第一篇:城市景观水体富营养化治理中的应用研究论文
景观水体是现代城市生态建设的重要部分,它可以满足人们身心的需要。但由于景观水体半封闭、流动性差、循环自净能力较小等特点,水体污染问题越来越严重,普遍出现富营养化现象。水体富营养化导致水体透明度下降,溶解氧降低,水质严重恶化,极易暴发蓝藻水华。目前,景观水体的治理常用技术有物理处理法、化学处理法、生物修复法,而这几种方法都存在着一些问题,比如能耗高,效果难以持久,工艺复杂条件不易控制等缺点。
水动力循环复氧控藻技术作为一种新型的水处理技术,具有无能耗、低维护费、易操作、拥有良好处理效果等特点。笔者结合实际,在景观水体无锡蠡溪公园西苑中引入了水动力循环复氧控藻技术,探讨了该技术对景观水体水质的改善效果和对其浮游藻类生长的抑制作用,以期为景观水体治理及技术的选择和应用提供理论依据。
1水体概况及试验方案
1.1水体概述无锡蠡溪公园西苑位于蠡溪桥西侧,占地3.7hm2,公园中心区为景观水体(下称西苑水体),仅通过位于四角的小桥与外围河流连接,水体相对封闭。在上游河流来水和周围污水排放共同影响下,水体水质严重超标,并且连年有蓝藻暴发。
1.2试验方案
1.2.1试验设计及监测方法。为改善景区水体环境,控制蓝藻生长,2010年2月在西苑水体中应用了水动力循环复氧控藻技术对该景观水体进行生态修复,以达到净化水质、控制蓝藻暴发,改善景区水环境的目的。根据无锡蠡溪公园西苑水体的形状特征和水质特征,选取了2台水动力循环复氧控藻设备安装于水体中,并设置5个采样点,分别为懋德桥、田叶桥、凤荷桥、绿杨桥、湖中心,自2010年3~11月共采样9次,以5个采样点的平均水质代表整个西苑水体的水质状况,考察水动力循环复氧控藻技术对西苑水体的改善情况。
主要监测指标包括:①物理指标:水温、pH、溶解氧(DO)、色度、浊度;②化学指标:总氮(TN)、总磷(TP)、氨氮(NH4+-N)、高锰酸盐指数(CODMn)、叶绿素(Chla)等;③生物指标主要监测藻类总丰度及其种类组成变化。
CODMn采用酸性法;TN、TP采用过硫酸钾-紫外消解分光光度法;NH4+-N采用纳氏比色法;叶绿素a采用热乙醇法。每次测样时加入国家环保总局水环境标准样品(国家标准样品物质网)进行加标测定。
1.2.2水动力循环复氧控藻技术原理及相关试验参数。水动力循环复氧控藻技术设备利用高效纵向循环将底层低溶解氧的水提升到表层使之形成表面流,使表层水体不断更新,此过程不仅有助于改善水体的表面张力,而且加快了界面复氧速度。另外,在水体自重作用下,被抽走的底层水由邻近的上层水体替代,实现了上下层水体的交换。覆盖面积内水体不仅实现了水体的纵向循环,而且改善了水体溶解氧及营养盐的分布状况,使整个水体溶解氧含量明显提高,并逐渐均化。
试验选取的水动力循环复氧控藻设备正常运转时,叶轮由高效低速直流电机带动,由于其具有轴向流和正向位移的双重特性,通过腔体能产生10m3/min的主体流。深层水体会快速流向水体表面,当主体流离开叶轮以近层流的方式快速流过分水盘时,同时形成感应流将浅表层的水带动起来而形成一个环流,感应流与主导流汇合后沿着水体表面以360°辐射状向外扩散。该水动力循环复氧控藻设备的总循环交换量约为5万t/d。
2结果与分析
2.1对CODMn的去除效果
尽管处理水体周围仍然不断有餐饮污水排入湖体,但污染负荷相对稳定可控。可以看到在处理期间,整个水体的CODMn浓度呈现下降趋势,处理期结束时平均去除率达到28%,CODMn指数保持在地表II~III类水。这是由于系统使上、下层水体充分交换,提高了水体的溶解氧浓度,加速了水中有机物的氧化。另外底层水体的溶解氧浓度得到明显提高,形成的富氧环境促进了微生物的降解作用,故水体中的CODMn浓度逐渐降低。
2.2对N、P的净化效果
N、P含量超标是西苑水体存在的主要问题,水体TN初始值在4.0mg/L以上,TP初始值在0.18mg/L左右。如图5,处理区水体TN、NH4+-N、TP都呈下降趋势,到11月份,TN、NH4+-N、TP最高去除率分别达到67%、84%、56%,达到了地表Ⅳ类水标准。这是由于水动力循环复氧技术增强了好氧微生物的活性,使其脱氮除磷能力得到显著提高。
N的去除方面,好氧条件加速了硝化作用,促进底层厌氧分解产物氨转化,形成硝酸盐,通过水生植物的吸收利用、鱼类的摄食作用将N搬离水体。水体由厌氧转向好氧的过程如下:
RCHNH2COOH→NH3
RCHNH2COOH+O2→RCOOH+CO2+NH3
NH4++O2→NO3-
最后NO3-被植物吸收去除。
在P的释放和吸附过程中,溶解氧浓度可影响P的转化方向,在厌氧或缺氧环境下,由于Fe、Al和Mn等金属元素以低价离子的形式存在,有利于磷酸盐的释放。相反,富氧环境有利于水体中磷酸盐的吸附,水体中的磷被固化在底泥中或被浮游动植物吸收转移而被去除。
2.3水动力循环复氧控藻技术对藻类的控制效果分析
对于水动力循环复氧控藻技术对藻类的处理效果,国内外有相应的报道,其控藻的机理主要在于水动力循环打破了蓝绿藻繁殖的最佳生境。笔者从叶绿素a的浓度、藻类总丰度、浮游植物种类和优势藻种4个方面进行了监测分析。由于藻类繁殖的高峰期在夏季,所以研究只对6月、7月和8月的藻类总丰度、浮游植物种类和优势藻种进行了跟踪监测。
2.3.1对叶绿素a的去除效果。可以看出,自5月份以来,水体叶绿素a一直维持在较低水平14~28mg/L。与处理初期相比,11月份叶绿素a下降率达到61.0%,平均去除率达到了40.2%。即使在夏秋藻类易爆发季节,处理区藻类生长也受到了有效的抑制。原因在于水动力循环复氧控藻设备对营养盐和有机污染物的去除,减少了藻类生长必须的营养源,而系统形成的水体上下交换打破了喜静蓝藻的生存环境,因此随着运行时间延长,处理区水体藻类Chla整体上呈下降趋势。
2.3.2藻类总丰度变化。在水动力循环复氧控藻设备的作用下,西苑水体中浮游植物总丰度明显降低,和6月份相比,7月份的藻类总丰度下降了57%,8月份基本维持在同一水平。水动力循环复氧控藻设备加速了水的流动,打破了水体营养盐的不均匀分布,使浮游植物的平流损失量加大,此外,扰动作用能够打破大多数蓝藻的生长环境,使其丧失生长优势。
2.3.3浮游植物组成变化。在西苑水体中,初期处理区水体中藻类主要以蓝藻、绿藻、硅藻为主,6月份在群落中所占比例分别为51%、18%、19%,7月份比例分别为3%、15%、60%,水体中隐藻开始增多,占藻类总丰度19%;8月份一些隐藻成为优势藻种,各门所占比例分别为蓝藻22%、绿藻37%、硅藻10%、隐藻35%。可见在浮游植物群落组成中,绿藻门植物数量基本稳定,蓝藻与硅藻生长相互制约,数量变化不稳定,因而在多种因素综合作用下,硅藻丰度也表现出了波动变化,所占比例下降。可见,水动力循环复氧控藻技术不仅降低了浮游植物的数量,也影响着浮游藻类群落的组成和结构。
2.3.4优势藻种变化。随着藻类群落组成变化,水体优势藻种也变化明显,6月份以硅藻门小环藻为主,7月份色球藻增多,成为优势藻种,8月份隐藻门藻类增殖加快,发展成为优势种,主要为尖尾蓝隐藻,此外绿藻门仍占据一定的比例,衣藻属成为第二优势藻种。水体中优势藻种类和数量的变化说明,水动力循环复氧控藻技术促进了pH、溶解氧和水温等环境因子的均化,增强了硅藻、隐藻等其他藻类的竞争能力,水体不再以蓝绿藻占优势,在水流环境适合的条件下,硅藻、隐藻等藻类迅速增殖成为优势藻种,使得藻类群落的多样性提高(均值由1.63增加至2.36)。这些贫营养型藻类的竞争能力加强,抑制了微囊藻、色球藻、鱼腥藻等有害藻类的增殖,可有效控制西苑水体蓝藻水华的发生。
3结论
水动力循环复氧控藻技术对无锡蠡溪公园西苑景区水体中CODMn、TN、NH4+-N、TP及藻类叶绿素a均有明显的去除效果,水质改善效果显著,与3月份相比,处理区各监测点水体TN平均去除率均达35.7%,NH4+-N平均去除率达到49.7%,TP平均去除率达到37%;CODMn平均去除率达到28%,叶绿素a平均去除率达40.2%。
总体来说,西苑水体目前已达到IV类水标准,符合一般景观要求水域的用水标准(V类)。经过水动力循环复氧控藻技术处理后,水体中藻类总丰度明显下降,平均下降率达到56%,藻种组成发生了变化,群落逐渐从单一结构转变为多优势种共存的稳定结构,水体不再以蓝绿藻占优势,在水流环境适合的条件下,硅藻、隐藻等贫营养型藻类的竞争能力增强,迅速增殖成为优势藻种,微囊藻、色球藻、鱼腥藻等有害藻类生长受到抑制,景区蓝藻水华现象得到了有效控制,景区生态环境明显转好。
本工程试验结果表明,水动力循环复氧控藻技术作为一种新型的水生态修复技术,在富营养化景观水体水质改善和蓝藻控制方面具有显著效果,且该技术完全以太阳能为设备运行的驱动力,无运行费用,是最具特色的节能环保水生态治理技术,可在景观水体治理工程中进行推广应用。
第二篇:城市景观论文
描述该城市的地理位置,气候特征、文化历史、景观特色、并总结其城市景观与环境相适应的特征
万城之城——罗马
每一座城市都有其独特之处,令人难忘。意大利的首都罗马,是意大利占地面积最广、人口最多的城市,是意大利政治、历史和文化的中心,同时也是世界灿烂文化的发祥地。古竞技场、万神殿、许愿泉、圣彼得大教堂,罗马是一座历尽沧桑的古城,一座巨大的博物馆,时时颠覆着我们对历史与现实的种种认知。地理位置: 罗马位于意大利半岛南北方向,把意大利半岛分成了东西两部分。亚平宁山脉旁边,有一条台伯河,罗马位于台伯河流入地中海的海拔最低30公里处,东距第勒尼安海25公里。全国政治、经济、文化和交通中心。人口283万(1989)。文化历史: 罗马是世界天主教中心,世界文化之都,世界历史文化名城,古代罗马的发源地。约公元前二千年初,罗马人从东北移居于此。公元前八至前四世纪筑城堡,逐步形成早期罗马城。公元756-1870年为教皇国的首都,1870年意大利王国统一后成为意大利首都(教皇国退至梵蒂冈)。
景观特色: 世界最著名的游览地之一。古城居北,新城在南。它在20世纪20~50年代建成,是拥有摩天大楼的现代化城市。罗马古城酷似一座巨型的露天历史博物馆,有教堂、宫殿、博物馆、大学(建于1303年)、科学院和图书馆等。罗马教廷所在地梵蒂冈位于古城区西北角。在罗马古都遗址上,矗立着帝国元老院、凯旋门、纪功柱、万神殿和大竞技场等世界闻名的古迹;这里还有文艺复兴时期的许多精美建筑和艺术精品。穿梭在罗马城中,钢筋水泥塑造的现代化都市与精美绝伦的古罗马时期的雕塑交错出现,令人有种游走在现代与历史之间的错觉。气候特征:地处地中海沿岸的罗马,是典型的地中海气候,年平均气温15.5℃,年降水量880毫米。气候温暖,四季鲜明,春季正是一年中最适合出游的季节。城市景观与环境相适应的特征:西部位于亚平宁山脉底部,高低起伏。市区跨台伯河两岸,架有桥梁24座。建筑排列错落有致,新旧隔离。罗马被誉为“万城之城”是因为他有着辉煌的历史,罗马帝国的荣耀,天主教廷的至高无上都构成了罗马近2500年的辉煌。在社会高速房发展背景下的罗马,并没有过分追求摩天大楼,而是选择了尊重历史,保留了大量古罗马时期的建筑。现代与历史、新与旧在罗马得到了极好的融合。
第三篇:荔枝湖治理采用新技术修复受污染城市景观水体
荔枝湖治理采用新技术修复受污染城市景观水体
缪翚 廖理扬 蒋文
摘 要:本文分析了深圳荔枝湖水体污染成因,提出标本兼治思路,先截污后补水,综合运用曝气过滤、湖泊水力推
流、臭氧灭藻、人工湿地净化等水质净化技术,改善湖水水质,为城市受污染景观水体修复提供借鉴。
关键词:综合治理;循环处理;水质净化;新技术 荔枝湖水环境问题分析 1.1 水质现状
荔枝湖流域面积253.3hm2,湖面总面积为10.91万m2,蓄水量为10万m3。不仅具有景观、休闲娱乐的功能,在汛期荔枝湖同时还具有调洪滞洪的作用。近年来,荔枝湖水污染日趋严重,水质监测数据表明,荔枝湖水质达不到地表娱乐景观水质标准要求,水体感官差,透明度低,湖水呈暗绿色,局部出现黑臭现象,藻类散发腥臭味,监测指标多数为劣Ⅳ类,藻类以蓝藻和绿藻为主,属重富营养水体,且呈恶化趋势。1.2 污染原因分析
荔枝湖是具有调洪滞洪功能的景观湖,现状在湖的北、西、东共有3条雨水箱涵入湖,分别收集着深圳红宝、松园、圆岭、通心岭、百花、上步等片区的雨水,由于这些片区内的经营单位(餐饮、洗车)和住宅楼(阳台改厨房或放洗衣机、洗涤盆)生活污水错排乱接,导致三条雨水涵中有不少污水,虽然在1990和1997年市政府先后两次投资沿湖铺设了2条DN700~DN1500的截污管,对3条箱涵旱季污水进行了完全截流,且截流倍数达到了5倍,但大雨时仍有混流污水和面源污染溢流入湖,污染物的日积月累,特别是氮、磷的累积,导致水体富营养化,再加上湖水不流动,补充交换量小,平日基本上是死水一潭,而深圳的气温又高,导致藻类大量生长繁殖,湖内生态系统失衡,湖水污染日趋严重,达不到景观娱乐水体要求。虽在1989、1990、1997年先后历经三次整治,采用的措施主要是铺设截污管、湖底清淤和增设补水管,3次的整治在一定程度上和一段时间内使荔枝湖的水质得到较好改善,但截污后仍存在下大雨时有混流污水和面源污染溢流入湖问题,而入湖污染物又没有得不到处理清除,日积月累,水质日趋变差;同时荔枝湖虽有补水,但补水量有限,仅够补充湖面蒸发和渗漏损失量,湖水得不到定期更换,再加上湖水不能流动,只是一潭死水,不能达到“流水不腐”,导致湖内生态失衡。2 荔枝湖综合治理工程目标
依据荔枝湖水体的功能要求,荔枝湖综合治理后湖水水质稳定在《地表水环境质量标准》(GB3838-2002)中的Ⅳ类标准,具体水质设计指标见表1。
表1水质设计指标
指标 治理前 治理目标(GB3838-2002)Ⅲ类(GB3838-2002)Ⅳ类 TN(mg/L)4 <1.5 <1.0 <1.5
NH3-N(mg/L)2.0 <1.5 <1.0 <1.5
TP(mg/L)0.35 <0.1 <0.1 <0.1
CODMn(mg/L)<10 <6 <10
BOD5(mg/L)8 <6 <4 <6
DO(mg/m3)<4 >5 >5 >3
Chl-a(mg/m3)150 <10
透明度(cm)<20 >60 荔枝湖综合治理方案 3.1 治理思路
针对荔枝湖为富营养化水体的污染现状和以前3次治理的经验及存在的问题,研究结果表明仅靠截污、清淤和少量补水是难以使湖水的水质改善保持长久的效果,因此需要采取标本兼治的综合治理措施,除在原截污基础上要进一步尽可能减少(由于完全消除入湖污染是基本做不到的,因为入湖雨水涵中的初雨水所带的面源污染始终会存在的)雨季溢流时入湖的污染物总量外,重点对荔枝湖内水质进行综合治理,采用环境工程措施和生态措施,确保湖水水质在改善提高后保持长期稳定效果。目前富营养化水处理的方法较多,但由于富营养化水源水中藻类及其他污染物的多样性和复杂性,藻细胞特性复杂,任何单一工艺都不能达到理想的除藻效果。深圳市环境科学研究所垂直流人工湿地专有技术对N、P及藻类去除能力强,是比较理想的工艺。但考虑到荔枝公园内用地紧张的实际情况,本方案在部分重点区域(如观鱼区等重要区域或死水区)选用人工湿地处理,对于大区域的湖水采用机械过滤+生物法+臭氧灭藻的组合工艺,借鉴“流水不腐”的道理,使湖水实现水力推进循环,保持湖水水质达标的重要手段;同时生态修复措施可建立荔枝湖生态系统良性生态平衡,也是荔枝湖湖水治理的最终目标,因此生态修复是荔枝湖富营养化控制必不可少的措施。
通过以上分析,为使荔枝湖的水体变“活”,湖水变“清”,建立荔枝湖生态系统良性生态平衡,采取五种措施对荔枝湖进行综合治理。包括以下内容:(1)截污与补水;
(2)湖水循环处理系统(水力自动化曝气过滤→生态砾石床→臭氧灭藻);(3)人工湿地湖水净化系统;(4)湖水水力推流循环系统;(5)生态修复工程。3.2 截污与补水
对错排乱接到雨水管涵中的污水进行整改,尽可能减少雨季溢流进湖的污水量,本次设计中共对145个污染点进行了整改,拟可减少进入箱涵污水3.4万t,而对于流域内的住宅阳台整改拟纳入即将开展的小区正本清源中进行。关于湖水蒸发渗漏补充水问题,目前先还利用1997年铺设的DN300原水(有些堵塞需清通)进行适当补充,将来拟利用滨河污水厂中水进行补充。3.3 人工湿地湖水净化系统 垂直流人工湿地专有技术对N、P及藻类有很强的去除能力,是一种理想的工艺。但考虑到荔枝公园内用地的实际情况,本工程将人工湿地采取沿湖岸分散布置,共分为3块,分别建立在不同的死水区域,由提升泵提升湖水进入湿地,出水自流至湖区,提升水量由提升泵控制。总占地面积:824m,处理水量:824m/d。水生植物品种:风车草、芦荻、再力花、纸莎草、美人蕉等,既达到净化污水的目的,又产生美化环境的效果。3.4 湖水循环处理系统
通过对荔枝湖的污染调查和成因分析,及在国内外的类似湖泊治理的基础上,本设计采用水力自动化曝气过滤→生态砾石床处理→臭氧灭藻的湖水大循环处理工艺,利用曝气过滤快速滤除水中悬浮性污染物,生态砾石床去除溶解性污染物,臭氧杀灭水中藻类芽孢,抑制藻类生长。3.4.1 全塑水力自动化曝气滤机
水处理技术发展到今天,过滤设备已开发出多种类型,如虹吸滤池、V型滤池和滤网式微滤机、纤维过滤机等,通常只具有单层滤料或多层滤料,单一的物理过滤功能,分离悬浮物的粒径在10um以上,对大部分藻类去除效率不高,尤其是在有油污存在的运行工况下容易产生堵塞,不大适合于本工程采用。在多次调研考察的基础上,选择北京王清熙水处理技术发展有限公司生产的专利设备——全塑水力自动化曝气滤机作为本工程的湖水循环前处理过滤设备。
全塑水力自动化曝气滤机通过曝气、气浮、过滤等单元操作,净化水质,同时不断向水中加入溶解氧。滤料为级配的复合多层滤料,滤料可以去除0.5u以上的大肠杆菌(大小在(0.4~0.7)μm×(1~3)μm)和藻类(个体大小在2~200μm)。
设备反冲洗通过自动定时装置,冲洗历时3分钟左右即可达到反冲洗效果。反冲洗强度可以达到32L/m2·S,在设备反冲洗时,只有一个滤体进行冲洗,其他三个继续工作,设备的清水箱中可以储存10 m3的水,同时其他三个滤体不断补充水源,冲洗历时180s左右,可以保证冲洗所需水量在30 m左右,流量在323169L/s,从而保证了反冲洗强度。本设备反冲洗为自动虹吸,设备冲洗的周期由水质决定。
在高强度的反冲洗条件下,滤层100%膨胀,滤料之间相互摩擦,将表面杂质脱离,随着冲洗水流带走。设备具有滤料防流失装置,滤料在高强度的冲洗下不会流失。从而保证了滤料可以100%再生,不用更换。
该设备在深圳民俗文化村等全国各地已有成功运行的实例,运行时不需投加混凝剂、助凝剂,全系统水力自动化工作,不设专职人员,全部为国家专利产品,性能优于国内外同类产品。
根据调查资料,藻类的生长周期为5天左右,爆发生长期为3天。在高温的雨季,大量的漂浮性和溶解性污染物从雨水排污箱涵流入湖内,需要对湖水进行快速处理才能保证湖水水质不会恶化。根据荔枝湖水环境功能的这一特点,本设计选择过滤处理规模为雨季43200 m/d,旱季21600 m/d。湖水循环周期分别为2.4d和4.7d。选用两台型号为WQX-12A全塑水力自动化曝气滤机,单台处理能力900m3/h。3.4.2 生态砾石床
生态砾石床接触氧化工艺是在水体中按设计放置一定量的砾石做填料层,上层覆土并种植生态草皮或做其它用途均可,使水流断面上微生物附着在填料表面,前半段在鼓风曝气的作用下,通过填料上生物膜分解有机物,去除氨氮、磷,后半段在去除有机物的同时沉淀去除悬浮物,达到水质净化的目的。该工艺为人工生态系统,特别适用于低污染河、湖水的治理,具有造价和运行费用低、水力负荷高的特点。
从荔枝湖水质特点来看,由于其COD指标较低,而总氮、总磷含量较高,因此,特别适合生态砾石床工艺的应用,着重去除湖水中的溶解性污染物。生态砾石床单元处理规模为21600 m3/d,生态砾石床水力有效停留时间2h,有效容积1800m3,有效深度2m,分成回旋廊道式。前半段鼓风曝气,气水比1.5:1,配套罗茨鼓风机两台,一用一备,单台性能:Q=25m3/min,P=0.25kgf/cm2,N=15kW。
333.4.3 灭藻处理系统
对于富营养化的湖泊水污染治理来说,灭藻系统是很有直接效果的处理设施。目前主要的灭藻工艺有臭氧灭藻、紫外线灭藻、化学药剂灭藻,主要在其它处理设施的出水进行灭活处理,杀死藻类芽孢,抑制藻类生长。化学灭藻具有投资省、运行管理简单,但存在运行费用较高,产生二次污染,影响水体生态系统。本工程由于其特殊的地理位置和其作为景观休闲娱乐场所,其安全性和生态系统的平衡是最关键的,因此本工程采用灭藻效果好,无二次污染,有成功实例的臭氧方案。
为了提高臭氧灭藻效率和结合藻类繁殖规律确定灭活周期,本工程藻类灭活周期为4.7d,处理规模为21600 m/d。本臭氧发生器使用空气气源,设计臭氧投加量为2mg/L,采用软管微孔曝气投加,臭氧吸收率90%,臭氧接触时间15min,接触池有效容积225 m3。尾气经尾气破坏器处理后排空,将臭氧对环境的影响减少到最低程度。
本设计采用两套1.5kg/h的臭氧系统,湖水可通过三种途径进入臭氧接触池。
3.5 水力推流循环系统
为了使整个湖区水参与循环,而不形成短路,并保持整个湖区的良好生态功能,本设计将大湖西湖与大湖东部连接间3座桥封住,并在3座桥下设了活动闸门,定时开启。
根据荔枝湖自然格局的特点可以利用水力推流循环的方式,实现荔枝湖的循环流动,提高氧气向水中的传输速率,抑制底泥中氮、磷的释放。本设计已在北湖、西湖通过提升泵形成了大循环,局部死水区有人工湿地小循环。而湖区南面宽阔,容易形成大面积死水区。为了避免这一现象,在南部水域布置了6台WY-1型微氧推流机使湖水循环流动加入湖水大循环处理。
采用的微氧推流机设备为美国原装进口,效率高,浮于水面,便于安装与移动。单台功率2.2kW,过水量15000m3/d,充氧量70kg/d。在南部区域的湖水循环推流周期为约12h。
33.6 生态修复工艺技术
湖泊水体污染实为生态失衡,生态系统的修复是湖泊环境和富营养化水体综合治理的一个重要环节,是总体治理效果的最后实现过程,如果缺少这个环节,总体治理效果将会受到很大的限制。3.6.1 阿科曼生态基系统
阿科曼生态基是利用人工材料和人工技术模拟水体自然生态环境的水体修复技术,该技术融合了水生生态学、材料学和微生物学的前沿理论,采用阿科曼生态基作为自然生态环境中水草的替代品,借助生态基的吸附能力和对浮游生物提供栖息场所和天然食物的优势,重建被破坏的湖内生态体系,使湖水恢复较强的自净功能,从而达到净化水体的效果。
基于湖水的水体流态及污染的可能途径和对湖水治理的要求,阿科曼生态基主要布置在荔枝湖西侧部位和湖面南区部分区域,以避免对湖面游船的影响,阿科曼生态基全部采用水底放置型,对湖泊景观基本不构成影响。
根据现有阿科曼生态基处理负荷的经验值,结合荔枝湖水体和其他参数,荔枝湖采用阿科蔓2100 m2。并根据荔枝湖湖水深度确定阿科曼生物基规格采用2.0m×0.6 m和2.0×1.0m两种。3.6.2 水生植物的应用
结合国内外研究应用成果和多年的实践经验、深圳气候环境及荔枝湖原有的水生生物种类,从水生植物生物学特性、耐污性、对氮、磷去除能力、景观效果等多方面进行分析,筛选出能适应荔枝湖水质现状,同时具有景观效果的物种进行栽种。
本设计植物配植:被截污管隔开的湖岸边及非划船区部分岸边5m宽的种植带。种植面积6000m2,水生植物品种有再力花、花叶芦荻、香蒲、风车草、睡莲、荷花、海芋、美人蕉、蜘蛛兰。3.6.3 鱼类放养 针对荔枝湖富营养化水体,应用生态学原理,通过调整水体食物链结构,控制草食性鱼类,发展滤食性、杂食性鱼类群体,进行多种鱼类、多种规格的混养。
本设计投放鲫鱼40000尾,罗非鱼50000尾,鲮鱼40000尾,鲢鱼35000尾,鳙鱼25000尾,鲤鱼10000尾,规格为4~12cm,目的在于充分利用水体中的浮游生物,悬浮有机碎屑,同时有效地去除水底沉积物,减缓水体富营养化程度,避免藻类过量繁殖,实现水生态系统修复。3.6.4 添加微生物菌
作为水生生态系统中的分解者,微生物占有极其重要的生态位,可将受污染水域中的有机物降解为无机物,这正是污染物质分解转化过程中的第一个步骤,在生物修复中尤其重要。因而,本方案于生态修复措施中采取投加微生物菌作为一种辅助性措施。
本工程微生物菌采用深圳环科所专有产品,以光合菌、放线菌、乳酸菌、酵母菌等微生物为主的、经特殊方法培养而制成的有益微生物制剂。
本工程菌种投加总量6.5t,其中固体微生物菌2.5t,液体微生物菌4t。4 荔枝湖工程调试水质监测结果分析
本工程在2005年12月31日已完成湖区水下工程,景观湖于2006年1月5日开始蓄水。经过单机调试后进行了联动试运行,7、8月份的水质监测结果见表2。
表2 荔枝湖调试水质监测结果
时间 测点编号 泵池进水 月 份 过滤出水 臭氧出水 pH
浊度 NTU
溶解氧 叶绿素a mg/L 6.02 6.28 4.96
μg/L
藻类密度 ×10个/L
6透明度 cm
52COD mg/L 39 22 23 24
NH3-N mg/L 0.02 0.07 0.03 0.07
TN mg/L 0.507 0.596
TP mg/L 0.1437 0.1141 7.30 13.83 7.20 27.9
345.8 40.3 43.3
27.2 24.0 25.8
砾石床出水 7.62 3.16 0.642 0.09291 0.717 0.09715 湿地出水 大湖北 大湖中 南湖 西湖 7.34 0 0.48 5.015 8.58 8.09 7.13
12.48 24.45 50.6 51.0 43.1 37.125 34.9 24.03 21.28 10.73 24.1 43.9 49.9 43.53
7.85 14.85 30.1 30.3 25.6 22.2 20.87 14.57 12.98 6.9 14.62 26.1 29.6 25.90
57 63 54 50
57.2 62 68 62.75
23.75 21.5 31 24 35 14.85 14.847 16 6.01 10.11 8.69 19.4 16.9 18.89
0.09 0.07 0.06
0.01 0.863 0.61.95 0.103 0.484 0.64 0.726 0.82
0.893 0.03082 0.736 0.08868 0.463 0.566 0.528
0.1098 0.1141 0.1098 7.21 9.375 8.23 11.07 8.09 7.98 7.52 14.23
泵池进水 7.265 12.0825 5.17 过滤出水 7.36 10.4
6.32 1.507 10.46 0.4 5.45 8.24 7.04 6.46
0.603 0.09714 0.97 1.175 1.21
0.076 0.029 0.0336 砾石床出水 7.48 0.70 臭氧出水 月 份
湿地出水 大湖北 大湖中 南湖 西湖 7.4 7.23 0 9.0 7.53 3.96
0.615 0.01459 1.061 0.05587 0.866 0.08233 1.047 1.105
0.0788 0.096 7.94 10.32 7.69 6.44 7.51 11.48
从调试结果看,湖水水质得到较大程度的改善,绝大部分水质指标达到地表Ⅳ水质标准,部分指标优于Ⅳ类达到Ⅲ类标准;水质连续监测结果表明,藻类密度较未污水处理系统未建前降低约一个数量级,但目前荔枝湖水最大问题仍是藻类密度较高,叶绿素a浓度大部分时间在30μg/L以上,属富营养化,这也是湖水感官较差的原因,是荔湖治污的难点所在,因为荔湖调洪滞洪功能未变,在高温的雨季,大量的营养物进入湖内,致使藻类疯长,因在调试期臭氧灭藻未正常运行,随着今后臭氧池灭藻工艺的正常运行,和水生生态系统的平衡,水中藻密度会有改善;湿地出水效果很好,除出水溶解氧较低(因从底部厌氧出水),出水水质基本达到Ⅲ类水指标;7月份砾石床出水效果较差,原因为过滤机加次氯酸钠灭藻,余氯杀死砾石床微生物,影响砾石床处理效果。5 结语
荔枝湖治理工程先截污后补水,同时采用强化型生态砾石床技术、水力自动化曝气过滤与湖泊水力推流技术、臭氧灭藻、人工湿地净化等水质净化技术,标本兼治,使湖水水质得到根本改善,恢复了湖泊景观与休闲娱乐功能,是城市受污染景观水体修复的成功案例。下一步,将根据荔枝湖生态系统规划划分湖滨带、浮游区、底栖区,利用不同的生物群落,模拟自然生态环境修复湖泊生态系统,强化生态系统的结构和功能,恢复生态系统的自我调节能力,建立良性循环,控制富营养化,还市民一个湖水清澈、鹭鸟成群、鱼儿欢跃的优美环境。
第四篇:城市治理小论文
城市治理的现代化变革
深度城市化带来的不只是硬设施的更新,同样还包括软环境的提升。这对城市治理现代化构成倒逼态势。目前我国大城市建设已全面从“增量型”转向“存量型”,空间发展从“外延扩张”转向“内涵提升”。但与此同时,城市功能发育尚不充分,空间规划、公众参与等方面的制度配套尚不完善。
因此,以“深度城市化”为契机,系统构建与城市存量调整、内涵提升相匹配的现代化治理体系尤为重要,下面提出城市治理的现代化变革的几个方面。
一.城市“新空间”
“深度城市化”是对城市物理空间和虚拟空间进行深度整合、开发的过程,涉及到城市地下空间、私有空间、数字空间等新型空间的开发、建设、利用和管理。
当前,空间权属划分不明已成为我国各地有效开展新型空间开发、建设、利用、管理的重要掣肘。比如,道路地面以下空间产权缺乏界定,多部门均可对道路“开膛破肚”,地下空间利用混乱、无人管理;历史风貌区空间权属尚未细分,私搭乱建现象严重、清理恢复异常困难,等等。亟待从城市发展与规划相统一的角度出发,对城市空间制定细化规划、明确产权界定、构建制度支撑。
到目前为止,包括北京、上海、南京、杭州在内的20多个城市已编制了城市地下空间专项规划,但实践中普遍存在多头管理等问题。这就需要在规划阶段引入智能科技,统筹地上地下,推进城市空间规划的一体化、智能化、前瞻化。
比如,北京城市副中心设计就启用City
Go系统,在学习整个通州样片的基础上进行2018~2035年城市发展推演,完成了世界上第一个纯粹人工智能推演的发展模型。
依托这样的智能科技进行统筹,一方面保障城市地下空间实际探测效率与精度,对地上、地下空间建立更加科学、立体、全面的认识,便于进一步分清权属、提升空间精细化管理水平;另一方面也可对城市发展进行三维推演,综合统筹职、住、学、商、医、休等关键要素,使决策更具前瞻性,各部门更具协调性。
在智能统筹的基础上,为新型物理空间量身立法修法,设计空间权益的委托经营和流通交流制度,也是重中之重。在具体操作上,可考虑出台国土空间管理法等新型物理空间专属立法,或在修订土地管理法、城市房地产管理法、物权法时以专章、专节明确新型空间的不动产属性,引入“空间产权”概念并进行精细化划分。
二.让公众参与进来
公众参与是推进“深度城市化”的重要基础,没有公众参与,就无法真正建立起有效的协调机制,无法“动态修复”不同部门的管理与建设冲动,导致投资效果差甚至重复性、浪费性投资频发。
设计公众参与机制的第一步,需要创立以街道空间网络为载体的全要素精细化规划模式,使公众参与城区改造建设这类基础性工程时,有“数”可循,有法可依。将规划指标与历史风貌保护管控要素融合,建立起一个包含建筑容量、建设范围、建筑密度、建筑高度、容积率、绿地率、公共设施配套、历史建筑、历史空间、历史肌理、历史人文场所等11个参数的“两规合一”控规参数体系,和对空间信息进行精细化采集和实时动态监测。
有了数据和模型,第二步是搭建起支撑公众参与的界面和平台。建立起这种“市-区-街道-社区”四级信息化支撑平台后,能够对城市建设规章制度、城市建设项目全生命周期管理等在统一平台进行信息发布和意见征集,方便公众通过授权界面了解情况、在线参与。
公众参与机制的第三步是在模式和平台的基础上,配套政策供给,以空间权益市场化分配激发各方参与热情。
当然,在城市治理与改造中,除了上述措施,制度设计层面还应积极开展适用于城市更新的政策体系研究,优化鼓励城市更新的政策配套,比如允许土地出让金分期缴纳等,吸引更多社会资本的参与,真正做到激发社会各方的参与热情。
三.人的现代化
随着城市化的不断纵深推进,除了物质层面,文化精神层面的需求也越来越成为避不开的问题。上升到城市治理的现代化层面,不仅城市物质层面的现代化治理有待提升,文化和精神层面的现代化,也即人的现代化,正在成为城市治理的新挑战。
首先是“设施文明”。
当前,我国不少城市区域建设重“宜业”“生产”,轻“宜居”“文化”,教育、医疗等城市设施和公共服务也尚未对所有居住者平等开放。这其实就是城市精细化建设与管理缺乏“人的尺度”,“设施文明”不到位,难以营造“可感知的、有温度的”城市。要想改变这一局面,必须在城市规划建设及改造中,从“交通视角”逐渐回归“人的视角”:
一是要以提升城市生活品质为核心,打造步行道、自行车道、街边生活设施、文化场所等更多满足人的健康、宜居生活所需设施;
二是要聚焦更多精力于城市弱势群体,完善城市主要道路、公共建筑及新建住宅的无障碍设施建设,加强维护管理,保证日常使用;
三是要改变大都市圈“一刀切”的简单治理模式,将城市人口容量管理与服务扩大到整个都市圈,深挖都市圈的空间和制度潜力,按照实际服务人口配置公共资源和基础设施。
其次是“制度文明”。
过去的城市政策与制度体系为城区的快速建设与扩张提供了配套保障,但城市化发展到今天,旧有的制度体系已不再适配于“深度城市化”所指向的城市存量调整与内涵提升,重构城市政策与制度体系,以人为本建立现代化城市治理制度体系,迫在眉睫。
要建立与深度城市化匹配的“制度文明”,就要真正做到以人为本,解决各类人群在城市的各种权利,稳定其发展预期。在发展城市产业、增加经济总量的同时,应引导各类社会资本进一步加大对廉租房、公租房的供给,增加对教育、医疗、文化及体育等公共设施及公共服务的供给能力,留住能够切实为城市发展做贡献的外来人才。
破除城市发育的不充分并非一朝一夕之事,但以“行为文明”“设施文明”“制度文明”为抓手,实现“人的现代化”与“城市的现代化”融合推进、互为支撑,不失为深度城市化进程中全面激发城市活力、优化城市治理的一种可行方案。
第五篇:国外城市河道景观与河道治理
国外城市河道景观与河道治理
阅读:6922013-03-11 15:05 标签:阿普贝思河道景观设计滨河景观设计滨水景观河道景观设计城市河道景观设计
近年来,中国不少地方相继出现强降雨天气,给不少城市造成极大的“城市内涝”压力。随着城市化发展和人口聚集程度提高,提升城市排水能力和应对极端天气事件能力的工作迫在眉睫。国外很多城市也遭遇过暴雨侵袭,但完善的城城市排水系统使之避免或减轻了雨水灾害。现代意义上的排水设施是从什么时候开始的,世界上哪些城市的排水理念和系统设计更胜一筹,如果将城市河道的功能与景观完美融合在一起,值得我们参考和借鉴?
美国模式城市河道治理——兴建地表回灌系统,加强立法防内涝
风靡一时的《侠胆雄狮》,讲述了一段人狮与美女之间美好感人的爱情故事,文森特就居住在美国纽约设施齐全的下水道里。美国是世界上最早建立国家强制性洪水保险体制的国家,联邦紧急事务管理局还组织绘制了洪水保险图,规定在行洪区内不准建任何建筑,在非行洪区内可以修建建筑物,但修建前必须购买洪水保险。美国把全国划分为13个流域,每个流域均建立了洪水预警系统,每天进行洪水预报,最长的洪水预报是 3个月。此外,美国还利用先进技术,对洪水可能造成的灾害进行及时预测,发布警示信息。美国早已有强制性防城市内涝的法律,其多个州都立法规定,城市新开发区域必须实行强制的“就地滞洪蓄水”,对城市内涝防范、治理措施以及问责手段,也规定得相当详尽。
近几十年来,美国政府还致力于以雨水直接回收为重点的工程措施。如在美国加州富雷斯诺市兴建了“渗漏区”地下回灌系统,在芝加哥兴建了地下隧道蓄水系统等。美国还在其他许多城市建造了由屋顶蓄水池、井、草地、透水地面等组成的地表回灌系统,收集的雨水可直接或经适当处理后用于冲厕所、洗车、浇绿地、消防和回灌地下等。
在这个城市河道规划中,城市河道景观设计与城市河道功能需要有机结合在一起。才能将经济效益与文化精神完美地结合在一起。河道景观,景观设计,滨水景观设计,滨河景观设计,河道景观专家 巴黎模式——地下建庞大地下河道世界,细节河道景观
设计令人倾心
“你看过电影《悲惨世界》吗?主角冉·阿让在巴黎下水道里做了一次长途旅行。巴黎现代化的系统地下排水工程的开建比伦敦早 6 年,比柏林早 20 年。它是最早一个开始现代意义排水建设的国际性大都市。据介绍,巴黎的排水系统于1853年正式开工,随后,下水道就开始不断延伸,直到现在长达2400公里。阿普贝思河道景观设计专家认为,城市河道设计需要从细节着手,才能更有实用性和观赏性。
巴黎城区下水道均建于地面以下 50米,管道设计采用多功能设计理念,中间是宽约3米的排水道,两旁是宽约1米、供检修人员通行的便道。基于对地面雨水流量的充分估计,巴黎城区主干道的井盖孔密且直径大,平均每50米就有一个下水口,住宅区内的下水道进水口较大。城区总数达 2.6万个下水道盖、6000多个地下蓄水池均统一编号,由1300多名专业人员负责维护。
巴黎下水道干净程度可与巴黎的街道相媲美。事实上,巴黎的下水道除了排水沟外,它还设有两套供水系统,一套供饮用水,一套供非饮用水,以及一条气压传送管道。巴黎的地下排水系统基本是顺着城市的道路修建的,也就是说每条道路下面都有一条与之平行的排水沟。
去过巴黎的人,对其城市排水的细节倾心不已。比如,巴黎的许多街道都是碎石铺设的地面,很有味道,但下大雨就难免会有积水。于是,设计人员在一定的距离,设置了一个“槽”,起了导水沟的作用。这样,行人就不会因为积水而溅湿鞋子和裤管了。河道景观,景观设计,滨水景观设计,滨河景观设计,河道景观专家
荷兰模式——开创“水广场”,开发公用河道景观设施变储水空间
荷兰鹿特丹市位于海平面以下,经常面临海水倒灌的威胁,同时城区洼地众多,排涝压力颇大。为有效应对这种情况,鹿特丹开创了其独有的“水广场”防涝及雨水利用系统。水广场顺地势而建,由形状、大小和高度各不相同的水池组成,水池间有渠相连。平时是市民娱乐体闲的广场,暴雨来临,就变成一个防涝系统。由于雨水流向地势低洼的水广场,街道上就不会有积水。所有水池布成一张循环网络,雨量大时,从大水池中分流到沟渠,雨量小时,水又回流到大水池。雨水还能被抽取储存为淡水资源。
荷兰气候环境保护署专家阿瑙德·莫伦纳称,为有效疏解剧增的地表水,鹿特丹结合都市空间开发大量空旷广场、人行道与停车场空间,这些地方平时为公用设施,大雨到来时就变成储水空间。这就是其独特的“水广场”概念的由来。
日本模式——广泛利用公共场所河道景观,降低空地高度蓄洪
日本政府规定:在城市中新开发土地,每公顷土地应附设500立方米的雨洪调蓄池。在城市中广泛利用公共场所,甚至住宅院落、地下室、地下隧洞等一切可利用的空间调蓄雨洪,防止城市内涝灾害。比如降低操场、绿地、公园、花坛、楼间空地的地面高度,利用河道景观设计理念,在遭遇较大降雨时可蓄滞雨洪;在停车场、广场铺设透水路面或碎石路面,并建设渗水井,加速雨水渗流等。此外,在东京、大阪等特大城市建设地下河,直径10余米,长度数十公里,将低洼地区雨水导入地下河,排入海中。
东京拥有全世界最知名的排水系统。东京下水道系统以污水和雨水采用同一管道排放为主,用于管道清扫和维护管理的检查井超过47万个,平均每33米就有一个。
德国模式——居民区挖掘人工湖,透水砖铺装人行道
为提高城市排涝能力,德国城市居民区一般采用人工湖或构造河道景观设计,或者通过绿地、花园或人工湿地增加雨水入渗。如采用透水砖铺装人行道,增加透水层,减少硬质铺装等。德国汉堡建有容量很大的地下调蓄库,洪水期可以发挥很强的调度水量作用。在柏林,由于广泛推行城市集雨措施,不仅提高了城市的防涝能力,而且实现了对雨水的最大收集利用。此外,德国还通过不断提高城市绿化率来减少雨水径流。在立法保障方面,德国立法规定在新建小区之前,无论是工业、商用还是居民区,均要设计雨洪利用设施,否则政府将征收雨洪排放设施费和雨洪排放费。
1英国伦敦泰晤士河
(一)水环境问题分析
泰晤士河全长402公里,流经伦敦市区,是英国的母亲河。19世纪以来,随着工业革命的兴起,河流两岸人口激增,大量的工业废水、生活污水未经处理直排入河,沿岸垃圾随意堆放。1858年,伦敦发生“大恶臭”事件,政府开始治理河流污染。
(二)治理思路及措施
一是通过立法严格控制污染物排放。20世纪60年代初,政府对入河排污做出了严格规定,企业废水必须达标排放,或纳入城市污水处理管网。企业必须申请排污许可,并定期进行审核,未经许可不得排污。定期检查,起诉、处罚违法违规排放等行为。
二是修建污水处理厂及配套管网。1859年,伦敦启动污水管网建设,在南北两岸共修建七条支线管网并接入排污干渠,减轻了主城区河流污染,但并未进行处理,只是将污水转移到海洋。19世纪末以来,伦敦市建设了数百座小型污水处理厂,并最终合并为几座大型污水处理厂。1955年到1980年,流域污染物排污总量减少约90%,河水溶解氧浓度提升约10%。
三是从分散管理到综合管理。自1955年起,逐步实施流域水资源水环境综合管理。1963颁布了《水资源法》,成立了河流管理局,实施取用水许可制度,统一水资源配置。1973年《水资源法》修订后,全流域200多个涉水管理单位合并成泰晤士河水务管理局,统一管理水处理、水产养殖、灌溉、畜牧、航运、防洪等工作,形成流域综合管理模式。1989年,随着公共事业民营化改革,水务局转变为泰晤士河水务公司,承担供水、排水职能,不再承担防洪、排涝和污染控制职能;政府建立了专业化的监管体系,负责财务、水质监管等,实现了经营者和监管者的分离。
四是加大新技术的研究与利用。早期的污水处理厂主要采用沉淀、消毒工艺,处理效果不明显。20世纪五六十年代,研发采用了活性污泥法处理工艺,并对尾水进行深度处理,出水生化需氧量为5-10毫克/升,处理效果显著,成为水质改善的根本原因之一。泰晤士水务公司近20%的员工从事研究工作,为治理技术研发、水环境容量确定等提供了技术支持。
五是充分利用市场机制。泰晤士河水务公司经济独立、自主权较大,其引入市场机制,向排污者收取排污费,并发展沿河旅游娱乐业,多渠道筹措资金。仅1987—1988年,总收入就高达6亿英镑,其中日常支出4亿英镑,上交盈利2亿英镑,既解决了资金短缺难题,又促进了社会发展。
(三)治理效果
泰晤士河水质逐步改善,20世纪70年代,重新出现鱼类并逐年增加;80年代后期,无脊椎动物达到350多种,鱼类达到100多种,包括鲑鱼、鳟鱼、三文鱼等名贵鱼种。目前,泰晤士河水质完全恢复到了工业化前的状态。
2韩国首尔清溪川
(一)水环境问题分析
清溪川全长11公里,自西向东流经首尔市,流域面积51平方公里。20世纪40年代,随着城市化和经济的快速发展,大量的生活污水和工业废水排入河道,后来又实施河床硬化、砌石护坡、裁弯取直等工程,严重破坏了河流自然生态环境,导致流量变小、水质变差,生态功能基本丧失。50年代,政府用5.6公里长、16米宽的水泥板封盖河道,使其长期处于封闭状态,几乎成为城市下水道。70年代,河道封盖上建设公路,并修建了4车道高架桥,一度视为“现代化”标志。
(二)治理思路及措施
本世纪初,政府下决心开展综合整治和水质恢复,主要采取了三方面措施:一是疏浚清淤。2005年,总投资3900亿韩元(约3.6亿美元)的“清溪川复原工程”竣工,拆除了河道上的高架桥、清除了水泥封盖、清理了河床淤泥、还原了自然面貌。二是全面截污。两岸铺设截污管道,将污水送入处理厂统一处理,并截流初期雨水。三是保持水量。从汉江日均取水9.8万吨,通过泵站注入河道,加上净化处理的2.2万吨城市地下水,总注水量达12万吨,让河流保持40厘米水深。
(三)治理效果
从生态环境效益看,清溪川成为重要的生态景观,除生化需氧量和总氮两项指标外,各项水质指标均达到韩国地表水一级标准。从经济社会效益看,由于生态环境、人居环境的改善,周边房地产价格飙升,旅游收入激增,带来的直接效益是投资的59倍,附加值效益超过24万亿韩元,并解决了20多万个就业岗位。
3德国埃姆舍河
(一)水环境问题
埃姆舍河全长约70公里,位于德国北莱茵—威斯特法伦州鲁尔工业区,是莱茵河的一条支流;其流域面积865平方公里,流域内约有230万人,是欧洲人口最密集的地区之一。该流域煤炭开采量大,导致地面沉降,致使河床遭到严重破坏,出现河流改道、堵塞甚至河水倒流的情况。19世纪下半叶起,鲁尔工业区的大量工业废水与生活污水直排入河,河水遭受严重污染,曾是欧洲最脏的河流之一。
(二)治理思路与措施
一是雨污分流改造和污水处理设施建设。流域内城市历史悠久,排水管网基本实行雨污合流。因此,一方面实施雨污分流改造,将城市污水和重度污染的河水输送至两家大型污水处理厂净化处理,减少污染直排现象。另一方面建设雨水处理设施,单独处理初期雨水。此外,还建设了大量分散式污水处理设施、人工湿地以及雨水净化厂,全面削减入河污染物总量。
二是采取“污水电梯”、绿色堤岸、河道治理等措施修复河道。“污水电梯”是指在地下45米深处建设提升泵站,把河床内历史积存的大量垃圾及浓稠污水送到地表,分别进行处理处置。绿色堤岸是指在河道两边种植大量绿植并设置防护带,既改善河流水质又改善河道景观。河道治理是指配合景观与污水处理效果,拓宽、加固清理好的河床,并在两岸设置雨水、洪水蓄滞池。
三是统筹管理水环境水资源。为加强河流治污工作,当地政府、煤矿和工业界代表,于1899年成立了德国第一个流域管理机构,即“埃姆舍河治理协会”,独立调配水资源,统筹管理排水、污水处理及相关水质,专职负责干流及支流的污染治理。治理资金60%来源于各级政府收取的污水处理费,40%由煤矿和其他企业承担。
(三)治理效果
河流治理工程预算为45亿欧元,已实施了部分工程,预计还需几十年时间才能完工。目前,流经多特蒙德市的区域已恢复自然状态。
4法国巴黎塞纳河
(一)水环境问题
塞纳河巴黎市区段长12.8公里、宽30-200米。巴黎是沿塞纳河两岸逐渐发展起来的,因此市区河段都是石砌码头和宽阔堤岸,三十多座桥梁横跨河上,两旁建成区高楼林立,河道改造十分困难。20世纪60年代初,严重污染导致河流生态系统崩溃,仅有两三种鱼勉强存活。污染主要来自四个方面,一是上游农业过量施用化肥农药;二是工业企业向河道大量排污;三是生活污水与垃圾随意排放,尤其是含磷洗涤剂使用导致河水富营养化问题严重;四是下游的河床淤积,既造成洪水隐患,也影响沿岸景观。
(二)治理思路与措施
工程治理措施主要包括四方面:
一是截污治理。政府规定污水不得直排入河,要求搬迁废水直排的工厂,难以搬迁要严格治理。1991-2001年,投资56亿欧元新建污水处理设施,污水处理率提高了30%。
二是完善城市下水道。巴黎下水道总长2400公里,地下还有6000座蓄水池,每年从污水中回收的固体垃圾达1.5万立方米。巴黎下水道共有1300多名维护工,负责清扫坑道、修理管道、监管污水处理设施等工作,配备了清砂船及卡车、虹吸管、高压水枪等专业设备,并使用地理信息系统等现代技术进行管理维护。
三是削减农业污染。河流66%的营养物质来源于化肥施用,主要通过地下水渗透入河。巴黎一方面从源头加强化肥农药等面源控制,另一方面对50%以上的污水处理厂实施脱氮除磷改造。但硝酸盐污染仍是难以处理的痼疾。
四是河道蓄水补水。为调节河道水量,建设了4座大型蓄水湖,蓄水总量达8亿立方米;同时修建了19个水闸船闸,使河道水位从不足1米升至3.4-5.7米,改善了航运条件与河岸带景观。此外还进行了河岸河堤整治,采用石砌河岸,避免冲刷造成泥沙流入;建设二级河堤,高层河堤抵御洪涝,低层河堤改造为景观车道。
除了工程治理措施外,还进一步加强了管理。一是严格执法。根据水生态环境保护需要,不断修改完善法律制度,如2001年修订《国家卫生法》要求,工业废水纳管必须获得批准,有毒废水必须进行预处理并开展自我监测,必须缴纳水处理费。严厉查处违法违规现象。二是多渠道筹集资金。除预算拨款外,政府将部分土地划拨给河流管理机构(巴黎港务局)使用,其经济效益用于河流保护。此外,政府还收取船舶停泊费、码头使用费等费用,作为河道管理资金。
(三)治理效果
经过综合治理,塞纳河水生态状况大幅改善,生物种类显著增加。但是沉积物污染与上游农业污染问题依然存在,说明城市水体整治仅针对河道本身是不够的,需进行全流域综合治理。
5奥地利维也纳多瑙河
多瑙河全长2850公里,是欧洲第二长河,奥地利首都维也纳市地处其中游。维也纳多瑙河综合治理开发,形成了一套现代化的河流综合治理和开发体系,即在传统治理理念基础上突出“生态治理”概念,并运用到防洪、治污、经济开发等各个领域。主要措施包括两方面:
一是建设生态河堤。恢复河岸植物群落和储水带,是维也纳多瑙河治理和开发的主要任务之一。基于“亲近自然河流”概念和“自然型护岸”技术,在考虑安全性和耐久性的同时,充分考虑生态效果,把河堤由过去的混凝土人工建筑,改造成适合动植物生长的模拟自然状态,建成无混凝土河堤或混凝土外覆盖植被的生态河堤。
二是优化水资源配置和使用。维也纳周边山地和森林水资源丰富,其城市用水99%为地下水和泉水,维持了多瑙河的自然生态流量。维也纳严禁将工业废水和居民生活污水直接排入多瑙河,废污水由紧邻多瑙河的两座大型水处理中心负责处理,出水水质达标后,大部分排入多瑙河,少部分直接渗入地下补充地下水。此外,严格控制沿岸工业企业数量并严格监管。