐渐变小,T逐渐变大

D.F逐渐变小,T逐渐变小

【考向】动态受力分析、黄金三角形

【答案】A

【解析】对结点O

受力分析,如图左所示,当O

点左移时拉力T

与竖直方向的夹角θ在增大,结合矢量三角形的动态图解法,如右图所示,可以得出,T,与F都在增大;故本题A选项正确;

5.(2012全国2)如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程()

A.N1始终减小,N2始终增大

B.N1始终减小,N2始终减小

C.N1先增大后减小,N2始终减小

D.N1先增大后减小,N2先减小后增大

【考向】动态平衡、矢量三角形

【答案】B

【解析】根据题意,对小球进行受力分析,满足动态图解法的条件;构建出红色的封闭三角形;结合题意小球所受的重力的大小和方向是不变的,小球所受的墙壁的支持力的方向是不变的;伴随着木板转动,木板与墙壁之间的夹角θ在不断增大;在图中找到θ角,根据θ角的变化规律,改变三角形的形状,确定出N1、N2均在减小。

题型二、力的合成与分解

6.(2018天津)明朝谢肇淛的《五杂组》中记载:“明姑苏虎丘寺庙倾侧,议欲正之,非万缗不可。一游僧见之,曰:无烦也,我能正之。”游僧每天将木楔从塔身倾斜一侧的砖缝间敲进去,经月余扶正了塔身。假设所用的木楔为等腰三角形,木楔的顶角为θ,现在木楔背上加一力F,方向如图所示,木楔两侧产生推力FN,则()

A.若F一定,θ大时FN大

B.若F一定,θ小时FN大

C.若θ一定,F大时FN大

D.若θ一定,F小时FN大

【考向】力的合成与分解

【答案】BC

【解析】假设两推力之间的夹角为,由几何关系可知θ、与互补,所以当θ增大时,减小,根据合力与分力之间的关系式中为两分力之间的夹角;F1、F2为两分力的大小;故本题的正确选项为BC

7.(2019天津)2018年10月23日,港珠澳跨海大桥正式通车。为保持以往船行习惯,在航道处建造了单面索(所有钢索均处在同一竖直面内)斜拉桥,其索塔与钢索如图所示。下列说法正确的是()

A.增加钢索的数量可减小索塔受到的向下的压力

B.为了减小钢索承受的拉力,可以适当降低索塔的高度

C.索塔两侧钢索对称且拉力大小相同时,钢索对索塔的合力竖直向下

D.为了使索塔受到钢索的合力竖直向下,索塔两侧的钢索必须对称分布

【考向】力的合成与分解

【答案】C

【解析】

A

索塔所受的向下的力与钢索的数量无关,但是从大小上来讲应该与桥梁的所受重力等大反向;故A

错误

B

对桥梁受力分析可得:两侧钢索沿竖直向上的分力之和与桥梁所受重力等大反向,钢绳与竖直方向的夹角为θ,则;当索塔降低则θ增大,所以拉力T

在增大;故B

错误

C、索塔两侧钢索对称且拉力大小相同时,水平方向的分量等大反向、钢索对索塔的合力竖直向下

D、只要钢索水平方向的合力为0,此时钢索不一定对称;

8.(2015广东)如图所示,三条绳子的一端都系在细直杆顶端,另一端都固定在水平面上,将杆竖直紧压在地面上,若三条绳长度不同,下列说法正确的有()

A.三条绳中的张力都相等

B.杆对地面的压力大于自身重力

C.绳子对杆的拉力在水平方向的合力为零

D.绳子拉力的合力与杆的重力是一对平衡力

【考向】力的合成和分解;共点力的平衡;牛顿第三定律

【答案】BC

【解析】本题考查了受力平衡和力学相关知识.选绳子和杆的结点为研究对象,由受力平衡,三条绳子张力在水平面上分力的合力为零.由于三条绳子长度不同.绳子方向也不确定.所以不能确定三条绳子中的张力是否相同.选项A错误;

选择杆为研究对象,杆受到自己所重力、绳子的拉力和地面向上的支持力,根据平衡条件有地面对杆的支持力等于重力G

加上绳子拉力在竖直向下分力之和,大于杆的重力,根据牛顿第三定律,杆对地面的压力等于地面对杆的支持力,选项B、C正确;绳子拉力的合力和杆的重力方向均竖直向下,不可能是平衡力,选项D错误。

9.(2012山东)如图所示,两相同轻质硬杆OO1、OO2可绕其两端垂直纸面的水平轴O、O1、O2转动,O点悬挂一重物M,将两相同木块m紧压在竖直挡板上,此时整个系统保持静止。Ff表示木块与挡板间摩擦力的大小,FN表示木块与挡板间正压力的大小。若挡板间的距离稍许增大后,系统仍静止且O1、O2始终等高,则()

A、Ff

变小

B、Ff

不变

C、FN 变小

D、FN

变大

【考向】受力分析、力的合成与分解

【答案】BD

【解析】对A、B:将重物重力Mg按效果分解如图所示,应有2Fcosθ=Mg,即F=,再对其中一个物体m受力分析如图所示,受到的摩擦力f=mg+Fcosθ,联立解得,即木块与挡板间摩擦力大小与两板间距离无关,所以B正确,A错误;对C、D:,由于挡板距离增大θ随之增大,故增大增大,所以D正确C错误.

故选BD.

10.(2011年江苏)如图所示,石拱桥的正中央有一质量为m的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g,若接触面间的摩擦力忽略不计,旵石块侧面所受弹力的大小为A()

A.   B.

C.

D.

【考向】共点力的平衡、力的合成与分解

【答案】A

【解析】对物体进行受力分析如图所示,根据几何关系可得:F1=F2=F,题型三、受力分析之正交分解的应用

11.(2019江苏)如图所示,一只气球在风中处于静止状态,风对气球的作用力水平向右.细绳与竖直方向的夹角为α,绳的拉力为T,则风对气球作用力的大小为

A

B

C

D

【考向】受力分析、正交分解、共点力的平衡

【答案】C

【解析】对小球受力分析小球受竖直向下的重力、竖直向上的空气浮力、细线的拉力、以及水平向右的风力;在水平方向上有:故C

选项正确;

12.(2019全国2)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜面平行。已知物块与斜面之间的动摩擦因数为,重力加速度取10m/s2。若轻绳能承受的最大张力为1500

N,则物块的质量最大为()

A.150kg

B.kg

C.200

kg

D.kg

【考向】受力分析、静摩擦力、正交分解

【答案】A

【解析】T=f+mgsinθ,f=μN,N=mgcosθ,带入数据解得:m=150kg,故A选项符合题意

13.(2017全国2)16.如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。学.科网物块与桌面间的动摩擦因数为()

A.

B.

C.

D.

【考向】正交分解

【答案】C

【解析】开始时力F水平拉动物体匀速运动,可得:F=μmg....(1);

F的大小不变方向与水平面成60°角拉动物体时,仍然匀速直线运动

结合平衡关系,对物体受力分析,如图所示利用正交分解的方法可知:

水平方向:F.cos60=f.....(2)

竖直方向:F.sin60+FN=mg...(3)

f=uFN.....(4)

联立可得:Fcos

60°=μ(mg-Fsin

60°)

μ=,故选C.14.(2017年天津)如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架钩是光滑的,挂于绳上处于静止状态。如果只人为改变一个条件,当衣架静止时,下列说法正确的是()

A.绳的右端上移到,绳子拉力不变

B.将杆N向右移一些,绳子拉力变大

C.绳的两端高度差越小,绳子拉力越小

D.若换挂质量更大的衣服,则衣架悬挂点右移

【考向】正交分解

【答案】AB

【解析】设两杆之间的距离为d绳长为l,OA、OB段分别为la、lb,则l=la+lb,两部分绳子分别与竖直方向的夹角为,受力分析如图所示;

绳中各部分的张力大小相等,故,满足

又因为即,d、l不变,所以为定值,为定值,所以移动后绳子的拉力大小不变,故A

正确,将N

杆移动后,增大,绳子的拉力增大故B

正确;

15.(2016全国1)如图,一光滑的轻滑轮用细绳悬挂于点;另一细绳跨过滑轮,其一端悬挂物块,另一端系一位于水平粗糙桌面上的物块。外力向右上方拉,整个系统处于静止状态。若方向不变,大小在一定范围内变化,物块仍始终保持静止,则()

A.绳的张力也在一定范围内变化

B.物块所受到的支持力也在一定范围内变化

C.连接和的绳的张力也在一定范围内变化

D.物块与桌面间的摩擦力也在一定范围内变化

【考向】正交分解、摩擦力、动态分析

BD

由题意,在保持方向不变,大小发生变化的过程中,物体、均保持静止,各绳角度保持不变;选受力分析得,绳的拉力,所以物体受到绳的拉力保持不变。由滑轮性质,滑轮两侧绳的拉力相等,所以受到绳的拉力大小、方向均保持不变,C选项错误;、受到绳的拉力大小方向均不变,所以的张力不变,A选项错误;对进行受力分析,并将各力沿水平方向和竖直方向分解,如上图所示。由受力平衡得:。和始终不变,当大小在一定范围内变化时;支持力在一定范围内变化,B选项正确;摩擦力也在一定范围内发生变化,D选项正确;故答案选BD。

16.(2015山东)如图,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑。已知A与B间的动摩擦因数为,A与地面间的动摩擦因数为,最大静摩擦力等于滑动摩擦力。A与B的质量之比为()

A.

B.

C.

D.

【答案】B

考点:物体的平衡.17.(2013年全国)15.如图,在固定斜面上的一物块受到一外力的作用,F平行于斜面上。若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出

A.物块的质量

B.斜面的倾角

C.物块与斜面间的最大静摩擦力

C.物块对斜面的正压力

【考向】摩擦力、正交分解

【答案】C

【解析】A、B、C、对滑块受力分析,受重力、拉力、支持力、静摩擦力,设滑块受到的最大静摩擦力为f,物体保持静止,受力平衡,合力为零;

当静摩擦力平行斜面向下时,拉力最大,有:F1-mgsinθ-f=0

当静摩擦力平行斜面向上时,拉力最小,有:F2 +f-mgsinθ=0

联立解得:,故C正确;,由于质量和坡角均未知,故A错误,B错误;

D、物块对斜面的正压力为:N=mgcosθ,未知,故D错误;故选C.

18、(2012全国2)拖把是由拖杆和拖把头构成的擦地工具(如图)。设拖把头的质量为m,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数μ,重力加速度为g,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ。

(1)若拖把头在地板上匀速移动,求推拖把的力的大小。

(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ。已知存在一临界角θ0,若θ≤θ0,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动。求这一临界角的正切tanθ0。

【答案】.

【解析】注意本题的三个重要隐含条件:

(1)物体处于平衡态;

(2)物体所受的摩擦力达到最大静摩擦力;

(3)外力F趋于无穷大;

根据拖把头的运动状态可知其受力平衡;结合右图正交分解可得:

由题意可知:使该拖把在地板上从静止刚好开始运动的水平推力等于拖把与地板间的最大静摩擦力(即物体的滑动摩擦力),设为Ffm,则依题意有:

第四篇:高三物理真题分类专题-静电场2(解析版)

静电场2

题型一、带电粒子在电场中的运动以及相应的功能关系

题型二、带电粒子在复合场中的运动的综合类问题

题型三、带点粒子在电场中运动的综合类问题

题型一、带电粒子在电场中的运动以及相应的功能关系

1.(2019江苏)一匀强电场的方向竖直向上,t=0时刻,一带电粒子以一定初速度水平射入该电场,电场力对粒子做功的功率为P,不计粒子重力,则P-t关系图象是()

【答案】A

【解析】由于带电粒子在电场中类平抛运动,在电场力方向上做匀加速直线运动,加速度为,经过时间,电场力方向速度为,功率为,所以P与t成正比,故A正确。

2.(2017·江苏卷)在x轴上有两个点电荷q1、q2,其静电场的电势φ在x轴上分布如图所示.下列说法正确有()

A.q1和q2带有异种电荷

B.x1处的电场强度为零

C.负电荷从x1移到x2,电势能减小

D.负电荷从x1移到x2,受到的电场力增大

【答案】AC

【解析】:图像的斜率代表场强的大小,x1处的电势为0,可见只能带异种电荷,故A

正确,从图像可知从x1到x2电势增加,可见场强的方向沿x轴负方向,所以电场力对负电荷做正功,电势能减小;从x1到x2斜率逐渐减小,场强减小,电场力减小;

3.(2011全国卷1).通常一次闪电过程历时约0.2~O.3s,它由若干个相继发生的闪击构成。每个闪击持续时间仅40~80μs,电荷转移主要发生在第一个闪击过程中。在某一次闪电前云地之间的电势差约为1.0×v,云地间距离约为l

km;第一个闪击过程中云地间转移的电荷量约为6

C,闪击持续时间约为60μs。假定闪电前云地间的电场是均匀的。根据以上数据,下列判断正确的是()

A.闪电电流的瞬时值可达到1×A

B.整个闪电过程的平均功率约为l×W

C.闪电前云地间的电场强度约为l×106V/m

D.整个闪电过程向外释放的能量约为6×J

【答案】:C

【解析】选AC.由I==A=1×105

A知,A对.由E==

V/m=1×106

V/m知,C对;由W=qU=6×1.0×109

J=6×109J知,D错;==

W=3×1010W,B错.

4.(2014·全国卷)地球表面附近某区域存在大小为150

N/C、方向竖直向下的电场.一质量为1.00×10-4

kg、带电荷量为-1.00×10-7

C的小球从静止释放,在电场区域内下落10.0

m.对此过程,该小球的电势能和动能的改变量分别为(重力加速度大小取9.80

m/s2,忽略空气阻力)

()

A.-1.50×10-4

J和9.95×10-3

J

B.1.50×10-4

J和9.95×10-3

J

C.-1.50×10-4

J和9.65×10-3

J

D.1.50×10-4

J和9.65×10-3

J

【答案】D

【解析】:

本题考查功与能.设小球下落的高度为h,则电场力做的功W1=-qEh=-1.5×10-4

J,电场力做负功,电势能增加,所以电势能增加1.5×10-4

J;重力做的功W2=mgh=9.8×10-3

J,合力做的功W=

W1+

W2=9.65×10-3

J,根据动能定理可知ΔEk=W=9.65×10-3

J,因此D项正确.

5.(2013全国1)一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移,则从P点开始下落的相同粒子将()

A.打到下极板上

B.在下极板处返回

C.在距上极板处返回

D.在距上极板d处返回

【答案】D

【解析】选D.本题应从动能定理的角度解决问题.带电粒子在重力作用下下落,此过程中重力做正功,当带电粒子进入平行板电容器时,电场力对带电粒子做负功,若带电粒子在下极板处返回,由动能定理得mg(+d)-qU=0;若电容器下极板上移,设带电粒子在距上极板d′处返回,则重力做功WG=mg(+d′),电场力做功W电=-qU′=-qU=-qU,由动能定理得WG+W电=0,联立各式解得d′=d,选项D正确.

6.(2013天津)两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A为MN上的一点.一带负电的试探电荷q,从A由静止释放,只在静电力作用下运动,取无限远处的电势为零,则()

A.q由A向O的运动是匀加速直线运动

B.q由A向O运动的过程电势能逐渐减小

C.q运动到O点时的动能最大

D.q运动到O点时的电势能为零

【答案】BC.【解析】:等量同种电荷的电场线如图所示,负试探电荷q在A点由静止释放,在电场力的作用下从A向O

7.(2010四川卷)如图所示,圆弧虚线表示正点电荷电场的等势面,相邻两等势面间的电势差相等。光滑绝缘直杆沿电场方向水平放置并固定不动,杆上套有一带正电的小滑块(可视为质点),滑块通过绝缘轻弹簧与固定点O相连,并以某一初速度从M点运动到N点,OM<ON。若滑块在M、N时弹簧的弹力大小相等,弹簧始终在弹性限度内,则

()

A、滑块从M到N的过程中,速度可能一直增大

B、滑块从位置1到2的过程中,电场力做的功比从位置3到4的小

C、在M、N之间的范围内,可能存在滑块速度相同的两个位置

D、在M、N之间可能存在只由电场力确定滑块加速度大小的三个位置

【答案】:AC

【解析】:在N点如果电场力不小于弹簧弹力的分力,则滑块一直加速,A正确。在N点如果电场力小于弹簧弹力的分力,则滑块先加速后减速,就可能有两个位置的速度相同,C正确。1、2与3、4间的电势差相等,电场力做功相等,B错误。由于M点和N点弹簧的长度不同但弹力相等,说明N点时弹簧是压缩的,在弹簧与水平杆垂直和弹簧恢复原长的两个位置滑块的加速度只由电场力决定,D错误。

第二种情况是此时间差不是周期的整数倍则,当n=0时s,且由于是的二倍说明振幅是该位移的二倍为0.2m。

8.(2019江苏)如图所示,ABC为等边三角形,电荷量为+q的点电荷固定在A点.先将一电荷量也为+q的点电荷Q1从无穷远处(电势为0)移到C点,此过程中,电场力做功为-W.再将Q1从C点沿CB移到B点并固定.最后将一电荷量为-2q的点电荷Q2从无穷远处移到C点.下列说法正确的有()

A:Q1移入之前,C点的电势为

B:Q1从C点移到B点的过程中,所受电场力做的功为0

C:Q2从无穷远处移到C点的过程中,所受电场力做的功为2W

D:Q2在移到C点后的电势能为-4W

【答案】ABD

【解析】:由题意可知,C点的电势为,故A正确;由于B、C两点到A点()的距离相等,所以B、C两点的电势相等,所以从C点移到B点的过程中,电场力做功为0,故B正确;由于B、C两点的电势相等,所以当在B点固定后,C点的电势为,所以

从无穷远移到C点过程中,电场力做功为:故C错误;

由于C点的电势为,所以电势能为,故D正确。

题型二、带电粒子在复合场中的运动的综合类问题

9.(2019天津)如图所示,在水平向右的匀强电场中,质量为的带电小球,以初速度v从点竖直向上运动,通过点时,速度大小为2v,方向与电场方向相反,则小球从运动到的过程()

A.动能增加

B.机械能增加

C.重力势能增加

D.电势能增加

【答案】:C

【解析】:小球的动能增加量为;故A

错误;除重力外其它力对小球做功的大小为小球机械能的增加量,在本题中电场力对小球做功的大小为小球机械能的增加量,在水平方向上研究小球可知电场力对其做正功,电势能减小,可求得电场力对小球做功大小为小球水平方向动能的增量;即小球的机械能增加了;电势能减小了;故B对,D

错;从M点到N

点对小球应用动能定理得:;又;可求得故C

错;

10.(2016江苏)如图所示,水平金属板A、B分别与电源两极相连,带电油滴处于静止状态.现将B板右端向下移动一小段距离,两金属板表面仍均为等势面,则该油滴()

A.仍然保持静止

B.竖直向下运动

C.向左下方运动

D.向右下方运动

【答案】D

【解析】两极板平行时带电粒子处于平衡状态,则重力等于电场力,当下极板旋转时,板间距离增大场强减小,电场力小于重力;由于电场线垂直于金属板表面,所以电荷处的电场线如图所示,所以重力与电场力的合力偏向右下方,故粒子向右下方运动,选项D正确.11.(2013广东)喷墨打印机的简化模型如图所示.重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()

A.向负极板偏转

B.电势能逐渐增大

C.运动轨迹是抛物线

D.运动轨迹与带电量无关

【答案】:C

【解析】选C.带电微滴垂直进入电场后,在电场中做类平抛运动,根据平抛运动的分解——水平方向做匀速直线运动和竖直方向做匀加速直线运动.

带负电的微滴进入电场后受到向上的静电力,故带电微滴向正极板偏转,选项A错误;带电微滴垂直进入电场受竖直方向的静电力作用,静电力做正功,故墨汁微滴的电势能减小,选项B错误;根据x=v0t,y=at2及a=,得带电微滴的轨迹方程为y=,即运动轨迹是抛物线,与带电量有关,选项C正确,D错误.

12.(2016全国1)

如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点的竖直线对称。忽略空气阻力。由此可知()

A.点的电势比点高

B.油滴在点的动能比它在点的大

C.油滴在点的电势能比它在点的大

D.油滴在点的加速度大小比它在点的小

【答案】AB

【解析】由于匀强电场中的电场力和重力都是恒力,所以合外力为恒力,加速度恒定不变,所以D选项错。由于油滴轨迹相对于过的竖直线对称且合外力总是指向轨迹弯曲内侧,所以油滴所受合外力沿竖直方向,电场力竖直向上。当油滴得从点运动到时,电场力做正功,电势能减小,C选项错误;油滴带负电,电势能减小,电势增加,所以点电势高于点电势,A选项正确;在油滴从点运动到的过程中,合外力做正功,动能增加,所以点动能大于点,B选项正确;所以选AB。

13.(2014·天津)如图所示,平行金属板A、B水平正对放置,分别带等量异号电荷.一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()

A.若微粒带正电荷,则A板一定带正电荷

B.微粒从M点运动到N点电势能一定增加

C.微粒从M点运动到N点动能一定增加

D.微粒从M点运动到N点机械能一定增加

【答案】C

【解析】:

本题是对带电微粒在复合场中的运动、动能定理、机械能守恒定律、受力分析的综合考查,通过图像中的运动轨迹,无法判断电场力的方向,只能判断出微粒所受的合外力方向竖直向下,运动过程中合力的方向与运动方向的夹角为锐角,合外力做正功,微粒的动能增加,A、B错误,C正确.由于不能判断出电场力的方向,所以机械能的变化也不能确定,D错误.

14.(2010全国卷2)

在雷雨云下沿竖直方向的电场强度为V/m.已知一半径为1mm的雨滴在此电场中不会下落,取重力加速度大小为10m/,水的密度为kg/。这雨滴携带的电荷量的最小值约为

A.2C

B.4C

C.6C

D.8C

【答案】B

【解析】带电雨滴在电场力和重力最用下保持静止,根据平衡条件电场力和重力必然等大反向mg=Eq,则。

题型三、带点粒子在电场中运动的综合类问题

15.(2019全国2)如图,两金属板P、Q水平放置,间距为d。两金属板正中间有一水平放置的金属网G,PQG的尺寸相同。G接地,PQ的电势均为(>0)。质量为m,电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸面水平射入电场,重力忽略不计。

(1)求粒子第一次穿过G时的动能,以及她从射入电场至此时在水平方向上的位移大小;

(2)若粒子恰好从G的下方距离G也为h的位置离开电场,则金属板的长度最短应为多少?

【答案】(1);(2)

【解析】(1)PG、QG间场强大小相等,均为E,粒子在PG间所受电场力F的方向竖直向下,设粒子的加速度大小为a,有

F=qE=ma②

设粒子第一次到达G时动能为Ek,由动能定理有

设粒子第一次到达G时所用时间为t,粒子在水平方向的位移为l,则有

l=v0t⑤

联立①②③④⑤式解得

(2)

设粒子穿过G一次就从电场的右侧飞出,则金属板的长度最短,由对称性知,此时金属板的长度L为⑧

16.(2019全国3)空间存在一方向竖直向下的匀强电场,O、P是电场中的两点。从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B。A不带电,B的电荷量为q(q>0)。A从O点发射时的速度大小为v0,到达P点所用时间为t;B从O点到达P点所用时间为。重力加速度为g,求

(1)电场强度的大小;

(2)B运动到P点时的动能。

【答案】(1);(2)

【解析】:(1)设电场强度的大小为E,小球B运动的加速度为a。根据牛顿定律、运动学公式和题给条件,有

mg+qE=ma①

解得

(2)设B从O点发射时的速度为v1,到达P点时的动能为Ek,O、P两点的高度差为h,根据动能定理有

且有

联立③④⑤⑥式得

17.(2016北京卷)如图所示,电子由静止开始经加速电场加速后,沿平行于版面的方向射入偏转电场,并从另一侧射出。已知电子质量为m,电荷量为e,加速电场电压为,偏转电场可看做匀强电场,极板间电压为U,极板长度为L,板间距为d。

(1)忽略电子所受重力,求电子射入偏转电场时初速度v0和从电场射出时沿垂直版面方向的偏转距离Δy;

(2)分析物理量的数量级,是解决物理问题的常用方法。在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。已知,。

(3)极板间既有电场也有重力场。电势反映了静电场各点的能的性质,请写出电势的定义式。类比电势的定义方法,在重力场中建立“重力势”的概念,并简要说明电势和“重力势”的共同特点。

【答案】(1)(2)不需要考虑电子所受的重力(3)、电势和重力势都是反映场的能的性质的物理量,仅仅由场自身的因素决定

【解析】(1)根据功能关系,可得,电子射入偏转电场的初速度,在偏转电场中电子的运动时间

侧移量

(2)考虑电子所受重力和电场力的数量级,有重力[来源:学_电场力

由于,因此不需要考虑电子所受的重力

(3)电场中某点电势定义为电荷在该点的电势能与电荷量q的比值,由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能与其质量m的比值,叫做重力势,即,电势和重力势都是反映场的能的性质的物理量,仅仅由场自身的因素决定

18.(上海卷)如图(a),长度L=0.8m的光滑杆左端固定一带正电的点电荷A,其电荷量Q=;一质量m=0.02kg,带电量为q的小球B套在杆上。将杆沿水平方向固定于某非均匀外电场中,以杆左端为原点,沿杆向右为x轴正方向建立坐标系。点电荷A对小球B的作用力随B位置x的变化关系如图(b)中曲线I所示,小球B所受水平方向的合力随B位置x的变化关系如图(b)中曲线II所示,其中曲线II在0.16≤x≤0.20和x≥0.40范围可近似看作直线。求:(静电力常量)

(1)小球B所带电量q;

(2)非均匀外电场在x=0.3m处沿细杆方向的电场强度大小E;

(3)在合电场中,x=0.4m与x=0.6m之间的电势差U。

(4)已知小球在x=0.2m处获得v=0.4m/s的初速度时,最远可以运动到x=0.4m。若小球在x=0.16m处受到方向向右,大小为0.04N的恒力作用后,由静止开始运动,为使小球能离开细杆,恒力作用的做小距离s是多少?

【答案】(1)

(2)

(3)800v

(4)0.065m

【解析】(1)由图可知,当x=0.3m时,N

因此C

(2)设在x=0.3m处点电荷与小球间作用力为F2,F合=F2+qE

因此

电场在x=0.3m处沿细秆方向的电场强度大小为3,方向水平向左。

(3)根据图像可知在x=0.4m与x=0.6m之间合力做功大小,又,可得

(4)由图可知小球从x=0.16到x=0.2m处,电场力做功

小球从x=0.2m到x=0.4m处

由图可知小球从到处

电场力做功=-0.004×0.4=

由动能定理

+++=0

解得=

19.(2016四川)中国科学家2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器。加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用。

如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极。质子从K点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速、加速电压视为不变。设质子进入漂移管B时速度为,进入漂移管E时速度为,电源频率为,漂移管间缝隙很小。质子在每个管内运动时间视为电源周期的1/2。质子的荷质比取。求:

(1)漂移管B的长度;

(2)相邻漂移管间的加速电压。

【答案】:(1)漂移管B的长度为0.4

m

(2)相邻漂移管间的加速电压为6×104

V。

【解析】(1)设高频脉冲电源的频率为f,周期为T;质子在每个漂移管中运动的时间为t;质子进入漂移管B时速度为

;漂移管B的长度为

。则

联立①②③式并代入数据得:

(2)设质子的电荷量为q,质量为m,荷质比为e;质子进入漂移管B时动能为;质子进入漂移管E时速度为,动能为;质子从漂移管B运动到漂移管E,动能的增加量为;质子每次在相邻漂移管间被电场加速,电场的电压为U,所做的功为W。则

质子从漂移管B运动到漂移管E共被电场加速3次,根据动能定理有

联立⑤⑥⑦⑧⑨⑩式并代入数据得:

20.(2013山东卷)

如图所示,在坐标系xOy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E.一带电量为+q、质量为m的粒子,自y轴上的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场.已知OP=d,OQ=2d,不计粒子重力.

(1)求粒子过Q点时速度的大小和方向.

(2)若磁感应强度的大小为一确定值B0,粒子将以垂直y轴的方向进入第二象限,求B0.【答案】:见解析

【解析】(1)设粒子在电场中运动的时间为t0,加速度的大小为a,粒子的初速度为v0,过Q点时速度的大小为v,沿y轴方向分速度的大小为vy,速度与x轴正方向间的夹角为θ,由牛顿第二定律得

qE=ma

由运动学公式得

d=at

2d=v0t0

vy=at0

v=

tan

θ=

联立①②③④⑤⑥式得

v=2

θ=45°.⑧

(2)

设粒子做圆周运动的半径为R1,粒子在第一象限内的运动轨迹如图所示,O1为圆心,由几何关系可知△O1OQ为等腰直角三角形,得

R1=2d

由牛顿第二定律得

qvB0=m

联立⑦⑨⑩式得

B0=.⑪

21.(2013浙江)“电子能量分析器”主要由处于真空中的电子偏转器和探测板组成。偏转器是由两个相互绝缘、半径分别为RA和RB的同心金属半球面A和B构成,A、B为电势值不等的等势面,其过球心的截面如图所示.一束电荷量为e、质量为m的电子以不同的动能从偏转器左端M板正中间小孔垂直入射,进入偏转电场区域,最后到达偏转器右端的探测板N,其中动能为Ek0的电子沿等势面C做匀速圆周运动到达N板的正中间.忽略电场的边缘效应。

(1)判断半球面A、B的电势高低,并说明理由;

(2)求等势面C所在处电场强度E的大小;

(3)若半球面A、B和等势面C的电势分别为φA、φB和φC,则到达N板左、右边缘处的电子,经过偏转电场前、后的动能改变量ΔEk左和ΔEk右分别为多少?

(4)比较|ΔEk左|和|ΔEk右|的大小,并说明理由.

【答案】:见解析

【解析】:(1)电子(带负电)做圆周运动,电场力方向指向球心,电场方向从B指向A,半球面B的电势高于A.(2)据题意,电子在电场力作用下做圆周运动,考虑到圆轨道上的电场强度E大小相同,有:

eE=m

Ek0=mv2

R=

联立解得:

E==.(3)电子运动时只有电场力做功,根据动能定理,有

ΔEk=qU

对到达N板左边缘的电子,电场力做正功,动能增加,有

ΔEk左=e(φB-φC)

对到达N板右边缘的电子,电场力做负功,动能减小,有

ΔEk右=e(φA-φC).

(4)根据电场线特点,等势面B与C之间的电场强度大于C与A之间的电场强度,考虑到等势面间距相等,有

|φB-φC|>|φA-φC|

即|ΔEk左|>|ΔEk右|.22.(2013全国大纲)

一电荷量为q(q>0)、质量为m的带电粒子在匀强电场的作用下,在t=0时由静止开始运动,场强随时间变化的规律如图所示.不计重力,求在t=0到t=T的时间间隔内,(1)粒子位移的大小和方向;

(2)粒子沿初始电场反方向运动的时间.

【解析】带电粒子在规律性变化的电场力作用下做变速运动.

法一:(1)带电粒子在0~、~、~、~T时间间隔内做匀变速运动,设加速度分别为a1、a2、a3、a4,由牛顿第二定律得

a1=

a2=-2

a3=2

a4=-

由此得带电粒子在0~T时间间隔内运动的加速度—时间图象如图(a)所示,对应的速度—时间图像如图(b)所示,其中

v1=a1=

由图(b)可知,带电粒子在t=0到t=T时间内的位移为

s=v1

图(b)

由⑤⑥式得

s=T2

方向沿初始电场正方向.

(2)由图(b)可知,粒子在t=T到t=T内沿初始电场的反方向运动,总的运动时间为

t=T-T=

法二:(1)带电粒子在0~、~、~、~T时间间隔内做匀变速运动,设加速度分别为a1、a2、a3、a4,由牛顿第二定律得

qE0=ma1

-2qE0=ma2

2qE0=ma3

-qE0=ma4

设带电粒子在t=、t=、t=、t=T时的速度分别为v1、v2、v3、v4,则

v1=a1

v2=v1+a2

v3=v2+a3

v4=v3+a4

设带电粒子在t=0到t=T时间内的位移为s,有

s=(+++)

联立以上各式可得

s=

方向沿初始电场正方向.

(2)由电场的变化规律知,t=时粒子开始减速,设经过时间t1速度减为零.

0=v1+a2t1

将①②⑤式代入上式,得

t1=

粒子从t=时开始减速,设经过时间t2速度变为零.

0=v2+a3t2

此式与①②③⑤⑥式联立得

t2=

t=0到t=T内粒子沿初始电场反方向运动的时间为

t=(-t1)+t2

将⑪⑫式代入⑬式得

t=.⑭

答案:(1)T2,方向沿初始电场正方向(2)

23.(2013北京卷)如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场.金属板下方有一磁感应强度为B的匀强磁场.带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:

(1)匀强电场场强E的大小;

(2)粒子从电场射出时速度v的大小;

(3)粒子在磁场中做匀速圆周运动的半径R.【答案】:(1)(2)

(3)

【解析】本题中带电粒子在电场中由静止开始做匀加速直线运动,可由动能定理或牛顿第二定律求解,选用动能定理进行解题更简捷.进入磁场后做匀速圆周运动,明确带电粒子的运动过程及相关公式是解题的关键.

(1)电场强度E=.(2)根据动能定理,有qU=mv2-0得v=.(3)粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,有qvB=m

得R=

.24.(2013全国2)如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行.a、b为轨道直径的两端,该直径与电场方向平行.一电荷为q(q>0)的质点沿轨道内侧运动.经过a点和b点时对轨道压力的大小分别为Na和NB.不计重力,求电场强度的大小E、质点经过a点和b点时的动能.

【答案】:(Nb-Na)(Nb+5Na)(5Nb+Na)

【解析】小球在光滑轨道上做圆周运动,在a、b两点时,静电力和轨道的作用力的合力提供向心力,由b到a只有电场力做功,利用动能定理,可求解E及a、b两点的动能.

质点所受电场力的大小为

F=qE

设质点质量为m,经过a点和b点时的速度大小分别为va和vb,由牛顿第二定律有

F+Na=m

Nb-F=m

设质点经过a点和b点时的动能分别为Eka和Ekb,有

Eka=mv

Ekb=mv

根据动能定理有Ekb-Eka=2rF

联立①②③④⑤⑥式得

E=(Nb-Na)

Eka=(Nb+5Na)

Ekb=(5Nb+Na).

25.(2011北京)静电场方向平行于x轴,其电势φ随x的分布可简化为如图所示的折线,图中φ0和d为已知量.一个带负电的粒子在电场中以x=0为中心、沿x轴方向做周期性运动,已知该粒子质量为m、电荷量为-q,其动能与电势能之和为-A(0

(1)粒子所受电场力的大小;

(2)粒子的运动区间;

(3)粒子的运动周期.

【答案】(1)(2)-d(1-)≤x≤d(1-)(3)

【解析】(1)由题图可知,0与d(或-d)两点间的电势差为φ0,电场强度的大小E=,电场力的大小F=qE=.(2)设粒子在[-x0,x0]区间内运动,速率为v,由题意得

mv2-qφ=-A①

由题图可知φ=φ0(1-)②

由①②得mv2=qφ0(1-)-A③

因动能非负,有qφ0(1-)-A≥0,得|x|≤d(1-),即x0=d(1-)④

粒子的运动区间满足

-d(1-)≤x≤d(1-).

(3)考虑粒子从-x0处开始运动的四分之一周期,根据牛顿第二定律,粒子的加速度

a===⑤

由匀加速直线运动规律得t=.将④⑤代入,得t=.粒子的运动周期

T=4t=.

第五篇:高三物理真题分类专题-热力学综合(解析版)

专题15、选修3-3、热力学综合(2010-2019)

题型一、分子动理论和气体压强

题型二、油膜法测分子直径

题型三、理想气体状态方程与热力学第一定律

题型四、液柱模型

题型五、气缸模型

题型一、分子动理论和气体压强

1.(2019全国1)下列说法正确的是

A.温度标志着物体内大量分子热运动的剧烈程度

B.内能是物体中所有分子热运动所具有的动能的总和

C.气体压强仅与气体分子的平均动能有关

D.气体膨胀对外做功且温度降低,分子平均动能可能不变

【答案】A

【解析】:根据温度是分子平均动能的标志确定气体分子热运动的程度和分子平均动能变化,内能是分子平均动能和分子势总和,由气体压强宏观表现确定压强

A.温度是分子平均动能标志,所以温度标志着物体内大量分子热运动的剧烈程度,故A正确;

B.内能是物体中所有分子热运动所具有的动能和分子势能之和,故B错误;

C.由压强公式可知,气体压强除与分子平均动能(温度)有关,还与体积有关,故C错误;

D.温度是分子平均动能的标志,所以温度降低,分子平均动能一定变小,故D错误。

2.(2018北京)关于分子动理论,下列说法正确的是

A.气体扩散的快慢与温度无关

B.布朗运动是液体分子的无规则运动

C.分子间同时存在着引力和斥力

D.分子间的引力总是随分子间距增大而增大

【答案】C

【解析】A、扩散的快慢与温度有关,温度越高,扩散越快,故A错误;

B、布朗运动为悬浮在液体中固体小颗粒的运动,不是液体分子的热运动,固体小颗粒运动的无规则性,是液体分子运动的无规则性的间接反映,故B错误;学科&网

C、分子间斥力与引力是同时存在,而分子力是斥力与引力的合力,分子间的引力和斥力都是随分子间距增大而减小;当分子间距小于平衡位置时,表现为斥力,即引力小于斥力,而分子间距大于平衡位置时,分子表现为引力,即斥力小于引力,但总是同时存在的,故C正确,D错误。

3.(2018全国2)对于实际的气体,下列说法正确的是______。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。没选错1个扣3分,最低得分为0分)

A.气体的内能包括气体分子的重力势能

B.气体的内能包括分子之间相互作用的势能

C.气体的内能包括气体整体运动的动能

D.气体体积变化时,其内能可能不变

E.气体的内能包括气体分子热运动的动能

【答案】:BDE

【解析】气体的内能包括气体分子的动能和分子势能,不包括其中立势能,分子之间的势能是不能悲忽律的,包括在气体分子的内能里,所以A错B对,E对;气体的内能不包括分子宏观运动的动能,C错,气体内能的变化受气体做功与热传递二者决定,所以D选项正确

4.的变化分别如图中两条曲线所示。下列说法正确的是________。

A.图中两条曲线下面积相等

B.图中虚线对应于氧气分子平均动能较小的情形

C.图中实线对应于氧气分子在100

℃时的情形

D.图中曲线给出了任意速率区间的氧气分子数目

E.与0

℃时相比,100

℃时氧气分子速率出现在0~400

m/s区间内的分子数占总分子数的百分比较大

【答案】: ABC

【解析】:A对:面积表示总的氧气分子数,二者相等。

B对:温度是分子平均动能的标志,温度越高,分子的平均动能越大,虚线为氧气分子在0

℃时的情形,分子平均动能较小。

C对:实线为氧气分子在100

℃时的情形。

D错:曲线给出的是分子数占总分子数的百分比。

E错:速率出现在0~400

m/s区间内,100

℃时氧气分子数占总分子数的百分比较小。

5.(2015全国2)关于扩散现象,下列说法正确的是

(填正确答案标号,选对1个给2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分0分)

A.温度越高,扩散进行得越快

B.扩散现象是不同物质间的一种化学反应

C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生

E.液体中的扩散现象是由于液体的对流形成的【答案】ACD

【解析】:温度高,分子扩散速度加快A选项正确;扩散属于物理反应所以B选项错误;扩散现象是由物质的分子无规则的运动产生故C正确;扩散在气体液体以及固体中都能进行故D对

液体中的扩散现象时有液体分子的无规则运动产生,故E错误。

考点:分子动理论

6.(2015山东)墨滴入水,扩而散之,徐徐混匀。关于该现象的分析正确的是_____。(双选,填正确答案标号)

a.混合均匀主要是由于碳粒受重力作用

b.混合均匀的过程中,水分子和碳粒都做无规则运动

c.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速

d.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的【答案】BC

【解析】:根据分子动理论的只是可知,混合均匀主要是因为水分子在做无规则的运动使得碳离子造成布朗运动,又因为布朗运动的剧烈程度与碳粒子的大小及温度有关,所以使用比碳粒子更小的墨汁做实验,布朗运动会变得更明显。

7.(2015广东)为某实验器材的结构示意图,金属内筒和隔热外筒间封闭了一定体积的空气,内筒中有水,在水加热升温的过程中,被封闭的空气()

A.内能增大

B.压强增大

C.分子间引力和斥力都减小

D.所有分子运动速率都增大

【答案】AB

【解析】本题考查了热学基础知识,题目中器材包含了金属内筒和隔热外筒,水加热升温,封闭空气温度升高,而外筒隔热,不会有能量损失,则当加热水时,热量通过金属筒传给气体,气体内能增加,温度升高,选项A正确;气体体积不变,温度升高,由理想气体状态方程右知压强增加,选项B正确;分子间的引力和斥力与分子间的距离有关,气体体积不变,分子间距不变,分子间的引力和斥力不变,选项C错误;温度只是与气体分子平均动能有关,温度增加并不是所有分子速率增加,选项D错误。

8.(2011四川)气体能够充满密闭容器,说明气体分子除相互碰撞的短暂时间外

A.气体分子可以做布朗运动

B.气体分子的动能都一样大

C.相互作用力十分微弱,气体分子可以自由运动

D.相互作用力十分微弱,气体分子间的距离都一样大

【答案】:C

【解析】:布朗运动是微小颗粒的无规则运动,而不是分子的运动,A错误;同一温度下,每个气体分子速率不一定相同,其气体分子动能不一定一样大,B错误;气体分子之间的距离远大于分子力的作用范围,分子力可以认为十分微弱,分子可以自由移动,但分子与分子之间的距离还是不一样大,C正确,D错误。

9.(2011山东)人类对物质属性的认识是从宏观到微观不断深入的过程。以下说法正确的是。

A.液体的分子势能与体积有关

B.晶体的物理性质都是各向异性的C.温度升高,每个分子的动能都增大

D.露珠呈球状是由于液体表面张力的作用

【答案】:AD

【解析】:物体体积变化时,分子间的距离将发生改变,分子势能随之改变,所以分子势能与体积有关,a正确。晶体分为单晶体和多晶体,单晶体的物理性质各向异性,多晶体的物理性质各向同性,b错误。温度是分子平均动能的标志,具有统计的意义,c错误。液体表面的张力具有使液体表面收缩到最小的趋势,d正确。

题型二、油膜法测分子直径

10.(2019全国3)用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是________________________________________________________________。实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以________________________________________________________________________________。为得到油酸分子的直径,还需测量的物理量是___________________________________。

【答案】:见解析

【解析】:使油酸在浅盘的水面上容易形成一块单分子层油膜

把油酸酒精溶液一滴一滴地滴入小量筒中,测出1

mL油酸酒精溶液的滴数,得到一滴溶液中纯油酸的体积

单分子层油膜的面积

11.(2015海南)已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏伽德罗常数为,地面大气压强为,重力加速度大小为g。由此可以估算得,地球大气层空气分子总数为,空气分子之间的平均距离为。

【答案】,【解析】设大气层中气体的质量为m,由大气压强产生,即:

分子数,假设每个分子占据一个小立方体,各小立方体紧密排列,则小立方体边长即为空气分子平均间距,设为a,大气层中气体总体积为V,而,所以

题型三、理想气体状态方程与热力学第一定律

12.(2019全国2)如p-V图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T1、T2、T3。用N1、N2、N3分别表示这三个状态下气体分子在单位时间内撞击容器壁上单位面积的次数,则N1______N2,T1______T3,T3,N2______N3。(填“大于”“小于”或“等于”)

【答案】(1).大于

(2).等于

(3).大于

【解析】1、2等体积,2、3等压强,由pV=nRT得:=,V1=V2,故=,可得:T1=2T2,即T1>T2,由于分子密度相同,温度高,碰撞次数多,故N1>N2;

由于p1V1=

p3V3;故T1=T3;

则T3>T2,又p2=p3,2状态分析密度大,分析运动缓慢,单个分子平均作用力小,3状态分子密度小,分子运动剧烈,单个分子平均作用力大。故3状态碰撞容器壁分子较少,即N2>N3;

13.(2019全国1)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改部其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为013

m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的容积为3.2×10-2

m3,使用前瓶中气体压强为1.5×107

Pa,使用后瓶中剩余气体压强为2.0×106

Pa;室温温度为27

℃。氩气可视为理想气体。

(1)求压入氩气后炉腔中气体在室温下的压强;

(2)将压入氩气后的炉腔加热到1

227

℃,求此时炉腔中气体的压强。

【答案】(1)

(2)

【解析】(1)设初始时每瓶气体的体积为,压强为;使用后气瓶中剩余气体的压强为,假设体积为,压强为的气体压强变为时,其体积膨胀为,由玻意耳定律得:

被压入进炉腔的气体在室温和条件下的体积为:

设10瓶气体压入完成后炉腔中气体的压强为,体积为,由玻意耳定律得:

联立方程并代入数据得:

(2)设加热前炉腔的温度为,加热后炉腔的温度为,气体压强为,由查理定律得:

联立方程并代入数据得:

14.(2018全国3)如图,一定量的理想气体从状态a变化到状态b,其过程如p-V图中从a到b的直线所示。在此过程中______。

A.气体温度一直降低

B.气体内能一直增加

C.气体一直对外做功

D.气体一直从外界吸热

E.气体吸收的热量一直全部用于对外做功

【答案】BCD

【解析】试题分析本题考查对一定质量的理想气体的p——V图线的理解、理想气体状态方程、热力学第一定律、理想气体内能及其相关的知识点。学科.网

解析

一定质量的理想气体从a到b的过程,由理想气体状态方程paVa/Ta=pbVb/Tb可知,Tb>Ta,即气体的温度一直升高,选项A错误;根据理想气体的内能只与温度有关,可知气体的内能一直增加,选项B正确;由于从a到b的过程中气体的体积增大,所以气体一直对外做功,选项C正确;根据热力学第一定律,从a到b的过程中,气体一直从外界吸热,选项D正确;气体吸收的热量一部分增加内能,一部分对外做功,选项E错误。

15.(2017·全国3)如图,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b再经过等温过程bc到达状态c,最后经等压过程ca回到状态a。下列说法正确的是________。

A.在过程ab中气体的内能增加

B.在过程ca中外界对气体做功

C.在过程ab中气体对外界做功

D.在过程bc中气体从外界吸收热量

E.在过程ca中气体从外界吸收热量

【答案】: ABD

【解析】:(1)ab过程是等容变化,ab过程压强增大,温度升高,气体内能增大,选项A正确;而由于体积不变,气体对外界不做功,选项C错误。ca过程是等压变化,体积减小,外界对气体做功,选项B正确:体积减小过程中,温度降低,内能减小,气体要放出热量,选项E错误。bc过程是等温变化,内能不变,体积增大,气体对外界做功,则需要吸收热量,选项D正确。

16.(2016·全国1)一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其p

­T图象如图所示,其中对角线ac的延长线过原点O。下列判断正确的是________。(填正确答案标号)

A.气体在a、c两状态的体积相等

B.气体在状态a时的内能大于它在状态c时的内能

C.在过程cd中气体向外界放出的热量大于外界对气体做的功

D.在过程da中气体从外界吸收的热量小于气体对外界做的功

E.在过程bc中外界对气体做的功等于在过程da中气体对外界做的功

【答案】: ABE

【解析】: 由理想气体状态方程=C得,p=T,由图象可知,Va=Vc,选项A正确;理想气体的内能只由温度决定,而Ta>Tc,故气体在状态a时的内能大于在状态c时的内能,选项B正确;由热力学第一定律ΔU=Q+W知,cd过程温度不变,内能不变,则Q=-W,选项C错误;da过程温度升高,即内能增大,则吸收的热量大于对外做的功,选项D错误;bc过程和da过程互逆,则做功的多少相同,选项E正确。

17.(2016·全国2)关于热力学定律,下列说法正确的是________。

A.气体吸热后温度一定升高

B.对气体做功可以改变其内能

C.理想气体等压膨胀过程一定放热

D.热量不可能自发地从低温物体传到高温物体

E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡

【答案】: BDE

【解析】: 根据热力学定律,气体吸热后如果对外做功,则温度不一定升高,说法A错误。改变物体内能的方式有做功和传热,对气体做功可以改变其内能,说法B正确。理想气体等压膨胀对外做功,根据=恒量知,膨胀过程一定吸热,说法C错误。根据热力学第二定律,热量不可能自发地从低温物体传到高温物体,说法D正确。两个系统达到热平衡时,温度相等,如果这两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡,说法E正确。故选B、D、E。

18.(2015重庆)某驾驶员发现中午时车胎内的气压高于清晨时的,且车胎体积增大.若这段时间胎内气体质量不变且可视为理想气体,那么()

A.外界对胎内气体做功,气体内能减小

B.外界对胎内气体做功,气体内能增大

C.胎内气体对外界做功,内能减小

D.胎内气体对外界做功,内能增大

【答案】D

【解析】:对车胎内的理想气体分析知,体积增大为气体为外做功,内能只有动能,而动能的标志为温度,故中午温度升高,内能增大,故选D。

考点:本题考查理想气体的性质、功和内能、热力学第一定律。

19.(2015重庆)北方某地的冬天室外气温很低,吹出的肥皂泡会很快冻结.若刚吹出时肥皂泡内气体温度为,压强为,肥皂泡冻结后泡内气体温度降为.整个过程中泡内气体视为理想气体,不计体积和质量变化,大气压强为.求冻结后肥皂膜内外气体的压强差.【答案】

【解析】对气泡分析发生等容变化有:,可得:,故内外气体的压强差为

20.(2015山东)扣在水平桌面上的热杯盖有时会发生被顶起的现象;如图,截面积为S的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300K,压强为大气压强P0。当封闭气体温度上升至303K时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部压强立即减为P0,温度仍为303K。再经过一段时间,内部气体温度恢复到300K。整个过程中封闭气体均可视为理想气体。求:

(ⅰ)当温度上升到303K且尚未放气时,封闭气体的压强;

(ⅱ)当温度恢复到300K时,竖直向上提起杯盖所需的最小力。

【答案】(ⅰ)1.01P0;(ⅱ)0.02P0S

【解析】(ⅰ)气体进行等容变化,开始时,压强P0,温度T0=300K;当温度上升到303K且尚未放气时,压强为P1,温度T1=303K;根据可得:

(ⅱ)当内部气体温度恢复到300K时,由等容变化方程可得:,解得

当杯盖恰被顶起时有:

若将杯盖提起时所需的最小力满足:,解得:

21.(2015北京)下列说法正确的是()

A.物体放出热量,其内能一定减小

B.物体对外做功,其内能一定减小

C.物体吸收热量,同时对外做功,其内能可能增加

D.物体放出热量,同时对外做功,其内能可能不变

【答案】C

【解析】:物体内能的改变方式有两种:做功和热传递,只说某一种方式我们无法

判断内能是否变化,故

A、B

选项错误;物体放出热量又同时对外做功内能一定

减小,故

D

选项错误。物体吸收热量同时对外做功,内能可能增大、减小或不

变,故

C

选项正确。

22.(2013江苏)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。

其中,和为等温过程,和为绝热过程(气体与外界无热量交换)。

这就是著名的“卡诺循环”。

(1)该循环过程中,下列说法正确的是______。

(A)过程中,外界对气体做功

(B)

过程中,气体分子的平均动能增大

(C)

过程中,单位时间内碰撞单位面积器壁的分子数增多

(D)

过程中,气体分子的速率分布曲线不发生变化

(2)该循环过程中,内能减小的过程是_______

(选填“”、“”、“”或“”)。

若气体在过程中吸收63kJ的热量,在过程中放出38kJ的热量,则气体完成一次循环对外做的功为_______

kJ。

(3)若该循环过程中的气体为1mol,气体在A状态时的体积为10L,在B状态时压强为A状态时的。

求气体在B状态时单位体积内的分子数。

(已知阿伏加德罗常数,计算结果保留一位有效数字)

【答案】

(1)C

(2)

(3)等温过程,单位体积内的分子数.解得,代入数据得

【解析】:A选项:从图上看:A到B过程体积变大,则气体对外做功,W<0,故A项错误;对B项:B到C过程为绝热过程,则热交换Q=0,且从图上看,气体的体积增大,气体对外做功,W<0,由热力学第一定律ΔU=Q+W知:ΔU<0,则气体的温度将变低,气体分子的平均动能变小,故B项错误;对C项:从图上看,C到D

过程的气体压强在增大,则单位时间内碰撞单位面积器壁的分子数增多,故C项正确;对D项:D到A

为绝热过程,则热交换Q=0,且从图上看,气体的体积减小,外界对气体做功W>0,由热力学第一定律ΔU=Q+W知,气体的内能ΔU>0,故气体温度升高,则气体分子的速率分布曲线会发生变化,故D项错误。本题答案为:C。

(2)从(1)的分析中,知内能减小的过程为B到C。B到C和D到A为绝热过程,无热量交换,若在A到B过程中吸收63

kJ的热量,在C®D

过程中放出38

kJ的热量,则整个过程热量交换Q总=Q吸-Q放=25kJ,整个循环中内能变化量ΔU=0,由ΔU=Q+W知W=-25kJ,即整个过程对外做的功为25kJ。

(3)A

®B过程为等温过程,由得,则由关系式,代入数据可得气体在B状态时单位体积内的分子为:。

题型四、液柱模型

(2016·全国3)一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞。初始时,管内汞柱及空气柱长度如图所示。用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止。求此时右侧管内气体的压强和活塞向下移动的距离。已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0

cmHg。环境温度不变。

【答案】: 144

cmHg 9.42

cm

【解析】: 设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2=p0,长度为l2。活塞被下推h后,右管中空气柱的压强为p1′,长度为l1′;左管中空气柱的压强为p2′,长度为l2′。以cmHg为压强单位。

由题给条件得p1=p0+(20.0-5.00)

cmHg①

l1′=(20.0-)

cm②

由玻意耳定律得p1l1=p1′l1′③

联立①②③式和题给条件得

p1′=144

cmHg④

依题意p2′=p1′⑤

l2′=4.00

cm+cm-h⑥

由玻意耳定律得p2l2=p2′l2′⑦

联立④⑤⑥⑦式和题给条件得h=9.42

cm

(2019全国3)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0

cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0

cm。若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。已知大气压强为76

cmHg,环境温度为296

K。

(i)求细管的长度;

(i)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。

【答案】见解析

【解析】(i)设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,气体体积为V1,压强为p1。由玻意耳定律有

pV=p1V1

由力的平衡条件有

p=p0+ρgh

p1=p0–ρgh

式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强。由题意有

V=S(L–h1–h)

V1=S(L–h)

由①②③④⑤式和题给条件得

L=41

cm

(ii)设气体被加热前后的温度分别为T0和T,由盖–吕萨克定律有

由④⑤⑥⑦式和题给数据得

T=312

K

23.(2018全国3)在两端封闭、粗细均匀的U形细玻璃管内有一股水银柱,水银柱的两端各封闭有一段空气。当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0

cm和l2=12.0

cm,左边气体的压强为12.0

cmHg。现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边。求U形管平放时两边空气柱的长度。在整个过程中,气体温度不变。

【答案】7.5

cm

【解析】试题分析

本题考查玻意耳定律、液柱模型、关联气体及其相关的知识点。

解析

设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2。U形管水平放置时,两边气体压强相等,设为p,此时原左、右两边气体长度分别变为l1′和l2′。由力的平衡条件有

式中为水银密度,g为重力加速度大小。

由玻意耳定律有

p1l1=pl1′②

p2l2=pl2′③

l1′–l1=l2–l2′④

由①②③④式和题给条件得

l1′=22.5

cm⑤

l2′=7.5

cm⑥

24.(2018全国1)如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。开始时,K关闭,汽缸内上下两部分气体的压强均为。现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了。不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。求流入汽缸内液体的质量。

K

【答案】见解析

【解析】设活塞再次平衡后,活塞上方气体的体积为,压强为;下方气体的体积为,压强为。在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得

由已知条件得

设活塞上方液体的质量为m,由力的平衡条件得

联立以上各式得

25.(2014全国)粗细均匀、导热良好、装有适量水银的U型管竖直放置,右端与大气相通,左端封闭气柱长(可视为理想气体),两管中水银面等高。现将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面。(环境温度不变,大气压强)

①求稳定后低压舱内的压强(用“cmHg”作单位)。

②此过程中左管内的气体对外界______________(填“做正功”“做负功”或“不做功”),气体将_____________________(填“吸热”或

“放热”)。

【答案】:见解析

【解析】设U型管横截面积为S,右端与大气相通时左管中封闭气体压强为,右端与一低压舱接通后左管中封闭气体压强为,气柱长度为,稳定后低压舱内的压强为。左管中封闭气体发生等温变化,根据玻意耳定律得

P1V1=P2V2

P1=P0

P2=P+Ph

V1=L1S

V2=L2S

由几何关系得:h=2(l2-l1)

联立以上各式代入数据得:P=50cmHg.(2)做正功;吸热

26.(2011全国)如图,一上端开口,下端封闭的细长玻璃管,下部有长l1=66cm的水银柱,中间封有长l2=6.6cm的空气柱,上部有长l3=44cm的水银柱,此时水银面恰好与管口平齐。已知大气压强为Po=76cmHg。如果使玻璃管绕低端在竖直平面内缓慢地转动一周,求在开口向下和转回到原来位置时管中空气柱的长度。封入的气体可视为理想气体,在转动过程中没有发生漏气。

【解析】:设玻璃管开口向上时,空气柱的压强为

式中,和g分别表示水银的密度和重力加速度。

玻璃管开口向下时,原来上部的水银有一部分会流出,封闭端会有部分真空。设此时开口端剩下的水银柱长度为x则

式中,为管内空气柱的压强,由玻意耳定律得

式中,h是此时空气柱的长度,S为玻璃管的横截面积,由①②③式和题给条件得

从开始转动一周后,设空气柱的压强为,则

由玻意耳定律得

式中,是此时空气柱的长度。由①②③⑤⑥式得

27.(2011山东)气体温度计结构如图所示。玻璃测温泡A内充有理想气体,通过细玻璃管B和水银压强计相连。开始时A处于冰水混合物中,左管C中水银面在O点处,右管D中水银面高出O点h1=14cm。后将A放入待测恒温槽中,上下移动D,使C中水银面仍在O点处,测得D中水银面高出O点h2=44cm。(已知外界大气压为1个标准大气压,1标准大气压相当于76cmHg)

①求恒温槽的温度。

②此过程A内气体内能

(填“增大”或“减小”),气体不对外做功,气体将

(填“吸热”或“放热”)。

【答案】:①364K

②增大

吸热

【解析】:

①设恒温槽的温度为T2,由题意知A内气体发生等容变化

由查理定律得:

②  ③

联立①②③式解得④

②理想气体的内能只由温度决定,A气体的温度升高,所以内能增大。由热力学第一定律知,气体不对外做功,气体将吸热。

题型五、气缸模型

28.(2019全国2)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在地面上,汽缸内壁光滑。整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:

(1)抽气前氢气的压强;

(2)抽气后氢气的压强和体积。

【答案】(1)(p0+p);(2);

【解析】(1)设抽气前氢气的压强为p10,根据力的平衡条件得

(p10–p)·2S=(p0–p)·S①

得p10=(p0+p)②

(2)设抽气后氢气的压强和体积分别为p1和V1,氢气的压强和体积分别为p2和V2,根据力的平衡条件有p2·S=p1·2S③

由玻意耳定律得p1V1=p10·2V0④

p2V2=p0·V0⑤

由于两活塞用刚性杆连接,故

V1–2V0=2(V0–V2)⑥

联立②③④⑤⑥式解得

29.(2019全国1)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度__________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________(填“大于”“小于”或“等于”)外界空气的密度。

【答案】

(1).低于

(2).大于

【解析】:由题意可知,容器与活塞绝热性能良好,容器内气体与外界不发生热交换,故,但活塞移动的过程中,容器内气体压强减小,则容器内气体正在膨胀,体积增大,气体对外界做功,即,根据热力学第一定律可知:,故容器内气体内能减小,温度降低,低于外界温度。

最终容器内气体压强和外界气体压强相同,根据理想气体状态方程:

又,m为容器内气体质量联立得:

取容器外界质量也为m的一部分气体,由于容器内温度T低于外界温度,故容器内气体密度大于外界。故本题答案:低于;大于。

30.(2018全国2)如图,一竖直放置的气缸上端开口,气缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体。已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计他们之间的摩擦。开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0。现用电热丝缓慢加热气缸中的气体,直至活塞刚好到达b处。求此时气缸内气体的温度以及在此过程中气体对外所做的功。重力加速度大小为g。

(1)开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动。设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有

根据力的平衡条件有

联立①②式可得

此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a处和b处时气体的体积分别为V1和V2。根据盖—吕萨克定律有

式中

V1=SH⑤

V2=S(H+h)⑥

联立③④⑤⑥式解得:

从开始加热到活塞到达b处的过程中,汽缸中的气体对外做的功为

31.(2017·全国卷2)如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空。现将隔板抽开,气体会自发扩散至整个汽缸。待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积。假设整个系统不漏气。下列说法正确的是________。

A.气体自发扩散前后内能相同

B.气体在被压缩的过程中内能增大

C.在自发扩散过程中,气体对外界做功

D.气体在被压缩的过程中,外界对气体做功

E.气体在被压缩的过程中,气体分子的平均动能不变

【答案】: ABD

【解析】:气体向真空膨胀时不受阻碍,气体不对外做功,由于汽缸是绝热的,没有热交换,所以气体扩散后内能不变,选项A正确。气体被压缩的过程中,外界对气体做功,且没有热交换,根据热力学第一定律,气体的内能增大,选项B、D正确。

气体在真空中自发扩散的过程中气体不对外做功,选项C错误。

气体在压缩过程中,内能增大,由于一定质量的理想气体的内能完全由温度决定,温度越高,内能越大,气体分子的平均动能越大,选项E错误。

32.(2015全国1)如图,一固定的竖直气缸有一大一小两个同轴圆筒组成,两圆筒中各有一个活塞,已知大活塞的质量为m1=2.50kg,横截面积为s1=80.0cm2,小活塞的质量为m2=1.50kg,横截面积为s2=40.0cm2;两活塞用刚性轻杆连接,间距保持为l=40.0cm,气缸外大气压强为p=1.00×105Pa,温度为T=303K。初始时大活塞与大圆筒底部相距,两活塞间封闭气体的温度为T1=495K,现气缸内气体温度缓慢下降,活塞缓慢下移,忽略两活塞与气缸壁之间的摩擦,重力加速度g取10m/s2,求

(i)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度

(ii)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强

【答案】(i)330K

(ii)

1.01105

Pa

【解析】(i)

设初始时气体体积为V1,在大活塞与大圆筒底部刚接触时,缸内封闭气体的体积为V2,温度为T2,由题给条件得:

V1

=

s2(-)

+

s1()

·······

V2

=

s2

·······

在活塞缓慢下移的过程中,用P1表示缸内气体的压强,由力的平衡条件得:

s1(P1

P)

=

m1g

+

m2g

+

s2(P1

P)······

故缸内的气体的压强不变,由盖·吕萨克定律有:

=

······

联立式并代入题给数据得:T2

=

330K

······

(ii)在大活塞与大圆筒底面刚接触时,被封闭气体的压强为P1,在此后与汽缸外大气达到热平衡的过程中,被封闭气体的体积不变,没达到热平衡时被封闭气体的压强为P/,由查理定律有:

=

······

联立式并代入题给数据得:

P/

=

1.01105

Pa

······

33.(2015海南)如图,一底面积为S、内壁光滑的圆柱形容器竖直放置在水平地面上,开口向上,内有两个质量均为m的相同活塞A和B

;在A与B之间、B与容器底面之间分别封有一定量的同样的理想气体,平衡时体积均为V。已知容器内气体温度始终不变,重力加速度大小为g,外界大气压强为。现假设活塞B发生缓慢漏气,致使B最终与容器底面接触。求活塞A移动的距离。

【答案】

【解析】A与B之间、B与容器底面之间的气体压强分别为、,在漏气前,对A分析有,对B有

B最终与容器底面接触后,AB间的压强为P,气体体积为,则有

因为温度失重不变,对于混合气体有,漏气前A距离底面的高度为,漏气后A距离底面的高度为

联立可得

34.(2013山东)我国“蛟龙”号深海探测船载人下潜超七千米,再创载人深潜新纪录。在某次深潜实验中,“蛟龙”号探测到990m深处的海水温度为280K。某同学利用该数据来研究气体状态随海水温度的变化,如图所示,导热性良好的气缸内封闭一定质量的气体,不计活塞的质量和摩擦,气缸所处海平面的温度To=300K,压强P0=1

atm,封闭气体的体积Vo=3m2。如果将该气缸下潜至990m深处,此过程中封闭气体可视为理想气体。

①求990m深处封闭气体的体积(1

atm相当于10m深的海水产生的压强)。

②下潜过程中封闭气体___________(填“吸热”或“放热”),传递的热量__________(填“大于”或“小于”)外界对气体所做的功。

【答案】:见解析

【解析】:①当气缸下潜至990m时,设封闭气体的压强为p,温度为T,体积为V,由题意知

p=100atm

根据理想气体状态方程得

代入数据得

②放热;大于。

下载高三物理真题分类汇编专题曲线运动功和能(解析版)5篇范文word格式文档
下载高三物理真题分类汇编专题曲线运动功和能(解析版)5篇范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高三物理真题分类专题-交变电流(解析版)

    专题14、交变电流题型一、交变电流问题中四值的相关计算1题型二、理想变压器几个重要结论的应用4题型三、理想变压器中电路的动态分析问题12题型四、远距离输电问题15题型一......

    专题07 功和能-2019年高考真题和模拟题

    专题07功和能1.(2019·新课标全国Ⅱ卷)从地面竖直向上抛出一物体,其机械能E总等于动能Ek与重力势能Ep之和。取地面为重力势能零点,该物体的E总和Ep随它离开地面的高度h的变化如图......

    初三物理《简单机械_功和能》复习题

    简单机械 功,功率和能复习题 一.选择题 1.在图中的四种情境中,人对物体做功的是( ) 2.如图所示,在水平拉力F作用下,使重40N的物体A匀速移动5m,物体A受到地面的摩擦力为5N,不计滑轮、绳......

    高三物理《功和能转化》公式总结(优秀范文五篇)

    高三物理《功和能转化》公式总结 课 件www.xiexiebang.com 1.功:w=Fscosα{w:功,F:恒力,s:位移,α:F、s间的夹角} 2.重力做功:wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b......

    高三物理真题分类专题-磁场(原卷版)

    专题12、磁场题型一、通电导线在磁场中的受力以及场强的矢量性叠加1题型二、带电粒子在纯磁场中的运动规律选择题类3题型三、带电粒子在电、磁复合场中运动选择题类6题型四......

    高三物理真题分类专题-动量(原卷版)

    专题08动量定理以及动量守恒定律(2010-2019)题型一、动量及动量定理的综合应用1题型二、动量守恒定律与能量的综合应用模型一(碰撞类)3题型三、动量守恒定律与能量的综合应用模......

    九年级物理总复习教案 功和能

    复习单元八 功与能 总第 教案 教学目的: 1.理解做功的两个必要因素。 2.理解功的计算公式。 3.知道功的原理。 4.理解有用功和总功。 5.理解机械效率。 6.理解功率的概念。 7.理解动......

    专题05 曲线运动-2019年高考真题和模拟题

    专题05曲线运动1.(2019·新课标全国Ⅱ卷)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台起跳,每次都从离开跳......