第一篇:铁路隧道施工技术研究论文(共)
摘要:现代铁路隧道的建设中,复杂地质环境成为影响施工的关键因素之一,系统分析复杂地质环境下的铁路隧道施工技术,具有强烈的现实意义。为了保证铁路隧道施工的安全可靠,需要做好施工技术的控制。因此在铁路隧道施工前必须要对地质进行详细的勘察,根据实际情况制定合理的隧道施工技术。基于此,文章就复杂地质条件下铁路隧道施工技术进行简要的分析,希望可以提供一个有效的借鉴。
关键词:复杂地质条件;铁路隧道;施工技术
1.复杂地质环境对隧道施工的影响
我国南北跨度大,地质条件复杂,多种地形、地貌共存,而复杂的地质环境往往会对铁路施工工程带来较大的困难,不仅会增加施工难度,还会增加施工成本,为了缩短施工路线,提高线路标准,铁路工程存在很多隧道施工。同时我国经济发展迅速,交通运输业发展较快,现代铁路网基本成熟,在这种情况下要求建设四通八达、纵横交错的铁路网。但铁路隧道一般建立在高山、河谷附近,地质条件复杂,导致隧道施工难度不断增加。铁路隧道施工中,经常出现多种地质问题,如喀斯卡特地质隧道施工中,出现岩溶、突泥涌水问题,活动断裂层区域隧道施工出现高地温灾害、断层破碎带等情况,还有国内的很多隧道建设中,出现偏压、岩爆、瓦斯爆炸等地质原因导致的施工问题,由此可见在铁路隧道中,复杂地质环境会对施工建设带来高难度性,要想解决隧道施工中的问题,就要对复杂地质环境进行分析,提高施工技术水平。
2.铁路隧道施工技术优缺点的比较
2.1全断面开挖法技术优缺点分析
全断面开挖法技术是按照隧道的轮廓进行一次性爆破,从而形成隧道,同时通过支护以及衬砌修建来完成施工。需要注意的是在全断面开挖初期到最后支护前这段时间内必须要保证围岩的稳定性。这种施工技术的优点就是有着较大的工作面空间,大型机械操作方便,有利于施工效率的提升。缺点就是围岩必须要满足稳定性要求。
2.2台阶开挖法技术优缺点分析
所谓的台阶开挖法,是将掌子面从横向上分成2-3部分,然后对这些部分分别开展开挖工作。该技术有着较强的适用性,需要的开挖设备简单,并且施工便捷,能够提高施工效率,施工空间比较广阔,有着较为稳定的效果,是隧道开挖中重要的一种施工方法。当前,台阶开挖法技术已经得到了较为广泛的应用,但是这种技术在应用中仍然存在一定的缺点,那就是施工中上下容易出现干扰,所以如何解决互相干扰问题成为该技术未来需要解决的一项内容。
2.3分部挖掘技术优缺点分析
软弱围岩是当前隧道施工中常见的一种问题,在这种地质情况下,就无法进行大断面开挖工作,可以采取部分开挖的施工方式。分布开挖主要包括唤醒开挖、双侧壁导坑法以及交叉中隔壁法(中隔壁法)。三者各自有着各自的特点。①环形开挖。这种方法有着较为稳定的工作面,施工安全性良好;②双侧壁导坑法技术。施工中从两侧到中间,在两侧进行支护,保证支护安全后进一步向中间开挖。这种施工方式可以避免软弱围岩地质承载力不足的问题,能够有效控制地表沉降,但是其施工工序比较繁琐,所需要花费的资金也较高;③交叉中隔壁法(中隔壁法)。这种施工方法主要将所需要开挖的部分分成两到三步进行挖掘,通常从上到下地挖掘,每步挖掘后都要及时做好锚喷,设置仰拱,进行中隔墙的设置和联结,然后进一步开挖中隔墙另一侧。隧道开挖和支护是保证隧道施工中围岩稳定性的重要工作内容,需要合理选择开挖和支护技术,从工期、技术、安全、成本等方面综合分析,选择最适合的施工方案,综合评价分析地质条件、施工现场情况,保证确定的方案最科学合理,可行性最高。
3.某铁路隧道开挖施工技术应用分析
3.1工程概况
该铁路隧道位于我国某地区,隧道全长为2185m。作为该标段该区段铁路控制性标段之一,该铁路隧道是按照时速客运专线形式设计的双线隧道铁路,从地貌看,该区域属于丘陵区,地形起伏变化比较明显,高程变化在40~95m,平均埋深达到50m,其坡度约为30°,坡面可采取植被方式加固。
3.2铁路隧道施工技术
该工程涉及的施工技术包括以下几个方面:(1)提起进行支护;(2)拱部进行环形开挖;(3)拱部进行前期支护;(4)核心土与其下部进行开挖;(5)实施二次衬砌与防水排水作业。
3.3隧道施工过程的塌方治理与预防
3.3.1塌方原因分析
通常铁路隧道出现塌方的主要原因包括人为原因、自然原因、项目经验不足原因等;从塌方的塌方部位进行分析,隧道塌方主要包括洞口部位引起的塌方、洞内部石体部分引起的塌方和洞内部土体类不稳定引起的塌方。
3.3.2铁路隧道塌方的主要处理措施
铁路隧道出现塌方时,必须及时采取处理措施。处理时必须按照详细的塌方观测范畴、外形、塌方部分的地质情况等。了解塌方出现的原因与所处的地质条件后,应进行仔细研讨,并尽快制定解决方案。塌方部分的处理,首先要对其加强防排水处理,塌方通常与地下水活动有很大的关系,因此,治理塌方必须做好水的处理,防止因地表水的渗入造成塌方。
3.4铁路隧道施工监测
该铁路隧道具体检测内容及监测方法如表1所示。综上,铁路隧道工程的质量直接关系着我国的道路交通建设和经济发展,我国有着这样一个雄心,将道路延伸到全国每个角落,这就涉及到大量的复杂地质地区。所以,相关人员要严格按照隧道施工要求灵活运用施工技术,从多方面、多层次的分析复杂地质因素,以此来提高隧道施工的质量和施工安全性,实现完善我国的交通网结构的发展目标。
参考文献:
[1]龚敏.复杂多变地质条件下铁路隧道施工技术研究[J].设备管理与维修,2016,06:75-77.[2]李渊.复杂地质条件下铁路隧道施工关键技术分析[J].建筑技术开发,2016,09:49-50.[3]魏百术,惠世前.复杂地质条件下盾构隧道施工技术综述[J].水利水电施工,2016,05:48-54.
第二篇:铁路隧道施工风险管理技术研究论文
摘要:开展铁路隧道风险管理技术及应用研究,有利于施工时进行科学的决策、规范化的管理,最大限度地降低施工风险带来的严重后果。文章以乌岩山铁路隧道施工为例,借鉴国内外先进的风险管理经验,分别从风险识别、风险评估、机制建立、控制措施等方面对铁路隧道施工风险管理进行了研究。
关键词:铁路工程;隧道施工;风险评估;风险控制;施工风险管理技术
自国家进入新世纪以来,在各领域中的技术水平正在不断提升,而细化到铁路隧道施工领域中也呈现出施工技术的不断优化和施工难度不断提高的态势。针对这一局面,在当今的铁路隧道施工过程中使用更为科学的风险管理技术,最大程度降低施工中产生风险的可能性,是工程施工顺利进行的关键,也是施工单位完成工程目标,同时达到最大化经济利益的重要措施。
1工程情况简介
乌岩山隧道位于浙江省温岭市大溪镇境内,隧道总长度为6208m,根据列车行驶速度200km/h的规格开展单洞双线铁路隧道施工。隧道通过的地质情况较为复杂,断层破碎带较多,裂隙水发育,软弱围岩所占比例较大,造成施工的难度及风险巨大。该铁路隧道穿过丘陵低山区,断裂构造十分发育,辅有平缓的褶皱构造,主要岩体有凝灰岩、泥岩和花岗岩等,隧道最大埋深为480m。除断层带外隧道进出口各300m范围围岩等级较差。隧道施工过程中,严格按“新奥法”作业,该方法从岩石力学的观点出发,以维护和利用围岩的自承能力为基点,采用锚杆和喷射混凝土为主要支护手段,及时进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分,并通过对围岩和支护的量测、监控来指导隧道施工的方法和原则。为了保障隧道施工过程的安全,施工方建立了一套较为全面的安全生产管理办法,并指派相关人员开展了安全管理工作,最大限度地降低该隧道工程在施工过程中可能出现的风险。
2该铁路隧道工程施工中使用的风险管理办法
2.1铁路隧道工程风险的识别导致风险发生的原因是促使风险事件发生概率和损失幅度增加的因素,风险识别是对工程项目中的风险进行确认和分类,工作中应以收集各工序的风险作为主要途径,以相关经验及资料整理作为辅助途径。根据工程开工前展开的施工调查揭示,在该工程当中,主要存在以下较突出的问题。
2.1.1该铁路隧道洞身横穿了多条地域性断层岩层并受此影响,在隧道内施工过程中,隧道岩体非常容易发生碎裂现象,并且该种岩层十分易于水的贮存,所以在施工过程中,有发生坍塌和突水突泥事故的可能。
2.1.2因为该工程当中最大深度为480m,按照相关理论公式进行推算,在隧道最深处的温度可能达到34℃以上,在高温高湿的条件下,给技术人员的施工带来了很大的困难。
2.1.3相关勘察人员分析,在此工程中存在有泥岩地质结构,含硫化氢地层,因此在隧道洞身可能存在有天然气气体的聚集,对施工人员的生命安全构成威胁。
2.2采取的风险评估办法按照《铁路隧道风险判定和管理办法》当中建议使用的风险评估办法,并结合该铁路隧道工程的实际情况,使用了下列风险评估办法:2.2.1风险打分。风险打分是按照铁路隧道设计、施工过程中的实际状况,把铁路隧道在施工过程中可能发生的潜在风险归纳成设计类、地质类、施工方法类等多个部分,对这些部分中可能发生的风险以评分的方式进行风险判定,最后根据总的评分结果,对该隧道的整体风险进行全方位评定。
2.2.2专家分析法。专家分析法是施工方和相关工程方面的专家取得联系,并对该工程中可能发生的安全问题向专家进行询问,并让专家对工程中的风险给出判定的方法。这种方法是使用归纳统计的办法把多数人的意见和少数人的意见全部进行考虑,很好的避免了其他风险评估办法中涵盖面不全的弱点。使用此办法的流程有以下四个方面:(1)把该项目工程的基本状况和施工方所提出的问题提供给专家;(2)以成立调查组的方式提出个人意见,分析时对各方的意见进行整合;(3)将整合的结果返还给专家,专家就所整合的意见再提出自己的看法;(4)重复以上过程多次之后,意见就会趋于统一,这便是施工范围在后续施工作业中进行决策的根据。
2.3铁路隧道的风险评估程序
2.3.1针对起始风险进行判定,相关技术地质勘探人员列出该工程当中的潜在风险表,并在此基础上创建工程层次模型。
2.3.2使用层次分析与专家调查的方式对潜在风险表中可能存在的风险进行分析,并对风险系数进行判定。2.3.3由专家对起始风险中所指出的风险产生的可能性进行评定,并分析这些风险发生后可能出现的后果,最终得出各大起始风险的等级。
2.3.4施工单位根据收集获取的可能发生的风险与后果,商讨出与之匹配的施工方式和解决方法。
2.3.5施工方还需要针对该项工程开展一次再评估,分析可能出现的其他潜在风险。
2.4工程中主要风险等级认定
2.4.1隧道起始阶段的风险。在起始施工阶段,重点要求做好各项检查准备工作,针对此次风险判定的核心内容也正是关于安全风险方面,并将产生安全事故的可能性作为最重要的风险判定目标。在对该工程风险判定的过程中,考虑到岩层极为破碎,岩层自稳能力极差,所以在对周围环境影响的风险判定上,等级为极高风险。
2.4.2隧道入口处的风险。在该铁路隧道的入口处,山体是剥蚀中低山型地质,这种地质存在风蚀断裂的地层,在自然环境中,该地势的坡度大约在50°~60°,并且因为植被的发育,导致这些地区的岩层较为松散,覆盖层薄弱,围岩变形大,施工安全极为不利,所以该段落风险等级定为高度。
2.4.3隧道洞身段的风险。经相关地质人员进行勘察,在该工程铁路隧道洞身当中,岩层因为受到风化现象十分严重,因此不具有较高的完整性,施工环境较差。同时,在隧道中含有水,一旦操作不慎,很有可能造成安全事故。该段落中断层破碎带以及可能的天然气涌出地段定为极高风险,其他段落定为中度风险。因此做好超前地质预报尤为重要,重点做好钻爆施工、支护方式、衬砌类型、通风排水等方面的工作。
2.4.4隧道出口处的风险。该铁路隧道的出口处位置在斜坡之上,地形极为陡峭,并且斜坡之上覆盖有厚度为0.5m左右的粉状黏性土壤,在粉状黏性土壤之下为砂岩性岩层。因此在隧道出口处,地质环境增加了施工难度,整体施工安全形式严峻,该段落风险等级定为高度。
2.5构建完善的风险管理体制
开展铁路隧道施工的前期,建立完善的风险管理体制,是工程管理当中一项十分重要的部分,因此在项目开展前,应建立一套完善的风险管理条例,对该工程开展现代化的风险管理。针对铁路隧道施工过程中的每个部门管理人员,开展对应的责任划分,以求提高管理人员对于风险管理的主动性。
3减少该铁路隧道工程风险采取的控制措施
3.1总体措施
3.1.1在施工过程中,安排相关技术人员对周围环境进行实时监测,并针对之后开展施工的区域进行地质环境的预报工作。对该铁路隧道工程中可能发生坍塌、突水突泥、危险气体过高的区域,施工方在开展施工之前需要进行风险评估,并在此基础上,制定完善的处理预案,以保证工程施工人员的生命安全。
3.1.2工程施工技术人员在开展正式施工前,一定要进行全面的安全教育和发生事故之后的自救应急教育。同时在施工过程中,施工方需要为工程施工人员添置相关的安全设备,保障施工的安全开展。
3.1.3在该工程的高危地段,提高一级支护等级,进行不间断监测,及时调整施工工艺,力求最大程度降低工程施工中可能存在的潜在风险。
3.2具体办法
3.2.1对全体施工及管理人员进行各专业针对性的岗前培训并进行考核,考核合格后才能进入岗位工作,坚持特种作业人员持证上岗,作业设备运行保养良好,建立完备的人员考核、设备登记保养制度。
3.2.2该工程的铁路隧道出口位置由于地理环境较差,施工较为困难。因此在开展施工之前,在该地段的临时边坡处进行了相关防护施工,同时增强坡顶处的排水作业,以求保障施工人员的生命安全。
3.2.3在隧道出口和入口处进行开挖的过程中,为了保证围岩的整体稳定性,并未使用强爆破手段,而是加强管棚支护及预注浆处理,避免了发生隧道坍塌的可能。3.2.4指派了专业勘探人员对施工隧道的地质情况进行全方位预报,全过程建立预警机制,在断层破碎带、节理发育岩体破碎地段进行综合超前地质预报,加强围岩量测,实行信息化施工,通过对数据的分析和处理,及时反馈指导施工,防止坍塌等事故。
3.2.5富水地段采用“以排为主”,“防、排、堵、截”相结合,“因地制宜,综合治理”的原则;裂隙水发育和水环境要求严格的地段,采用“以堵为主、限量排放”的原则组织施工。3.2.6在施工过程中发生事故的先期预兆时,果断采取相应的应急措施,并立即停止施工,将作业人员组织撤出。
4结语
综上所述,在铁路隧道施工的过程中,进行安全风险管理对于保证施工人员的生命安全,保障建设各方的综合利益有着显著的意义。因此铁路隧道施工时,应准确地分析与评估出各类风险问题,编制切实有效的防控计划,并将风险监测、监督管控、查漏纠偏等工作进行循环改进,以完善的管理机制作为保证,并始终贯穿于隧道施工的整个过程,才能使工程安全质量得到较好的保障。
参考文献:
[1]夏润禾,边玉良.山岭地区铁路隧道施工安全风险评估及管理研究——以贵广铁路客运专线金宝顶隧道为例[J].中国安全生产科学技术,2012,(10).[2]贺志军.山岭铁路隧道工程施工风险评估及其应用研究[D].中南大学,2009.[3]李明,王占龙.高速铁路隧道施工风险管理技术探索[J].铁道标准设计,2010,(S1).[4]李明.高速铁路隧道施工风险管理技术探索[J].隧道建设,2010,(2).
第三篇:隧道“零开挖进洞”施工技术研究
龙源期刊网 http://.cn
隧道“零开挖进洞”施工技术研究
作者:吴鹏
来源:《建筑与文化》2012年第11期
【摘 要】介绍安徽璜源山隧道“零开挖进洞”施工技术方案,为类似工程提供借鉴。
【关键词】隧道;零开挖进洞;施工方法
一、引言
在早期的公路隧道施工中,常常遵循晚进早出,缩短隧道长度,节约工程造价的原则,在洞口坡面大挖大刷,这样不仅破坏了原生态,使得原地貌很难恢复,对自然景观也造成无法挽回的创伤。为了克服过去进洞施工缺点和保护原地貌不被破坏,特制定隧道“零开挖进洞”的施工方案。
二、工程简介
璜源山隧道是我公司在安徽黄山景区黄山至塔岭和小贺至桃林高速公路路基工程第四标段的一座分离式隧道,计长4117m,隧道洞口段以弱风化层为主,岩体呈碎石、碎块状,有裂隙滴水、渗漏,稳定性较好,均为V级围岩。
三、施工总体方案
根据“早进洞,晚出洞”和隧道“零开挖”的原则,在隧道洞口覆土层较薄的时候,选择正确的支护手段,发挥围岩和支护的共同作用,使隧道具备零开挖进洞条件,最大限度的减少洞口植被的破坏范围。
首先完成隧道洞门位置有关测量放样工作,确定好洞门位置及明暗交接点位置;施工洞口处设截水沟,完善洞口处排水系统;搭建工作平台。开挖轮廓线外缘沿山体自然坡面施作Φ108超前大管棚,拟定超前管棚长15m,间距40cm。并架设钢拱架加强支护。结合以往隧道进洞的经验,综合采用大管棚预支护,再分台阶留核心土法进行开挖,有效保证洞口仰坡安全,确保顺利进洞,满足“零开挖”进洞要求。
四、施工技术要点
1、套拱及导向管
第四篇:铁路隧道综合接地系统施工
综合接地系统
1综合接地系统设计原则
1.综合接地系统工程的作用是根据铁路等级,不同地区,不同设备,因地制宜采取防护措施,达到保护人身安全何设备安全的要求,遵循以人为本,系统优化,综合防护的原则,加强总体协调,全面规划,统筹考虑。
2.距离触网带电体5m范围以内的金属和需要接地的设施、设备应接入综合接地系统中。
3.距离线路两侧20m范围内的铁路设备房屋的接地装置因接入综合接地系统。
4.不便与铁路综合接地系统等电位连接的第三方设施(路外公共建筑物。公共电力系统、金属线等设施)必须采取可靠的隔离或绝缘等措施。
5.综合接地系统由贯通地线、接地装置和引接线等构成。
6.在综合接地系统中,建筑物、构筑物及设备在贯通地线接入处的接地电阻不大于1Ω。
7.贯通地线应耐腐蚀并符合环保要求,环保性能满足国家对土壤环境质量要求的有关规定。
8.沿线电力变、配电所、牵引变电所及建筑物。构筑物按照各专业要求设置接地装置后,可就近接入综合接地系统。
2隧道综合接地原则
1.贯通地线的设置应便于设备就近接入和施工。
2.隧道内接地装置应优先利用隧道衬砌的结构钢筋作为自然接地体,当自然接地体的电阻达不到要求的时候应增加人工接地体。
3.衬砌内的接地钢筋应充分利用其结构钢筋,原则上不再增加专用的接地钢筋;并在衬砌内预埋外联接地端子;接地装置应与贯通地线可靠连接。
4.隧道内兼有接地功能的结构钢筋和专用接地钢筋应满足:接触网短路电流Ik≤25KA时,钢筋截面不小于120mm2;接触网短路电流Ik>25KA时,钢筋截面应
不小于200 mm2。当钢筋截面不满足要求时,可将相邻的二根结构钢筋并接使用,使总截面积不小于120mm2或200 mm2。
5.隧道内接地钢筋之间要求可靠连接,保证电气连接。
3隧道内综合接地施工措施
1.隧道地段贯通地线铺设在两侧的电力电缆槽内,并采取砂防护措施,接地装置充分利用隧道的初期支护杆、钢架、钢筋网或底板钢筋。
2.在两侧通信信号电缆槽的线路侧外缘各设一根综合接地钢筋,每100m断开一次。用于隧道内接地极、接触网络来保护接地及接地钢筋间的等电位连接。
3.隧道二次衬砌中的接地钢筋设置。
①二次衬砌中有结构钢筋的隧道:
a.利用二次衬砌的内层纵、环向结构钢筋作为接触网络保护接地钢筋; b.接触网线垂直向上在拱顶的投影线两侧,以0.5m为间隔,各选3根纵向结构钢筋作为接地钢筋;
c.上述投影线两侧各1.5m外的其他位置,以1m为间隔,选择纵向结构钢筋作为接地钢筋;
d.在每个台车位(作业段)中部选一根环向结构钢筋作为环向接地钢筋,环、纵向接地钢筋间可靠焊接;纵向接地钢筋在作业段间可不连接;
e.每个作业段内的环向接地钢筋与两侧通信信号电缆槽靠线路侧外缘的纵向接地钢筋连接;
②二次衬砌中无结构钢筋的隧道,除接触网基础接地外,不再单独考虑接地钢筋设置。
③线路两侧的贯通地线通过隧道内环向接地钢筋实现横向连接。
4.隧道接地极设置:
①IV、V级围岩隧道,利用系统锚杆、钢拱架(或钢网片)作为接地极; ②Ⅲ级围岩隧道,利用系统锚杆和专用环向接地钢筋作为接地极(接触网基础接地);
③Ⅱ级围岩隧道,利用隧道底板的下层结构钢筋最为底板接地级;
④锚杆接地极以约一个台车长度为间隔设置,用作接地极的锚杆环向间距要求为2倍锚杆长度;接地锚杆与钢网片、钢拱架或专用环向接地钢筋可靠焊接;
在与两侧电缆槽外缘的纵向接地钢筋连接;
⑤隧道底板接地极按照1m间隔选用底板结构钢筋作为接地极钢筋,即在隧道底板的底层形成一个1m×1m的单层钢筋网;中部“十字”交叉的两根钢筋上的网格节点要求施以“L”型焊接,其他节点绑扎;底板接地钢筋网按照一个台车位的长度考虑,间隔一个台车位设置一处。
5.接地钢筋间的连接:
隧道内的锚杆接地极、底板接地极和二次衬砌内的接地钢筋等接地装置均应通过连接钢筋与两侧电缆槽靠线路侧外缘的纵向接地钢筋连接,再通过电缆槽接地端子接入综合接地系统;
6.接地端子设置:
①隧道内均采用桥遂型接地端子,不锈钢材质。
②从隧道进口2m处开始,在两侧电力电缆槽底部,每间隔100m设置一个接地端子,小于100m的隧道在中部设一处,接地端子供隧道接地设置与贯通地线的连接。
③从隧道进口2m处开始,在两侧通信信号电缆槽靠线路侧壁上,每间隔50m设置一个接地端子,小于50m的隧道在中部设一处,接地端子供轨旁设备,设施接地。
④在每个专用洞室、变压器洞室两侧壁下部设置接地端子,供洞室设备及设施接地。
⑤上述所有的接地端子均通过连接钢筋与电缆槽外缘的纵向接地钢筋连接。⑥接触网基础采用后植入安装方式,在安装基础的位置预埋接地端子,接地端子每隔约300m预留1处(每处预留2个),长度小于300m隧道预留1处(每处预留2个),具体位置详见接触网相关图纸,接地端子与二次衬砌内的环向或纵向接地钢筋焊接。
⑦在工程允许的情况下,接地端子也可根据设备、设施的接地需要来确定预埋的里程,以达到最佳接地性能并方便工程实施和管理。
⑧隧道内接地钢筋、接地锚杆、接地钢拱架(钢网片)、接地连接钢筋间均须可靠焊接。
7.隧道内各专业接入综合系统的地线种类
①信号:沿线信号设备(所有相关金属设备外壳)的安全地和屏蔽地、工作
地等。
②通信:沿线漏泄电缆悬吊钢索、通信电缆金属外皮等的屏蔽地线,通信设备接地,避雷器的安全接地。通信站、微波站、无线基站在满足综合接地总体设计原则时,可介入综合接地系统。
③电力:电力电缆的金属外皮屏蔽地线,电力变压器中性点接地线及设备外壳接地线。
④电气化:接触网的回流线(或PW)接地。
⑤其他:沿线信息化系统设备的安全地线和屏蔽地线、工作地线、无蹅轨道板、隧道内非预应力钢筋接地;沿线距接触网带电体5m范围内金属构件的防感应接地。
8.工艺要求
①接地端子应直接灌注在电缆槽或其他混凝土制品中。接地端子采用不锈钢制造、不锈钢材料的成分应满足Cr≥16%、Ni≥5%、Mo≥2%、C≤0.08%,如GB00Cr17Ni14Mo2.接地端子的端子孔规格为M16,并应配置防异物堵塞的端子空塞,方便开启。
②接地连接线宜采用不锈钢连接线,由钢丝绳、二个线鼻以及二个配套的防盗螺栓(每个螺栓上应配两个平垫圈和一个弹簧垫圈)组成。钢丝绳采用直径不大于1mm的不锈钢丝制造,总截面不小于200m㎡(Ik>25KA)或120m㎡(Ik≤25KA).线鼻与钢丝绳的连接处应能承受5KN的拉力且3min不得松动和断股。如接地设备有特殊规定,应根据相关设备要求选用接地连接线。
③引接线和设备的连接,可焊接或螺栓连接,用螺连接时应采取防松措施。④贯通地线采用35 m㎡铜缆,其连接和“T”形分支引接,采用铜制“C”形压接件进行连接,贯通地线与接地端子间的连接采用压接并栓接。压接压力不小于12t,并且地下连接处应采取防腐措施。
⑤贯通地线要求尽可能直,禁止形成环状;隧道,路堤、路型、桥梁间的过渡地段贯通地线应平顺连接。
⑥接地钢筋间应采用搭接焊工艺。焊接要求:双边焊搭接长度不小于55㎜;单边焊搭接长度不小于100㎜;焊缝厚度不小于4㎜.钢筋间十字交叉时采用直径14㎜(IK≤25KA)或16㎜(Ik>25KA)的“L”行钢筋进行焊接(焊接长度同前)。
⑦对施工中外露的接地钢筋进行防腐处理,采用外涂沥青,外包聚氯乙烯,聚苯乙烯带的方式。
⑧安装有避雷器的接触网支柱,通信,信号等弱电系统不与其共用接地点,强、弱电设备接地点间隔要求不小于20 m。
4隧道内预埋槽道施工措施
1、预埋槽道设计说明
①接触网悬挂安装采用锚杆槽道形式进行预留。
②在悬挂预埋的断面内,槽道的锚杆应与结构钢筋或结构加强钢筋焊接固定。
③所有槽道的预埋金属体应接地连接。
④预埋点具体里程与隧道施工缝统一布置,同时应满足接触网悬挂点跨距等布置要求。
⑤预埋槽道分别位于隧道拱顶,两侧拱腰及右侧边墙,同时分为弧形和直形槽道;长度为1.5m和2.5m不等。在衬砌混凝土浇筑块前后两端等距布置。
2、预埋槽道安装
①槽道定位准备,检查槽道内的发泡填充物的完整状态。
②根据台车模板上槽道的设计要求位置,在台车模板上开螺栓二次定位安装长孔,槽道两端各设一个固定点,隧道顶部槽道设置三个固定点。尽量减少模板开孔数量,开孔位置尽量避开台车支撑固定点、结构连接处,严格控制与台车边缘的距离。
③绑扎第二层钢筋后,根据设计要求测量出槽道预埋位置,于钢筋网外侧将事先焊接好的成组槽道就位。槽道后锚杆与短钢筋绑扎在钢筋网上,且与隧道接地钢筋焊接牢固,锚杆与钢筋网发生冲突时不得随意切割锚杆。随后将槽道与模板固定点位置(开孔位置)的发泡填充物扣除。
④衬砌台车移动到指定位置后,通过二次定位孔,找到并调整槽道位置。一根槽道用一个顺线路开孔,一个垂直线路开孔固定及进行调整。
⑤将“T”型螺栓穿过二次定位长孔,放入槽道,旋转90度,开孔封堵的钢板安装在“T”型螺栓上,拧紧螺母,让槽道紧贴模板,进行二次精确定位。模板上的二次定位孔需封堵密实,确保衬砌混凝土浇筑质量。
⑥衬砌脱模:“T”型螺栓螺母松开后,取出螺栓,收回模板脱模。槽道固定点处重新回填发泡填充物,做好后续工作养护。
第五篇:铁路隧道机械化配套施工新模式
铁路隧道机械化配套施工新模式 来源:《人民铁道》报作者:李庆安 段宏杰发表时间:2010-01-14 16:19
长期以来,出于成本等考虑,我国建筑施工企业在隧道施工中大量使用农民工施工,这为广大农村劳动者提供了大量就业机会,同时推动了建筑业的发展。但是,随着建筑市场规模的迅速扩大、地质条件的复杂和建设标准的不断提高,大量使用农民工的弊端就逐渐显露出来:广大农民工专项施工技术水平普遍不高,虽然施工企业对他们进行了系统的技术培训,但农民工专业技术还是不能满足高质量建筑的要求。随着和谐铁路建设深入展开,这种粗放型施工管理模式,与铁路大规模建设的形势不相适应。正是在这样的背景下,一种新的管理模式——机械化配套作业成为大规模客专建设行业新的选择和契机。
山岭隧道机械化配套施工适应铁路建设新形势的迫切要求,对于提升我国隧道施工水平意义深远
截至2009年年底,我国建成的铁路隧道总长度已经超过7000公里,在建铁路隧道总长度已超过5000公里,即将开工和规划建设的隧道总长度超过5000公里,预计到2012年,我国建成通车的铁路隧道总数量将突破1万座,总长度将突破12000公里。我国铁路隧道建设的总量已经远远超过世界其他国家。但是我国铁路软岩隧道施工的快速修建设备配套技术水平、施工装备及国产化仍处于隧道施工机械化初期,整体技术仍较落后。主要表现在:
——以钻爆法为基础的机械化快速施工技术体系尚未完成,在机械化作业线设备配套技术、环境控制、施工安全与风险控制、岩溶高压水、大变形治理等方面,许多设备配套关键技术难题尚未取得突破,施工进度差别很大,事故隐患较多,工后环境影响较大。
——以钻爆法为基础的机械化设备配套在硬岩或围岩稳定性较好的条件下才能实现快速施工,而且作业线的主要设备大多从国外引进,自主开发的品种少、质量较差、故障较多,主要技术性能参数与铁路隧道现有施工条件不匹配。设备国产化程度低,因而影响作业效率,难以形成先进的机械化作业线。特别是开挖出砟、喷锚、支护、二次混凝土衬砌等工序,设备国产化程度低,制约了全行业整体技术的全面发展和进步。
——对于软岩和土质隧道,大多数仍采用人工作业,工序循环时间长,围岩扰动大,安全风险高,支护困难,进度缓慢,造成软岩隧道既不能快速施工,也不能形成机械化作业。
通过对瑞典和丹麦等国家隧道施工现场进行考察,技术人员发现,国外隧道施工从开挖、支护、钻注浆、锚杆、喷混凝土、出砟等各工序都配置了配套的全机械化作业生产线,机械化程度较高,且配套完整。国外隧道施工时采用喷混凝土机械手,真正实现了工装的配套,既环保又安全,可以真正控制支护质量,同时还可以因回弹比例小而有效降低施工成本。国外承包商的各生产线都利用较为发达的租赁市场,且配套维修非常及时。设备租赁特别是大型专用设备的租赁,方式较为灵活,便于现场推广应用。由于施工设备的完善配套,隧道施工作业人员每班仅7人~10人。
为了尽早实现我国隧道施工的机械化配套施工,铁道部专门设立了“隧道围岩稳定性及其控制技术研究”重大研究课题。其中,中国中铁隧道集团有限公司(以下简称中铁隧道集团)牵头承担起“隧道施工机械化配套技术及装备研究”子课题,并依托贵广铁路进行试验和实践。
课题借助三都、天平山等特长铁路隧道的修建,重点解决开挖与喷锚支护、装砟与运输、防水板铺设机械化施工作业线,控制围岩变形,完善我国软硬岩隧道全断面和台阶法施工的全工序作业线的机械化,尽快建立起合理的设备配套、协调运转机制,形成一套完整的具有理论指导、设备配套齐全且具有广泛适应性以及工法完善的机械化体系,以解决我国铁路修建技术方面的设备配套及国产化问题。核算机械化施工和课题取得的各项经济指标,对评价投资规模,促进施工进度,缩短工期,保证施工质量和安全,提升隧道施工装备实力与国产化水平,进而形成我国铁路机械化配套施工技术体系具有重要意义。
明确任务,积极行动,深入研究,认真实践,中铁隧道集团扎实推进机械化配套课题实施
2009年4月12日,中铁隧道集团主持召开“隧道施工机械化配套技术与装备研究”课题实施大纲研讨会,就科研实施大纲如何完善铁道部提出的长大隧道设备配套技术及满足铁道部提出的装备国产化达到国际水平的要求,对三都隧道设备配套实施如何与科研大纲配套方案相统一、设备投入资金来源及设备管理模式等事项进行了研讨。
会议决定成立专门课题组,下设“长大隧道机械化配套技术研究”“隧道施工装备国产化研究”和“隧道施工机械化经济分析研究”三个分课题,分六个阶段组织科研攻关。会议要求在贵广铁路三都隧道选择关键线路的工作面,在科研费以外再投入1500万元作为新增设备购置及三臂台车升级改造费用。为减少超欠挖,项目负责对已到现场的两台汤姆洛克凿岩台车进行改造,升级为电脑台车。
会议要求课题组坚持科研攻关实施方案的可行性、可靠性、先进性和合理性,按照“项目法施工”的组织要求,把科研攻关纳入到施工管理中,做到超前思维、精心组织、合理安排、突破重点,科研阶段成果指导施工的原则,确保科研成果大幅度提升施工效率,设备配套达到国际水平,国产化水平大幅提高。会议要求课题组重视贵广铁路的工程实践,建立以科研攻关为先导、以科研指导施工的施工管理体系。
2009年10月21日,中铁隧道集团课题组人员在贵阳向贵广铁路公司汇报“长大隧道快速施工机械化配套技术”课题进展情况。贵广公司就该课题提出了以下几点要求:一是要深刻认识设立课题的意义是用高科技手段来提高铁路施工效率,减轻劳动强度,提高隧道施工机械化程度,保证隧道施工安全。二是要改变课题转化到施工实践中过程较慢、转化效果不佳的局面,使课题与施工实践相结合,为施工服务。三是课题应解决以下几个关键问题:效率问题、环保问题、安全问题、经济性问题、设备与设备间工序与工序间有效衔接问题。四是以课题依托项目来推进,应尽快形成规模,尽快投入使用,要在项目推进时尽快出成果。2009年11月10日,中铁隧道集团再次主持召开机械化配套课题专题会,讨论了课题中设计的相关设备的引进和国产化问题。会议要求课题组和项目承担单位要了解研制开发钢拱架安装机的核心条件,其目的是减轻钢拱架安装人员的劳动强度,提高作业安全性,缩短工序循环时间。关于钢拱架安装机的开发研制,会议明确,主要是针对两台阶开挖情况下的钢拱架立拱作业,钢拱架安装机应具有两条工作臂、一个工作吊篮,行走形式为履带式行走,驱动形式为内燃机。会议要求隧道设备制造公司尽快按以上要求组织钢拱架安装机的设计。同时,要加紧进行防水板自动铺设台车、多功能台架和模板台车标准化的设计与制造,力保在2010年一季度末完成样机并投入使用。会议要求课题组及时总结湿喷机械手在贵广铁路三都隧道及其他项目成功应用的经验,在全集团内推广使用。
2009年12月3日至8日,中铁隧道集团邀请北京交通大学、郑州大学教授前往贵广铁路三都隧道进行现场指导。根据隧道地质情况,开展三都隧道出口全断面开挖机械化施工配套作业技术研究,由于地质复杂,还要在进口开展两台阶开挖机械化施工配套技术研究。会议就课题的阶段性目标和任务进行了详细分解,就课题研究中存在的问题进行了讨论,希望科研配合好施工,施工为科研提供条件,大家共同努力,争取实现科研和施工互动和双赢。
目前,贵广铁路三都隧道出口已配置三臂凿岩台车2台、挖掘机2台、装载机4台、自卸汽车6辆、仰拱移动栈桥1座、喷射机械手1台、多功能超前地质预报钻机1套、可移动整体仰拱模板1套等,基本形成了隧道施工全断面机械化配套作业流水线。
科研与施工互动,相互促进,中铁隧道集团在隧道机械化配套施工方面取得阶段性成果
贵广铁路全长857公里,是西南地区通达华南沿海地区的重要区际铁路通道。三都隧道为全线重点工程,全长14.6公里,隧道地质条件复杂,共穿越13条大的断层破碎带。隧道出口段采用机械化施工,出口段计划施工2580米,设计洞身岩层为泥灰岩夹钙质砂岩、页岩、石质砂岩、砂质页岩,段内设计的围岩级别为Ⅴ级围岩285米,占段内总长的11%,Ⅳ级岩630米,占段内总长24%,Ⅲ级围岩1665米占段内总长65%。
针对三都隧道,中铁隧道集团加强了超前地质预测预报方面的工作。项目部采用TSP全程贯通探测,异常地段采用地质雷达、红外探水、进口多功能C6地质水平钻机超前钻孔探测、地质素描等手段对隧道施工前方的地质、水文情况进行综合分析,同时在每个开挖循环钻3个~8个超前炮孔近距离了解掌子面前方地质情况。项目部根据量测速率的变化分级进行管理,利用专用网络对监控量测数据实施动态监控,根据量测数据反馈指导现场施工,保证施工安全。开工以来,项目部已多次成功预报出隧道前方的溶洞和不良地质,避免了数次涌水和突泥的发生。
开挖方面,项目部为三都隧道出口配备了2台三臂凿岩台车,2009年4月底开始使用,开挖月进度最高达到198.6米的单口掘进速度,目前已开挖近400米。每台台车配备6名操作人员,分两个作业班组进行施工。凿岩台车在实际使用中提高了施工工效,单孔5米深的炮孔成孔时间为1.5分钟~2分钟,全断面开挖单循环时间控制在3小时~4小时,加快了掘进的速度。项目部采用全断面光面爆破,现场实际统计平均线性超挖均能控制在10厘米以内。同时凿岩台车兼顾施钻系统锚杆眼孔的任务,提高了初期支护的施工效率和质量。
出渣方面,根据隧道断面大小,项目部在三都隧道出口配备了PC220挖掘机1台,用于找顶扒渣工序施工,配备2台WA380装载机及6台VOLVO自卸汽车。通风找顶完成后,由2台装载机同时向1台汽车进行装渣运输