商不变规律教案(集锦8篇)

2023-11-20 08:47:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《商不变规律教案(集锦8篇)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《商不变规律教案(集锦8篇)》。

篇1:商不变的规律教案

教学目标:

1、经历探索的过程。发现并掌握商不变的规律。

2、能正确应用进行计算,并能解决生活中的实际问题。

3、能运用商不变的规律,进行一些除法运算的简便计算。

4、在计算中增强学生用多种策略解决问题的意识,培养学生观察、比较及发散思维的能力。

重点难点:

探索与发现商不变的规律

教学过程:

一、创设情景:

1、先给学生们讲猴子分饼的故事,蕴涵有商不变的规律,激发学生学习的欲望与兴趣。

2、出示汽车在高速公路上匀速行驶的记录表,提问:你能发现什么?

3、分小组探究、分工合作完成。

二、建立模型。

行驶距离/千米483264

行驶时间/分241632

行驶速度

(1) 学生自由发言,提出问题,交流发现,你能帮助同学解答他的疑惑吗?

(2) 引导学生观察,比较从表格中发现什么规律?

(3) 学生独立完成,再举些例子验证你的发现

(4) “试一试”,启发学生想一想发现的规律。

(5) 根据你的发现,说说128分能行驶多少千米?

1、引导学生利用规律再进行计算。

2、要使商不变,被除数和除数都乘以0或者除以0可以吗?为什么?

知识应用及拓展。

1、完成“练一练”,找出规律:

10÷2=600÷20=

20÷4=300÷10=

40÷8=60÷2=

2、让学生说一说发现了什么规律几?

3、第2题:认真观察,小组内说一说:

4、要使商不变,被除数和除数都乘以0或者除以0可以吗?为什么?

四、小结本课

篇2:商不变的规律教案

教学内容

人教版九义六年制小学数学第七册P84

教学目标

1、使学生理解和掌握商不变的规律,并能运用这一规律口算有关除法。

2、培养学生观察、概括以及发现规律、探索新知的能力。

教学具准备

多媒体课件一套,每生一只计算器。

教学过程

一、始动阶段,设疑激趣

以卡片先出示右三题,指名口算;再出左三题,同桌两人比赛,左边的用计算器逄,右边的用口算。

(36×2)÷(12×2)=(36÷2)÷(12÷2)=

(36×4)÷(12×4)=(36÷3)÷(12÷3)=

(36×8)÷(12×8)=(36÷12)÷(12÷12)=

教师用黄色粉笔写出商后,问比赛的胜负如何?

师:好多用计算器算的同学赢了!哎哟,用口算的小嘴翘起来了。这个比赛不公平,是吧?那交换一下,再赛一道题怎样?教师板书:(36×100…0)÷(12×100…0)=

10个10个

学生皆面有难色。稍后——

生1:等于2。

生2:等于3。

师:请你说说这一题为什么等于3呢?

生2:36÷12=3。

师:他的知识面真宽!(在两组口答题上方板书:36÷12=3)那么这一题究竟等于多少呢?是不是与36÷12有联系?(用红粉笔在“(36×100…0)÷(12×100…0)=”之后板书:?)这节课我们就一起来研究这个问题。

二、新授阶段,观察概括

师:现在我们回过头来看这两组题。你发现这两组题的商有什么特点?

生:都等于3。

师:对!这两组题的商与36÷12的商一样,都是3,没有发生变化。下面我们进行一项公平的比赛,请同桌左边同学观察与思考左边一组题,右边同学观察思考右边一组题,(用绿色粉笔板书:)看谁抢先回答出这个问题:(出示)这些题与36÷12=3比,被除数36和除数12怎样变化,商才不变的呢?

在有学生举手欲回答“观察与思考”时——

师:请同桌两位同学交流一下各人的发现。

同桌交流后集中发言。

师:观察左边一组题,你发现了什么?

生1:通过观察,我发现被除数、除数都乘以相同的数,商不变。

师:请用上“扩大”这个词,把你发现的规律再说一下。

生1:通过观察,我发现被除数、除数都扩大相同的倍数,商不变。

师:观察右边的一组题呢?

生:通过观察,我发现被除数和除数都缩小相同的倍数,商不变。

师:哪位同学能把这两种情况用一句话概括出来?

生:在除法中,被除数和除数都扩大或缩小相同的倍数,商不变。

师:说得真好!谁能再说一说。

生:在除法中,被除数和除数同时扩大或缩小相同的倍数,商不变。

用小黑板出示“商不变的规律“,组织学生齐读一遍。

师:同学们发现的这个规律是否具有普遍性呢?请你们接下来再举几个例子(手指两组口答题),看被除数和除数同时扩大或缩小相同的倍数,商变不变?

生:(36×3)÷(12×3)=108÷36=3

师:[板书:(36×3)÷(12×3)=3]他举了个被除数、除数同时扩大3倍,商不变的例子。谁能举个被除数、除数同时缩小的例子?

生:(36÷9)÷(12÷9)=4÷……

师:12÷9等于多少?

生齐:12÷9等于1余3。

师:噢,有余数。这个例子究竟怎么算呢?同学们暂时还不会,哪位能重举个例子?

生:(36÷4)÷(12÷4)=9÷3=3

师:他举了个被除数、除数同时缩小4倍的例子,商还是不变。

刚才,同学们通过观察、思考、讨论、验证,证实了:在除法中,被除数和除数同时扩大或缩小相同的倍数,商不变。谁能给我们发现的规律取个名字?这个规律人们通常叫“商不变的规律”。(板书:商不变的规律)

出示:

(36×2)÷(12÷2)=

(36×5)÷(12×3)=

(36÷6)÷(12÷2)=

(36+12)÷(12+12)=

师:这几题的商也都是3吗?

多数学生肯定,少数学生否定,双方争执不下。

师:现在同学们有两种意见,争执不下,大家商量一下:怎么办呢?

不少学生认为:“算,算!”

师:好,那我们按照运算顺序算一下,看究竟等于多少?能口算的就口算,不能口算的用计算器算。

学生回答后,教师板书得数。刚算出第一题答案是12,少数派学生就欢呼起来。

师:与36÷12=3比,这几题的商为什么变了呢?请前后桌四人一组讨论讨论。

学生讨论之后,推举代表发言。

生1:我看第一题,因为被除数和除数不是同时扩大或缩小,尽管倍数相同,所以商还是变化了。

生2:第二题和第三题,虽然被除数和除数同时扩大或同时缩小,由于倍数不相同,所以商发生了变化。

生3:第四题,被除数和除数不是同时扩大,而是同时增加相同的数,所以商也变了。

师:三个小组代表的回答太棒了!看来,对商不变的规律我们要全面地理解哦。只有当被除数和除数同时扩大或缩小相同的倍数,商才不变。

那现在你看看“商不变的规律”,你认为哪几个词特别重要?

学生说出“同时”、“相同”、“商”三个词,教师用红笔加圈后,请学生再自由地读一遍。

师:请同学们阅读课本第84页,同桌两人交流交流怎样回答课文中的五个问题。

学生看书、填表、交流。

师:同学们有什么问题要提吗?

生齐:没有。

师:那你知道学习商不变的规律有什么用吗?

生:可以运用商不变的规律,来做整十、整百数的除法口算。

当教师问:“你会了吗?”绝大部分学生响亮地回答:“会!”少数学生有些迟疑。

师:谁会举几个例子,教教几个还没有完全会的同学?

生1:500÷100=500÷100=5。(教师随之板书。)

生2:600÷200=600÷200=3。(教师随之板书。)

三、调节阶段,放松愉悦

师:刚才同学们的表现好极了!现在我们来轻松一下,听个故事。(播放配乐故事,出示相应画面)

“故事的名字叫‘猴王分桃子’。

“花果山风景秀丽,鸟语花香。桃树上挂满了桃子,桃树下坐着一群猴子,它们在等猴王来分桃子。猴王准时来到。猴王说:‘给你6个桃子,平均分给3只小猴吧。’小猴子听了,连连摇头:‘太少了,太少了!’猴王就说:‘那好吧,给你60个桃子,平均分给30只小猴,怎么样?’小猴子得寸进尺,挠挠头皮,试探地说:‘大王,请您开开恩,再多给点行不行啊?’猴王一拍胸脯,显示出慷慨大度的样子:‘那好吧,给你600个桃,平均分给300个小猴,你总该满意了吧?!’这时,小猴子笑了,猴王也笑了。

“同学们,谁的笑是聪明的一笑,为什么?”

教师相机板书:63

6030

600300

生1:小猴子的笑是聪明的一笑,因为越来越多的小猴子分到桃子了。

师:想得有道理!

生1:猴王的笑是一聪明的一笑。因为猴王利用商不变的规律把小猴子给骗了,每只小猴子还是分的2个桃子。

师:对!数学变了,但桃子个数与小猴只数之间的倍数关系没有变。我们可不能被表面现象所迷惑,要透过现象看本质。

四、反馈阶段,深化认知

(1)800÷25=(800×4)÷(25×4)( )

(2)48÷24=(48÷4)÷(24÷2)( )

(3)32800÷400=328÷4( )

(4)30×4=(30÷2)×(4÷2)( )

要求学生认为对的话,则举手;错的话,则举拳。第(1)、(4)题要说明理由。

师:第(1)题为什么说是错的呢?

生:800×4=3200,25×4=100,3200÷100=32,而800÷25=……

有几个学生在座位上帮忙:“800÷25也等于32。”

师:那这道题对不对?

生齐:对!

师:可为什么有同学那么快就能很快判断它是对的,他有没有计算呢?

生:根据商不变的规律,被除数和除数同时扩大4倍,商不变,所以这道题是对的。

师:真会动脑子!一学就会用了!

第(4)题大多数学生很快判断出是对的,少数学生判断出是错的。

师:哦,有判对的,也有判错的。请不同意见的双方各出一名代表,到前面辩论。

正方:请说说商不变的规律。

反方:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。

正方:这道题中是同时缩小的吗?

反方:是同时缩小。

正方:再请看看缩小的倍数相同吗?

反方:缩小的倍数相同。

正方:那么这道题符合商不变的规律吗?

反方:不符合。

正方:为什么?

反方:这道题中的30和4是被除数和除数吗?

正方:……嗯!

反方:请你再说说商不变的规律。

正方:(略)

反方:请把前4个字再说一遍。

正方:在除法里。

反方:这道题可是在乘法里啊!

正方:噢!可是……这是“积不变的规律”……

反方:积不变的规律?那我们一起算一算:30×4=120,30÷2=15,4÷2=2,15×2=30,120=30?

学生们笑出声来:“120怎么等于30?”

正方:我们只看到“同时缩小”和“相同的倍数”,忽视了“在除法里”这个前提条件,错了。

学生们和教师都热烈鼓掌。

师:谁能再说一说这道题为什么错?

生:它错误地把商不变的规律运用到乘法算式中了。

师:一针见血!刚才判断出这道题是错的同学请笑一笑。希望以后笑的人能更多一些啊!

出示课本第85页上一个“做一做”,让学生在课本上完成。

逐条出示口算题:

2800÷4003000÷50

7200÷8004500÷900

4000÷20096000÷6000

4000÷200、96000÷6000两题请学生说说想法。强调被除数、除数末尾要划去同样多个“0”。

师:想一想,现在再出类似的题比赛,一个用计算器算,一个用口算,谁会赢?那现在我们换个形式再赛一场,一场公平的比赛,怎样?

出示竞赛题:

在□中填数,在空白中填运算符号:

200÷40=5

(200×4)÷(40×□)=5(200÷2)÷(40÷□)=5

(200×3)÷(40□)=5(200÷4)÷(40□)=5

(200×□)÷(40□)=5(200÷□)÷(40□)=5

师:□里可以填“0”吗?为什么?

师:今天这节课学习了什么?谁能不看黑板说一说商不变的规律。同学们在被除数和除数的变化中,看到了商不变的规律。如果能经常这样观察思考问题,同学们就会越来越聪明。还有什么问题吗?

现在我们来看(36×100…0)÷(12×100…0)等于多少呢?

生:等于3。10个10个

师:同意等于3的请举手。(全班皆举手。)哪位能说一说为什么等于3?

生:36和12同时缩小了相同的倍数,其实这道题就可以算36÷12,所以等于3。

师:课的开始大部分同学不会解答这道题,通过同学们的努力发现了商不变的规律,现在运用这个规律就可以口算这道用计算器都算不出的题啦!

课后有兴趣的同学请思考:(在“竞赛题”下方出示)

(200+200)÷(40□)=5

篇3:商不变的规律教案

课题名称:第五单元《商不变的规律》

教学目标:1、我能发现商的变化规律。

2、我能运用商的变化规律进行除法计算。

3、我会用商的变化规律解决问题(重、难点)。

教学重点:我会用商的变化规律解决问题(重、难点)。

教学难点:我会用商的变化规律解决问题(重、难点)。

教学准备:导学案。

教学流程:

自主预习

学习前检

创设情境,提出问题。

先填表再回答问题。

(1)观察第一个表格,从上往下看我发现:( )不变,除数依次扩大( )倍、( )倍,商( ),从下往上看,除数依次缩小( )倍、( )倍,商( )。

(2)观察第二个表格,从上往下看我发现:( )不变,被除数依次扩大( )倍、( )倍,商( ),从下往上看,被除数依次缩小( )倍、( )倍,商( )。

小组交流

合作探究1、填写课本72页相关链接统计表。

2、通过填表我发现,( )和( )都有变化,但是( )却没有变化,从左往右看,第三列和第二列比较被除数扩大( ),除数也( ),商( );第四列和第二列比较被除数扩大( ),除数也( ),商( );第五列和第二列比较被除数扩大( ),除数也( ),商( )。

从右往左看,第五列和第四列比较,被除数缩小( ),除数也( ),商( );第四列和第三列比较,被除数缩小( ),除数也( ),商( )。

3、我能总结出商的变化规律:

_________________________________________________________

__________________________________________________

4、这是不是一条普遍规律呢,让我们一起来验证一下:填写课本72页图表并交流。

5、讨论:这条规律的使用有什么条件?

我们发现:

展示交流

精讲释疑1、组长做好分工,将探究成果向全班同学汇报。

2、汇报时,要回答其他小组的提问。

后检反馈

当堂达标

1、根据第一题的商写出下面两题的商。

72÷9=36÷3=80÷4=

720÷90= 360÷30= 800÷40=

7200÷900=3600÷300=8000÷400=

2、判断(对的打“√”,错的打“×”)。

48÷12=(48×5)÷(12×5) ( )

45÷15=(45×3)÷(15×4) ( )

80÷16=(80×4)÷(16÷4) ( )

75÷25=(75÷5)÷(25÷5) ( )

3、看算式填空。

(4×2)÷(2×______)=2

(3×2)÷(1×______)=3

(90÷10) ÷(30÷______)=3

(28÷______)÷(7÷______)=4

4、根据商的变化规律直接写出下列各题的答案。

420÷35=12(420×3)÷35=

(420×5)÷(35×5)= (420÷5)÷(35÷5)=

420÷(35×4)= 420÷(35×6)=

5、菜市场运来西红柿240千克,是黄瓜的16倍,两种蔬菜共多少千克?

拓展交流

总结提升

说一说这节课你有什么收获?

篇4:商不变的规律教案

教学内容:

人教版六年制小学数学第六册教科书第66页例15,例15下面的“做一做”,练习十四的第11~13题

教学目的:

1.通过观察、讨论、发现、验证,使学生理解和掌握被除数、除数同时扩大(或缩小)相同的倍数,商不变的规律,数学教案-商不变的规律 (安徽省固镇实验小学 张艳明)。

2.运用商不变规律,进行除法的一些简算。

3.培养学生观察、比较、抽象概括能力。

教学重点:

商不变规律

教学难点:

总结归纳商不变的规律

教具准备:

多媒体课件

教学过程:

一、故事引入 创设情境

“同学们,喜欢听故事吗?今天我给大家讲一段我小的时候老师给我讲的一个小故事,好不好?”

(多媒体出示情景及录音)

小新是个天真可爱的孩子,妈妈想让他自己学会管理零用钱,就对他说:“我给你10元钱,平均吃5天早餐。”(出示:10元、5天)小新一听,叫了起来:“10元!太少了!”妈妈又说:“那给你20元,但要平均用10天。”(出示:20元、10天)小新说:“不够,不够!”最后妈妈说:“那给你50元吧,不过要平均用25天。“(出示:50元、25天)小新高兴地说:“行!”。小新得到50元,高高兴兴地走了。同学们想一想,小新是不是平均每天可以多用点钱呢?

指名学生发表自己的看法:有的说每天可以多用点钱,有的说每天不可能多用点钱(每天用的钱是一样多的)等。

教师适时引导:

“你是怎么知道小新每天用的钱是一样多的呢?”

“算式是怎样列的呢?”

学生说,教师多媒体出示算式:

10÷5=2(元)

20÷10=2(元)

50÷25=2(元)

“这些都是除法算式,在这些算式中10,20,50(多媒体用红线标出)叫做什么数?”(被除数)

“5,10,25(多媒体用紫线标出)叫做什么数?”(除数)

“最后的结果叫什么?”(商)

“从这几个算式中你发现了什么?”(被除数、除数发生了变化,商没变。)

“在除法算式中被除数、除数发生什么样的变化,而商不变呢?今天我们就来研究这个问题。”(出示课题:商不变的规律)

二、组织活动 探究新知

1.引导观察

下面,我们先来填一组关于除法的表格。

(多媒体出示例15的表格)

被除数

24

48

120

240

480

除数

4

8

20

40

80

教师引导学生理解表格后,让学生打开书把书上表格填完整。

订正时,教师指名学生说,多媒体出示。

“同学们为了便于研究,我们给每一竖行编上一个组号。”(多媒体出示)

“观察这些算式,你有什么发现?”

学生充分发表意见,小学数学教案《数学教案-商不变的规律 (安徽省固镇实验小学 张艳明)》。(学生:被除数和除数分别发生了变化,而商不变。)

2.提出问题

“对于这些发现,你想提出什么问题?”

多指几位学生发言。

(学生A:在什么情况下,商不变呢?)

(学生B:被除数和除数怎样变化,商才不变呢?)

3.合作探究

“大家提的问题都很好,下面就请同学们按照老师提供的讨论提纲分成小组讨论解决这些问题。”

讨论提纲:

⑴第2组与第1组比较,被除数和除数各有什么变化?商有什么变化?

⑵第3、4、5组分别与第1组比较,被除数和除数各有什么变化?商有什么变化?

学生四人小组讨论,教师巡视参与。

小组代表汇报讨论结果,教师用多媒体对应演示。

4.发现总结

“同学们的发现有什么规律吗?谁能把发现的规律用一句话说出来?”

指名学生说,教师板书。

(被除数和除数同时扩大相同的倍数,商不变。)

5.大胆猜想

“同学们已经发现了被除数和除数同时扩大了相同的倍数,而商是不变的。你现在可以根据前面的发现,进行大胆猜想吗?还有什么情况,商也是不变的?”

指名学生说,教师板书。

(被除数和除数同时缩小相同的倍数,商不变。)

“他的猜想对不对,我们要通过验证才能知道。请大家分组讨论验证他的想法。”

教师提供讨论提纲:

⑴第4组与第5组比较,被除数和除数各有什么变化?商有什么变化?

⑵第3、2、1组分别与第5组比较,被除数和除数各有什么变化?商有什么变化?

学生四人小组讨论验证,教师巡视参与。

小组代表汇报讨论结果,教师用多媒体对应演示。

6.总结归纳

师:“谁能把你们发现的两种商不变的情况概括成一句话?”

指名学生说,教师板书。

(在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。)

“我们看书上是怎么说的。”

指导学生阅读第66页的结论。

7.计算应用

我们已经总结了商不变的规律,下面我们就运用这个规律来解决一些实际的计算问题。(多媒体出示:第66页下面的“做一做”)

让学生将“做一做”在书上填出来。订正时,指名学生说,多媒体出示。

第一组从上往下观察,第二组从下往上观察,说明商为什么相同。第三组,让学生自己说说商为什么相同。

三、巩固练习形成技能

1.做练习十四第11题

让学生直接填在书上,订正时,部分题指名说说是怎样简算的。

2.做练习十四第12题(多媒体出示)

先让学生观察表格,指名回答:

“(1)从左到右,被除数是怎样变化的?除数是怎样变化的?商呢?”

“(2)从右到左,被除数是怎样变化的?除数是怎样变化的?商呢?”

指名填表,其余在书上填,共同订正。

3.游戏:小动物找房间(练习十四第13题改编)

下面我们来做个游戏轻松一下,(多媒体出示)星期天小动物们一起出去游玩,他们住在“动物世界”宾馆。可是在住进宾馆之前先要登记,小动物们手中各有一个数字,只有将这个数字正确填入表中的空格里,他们才能住进宾馆。现在小动物们可着急啦,大家能帮助这些小动物顺利住进宾馆吗?

让学生上台说说自己想帮助哪个小动物,再实际操作移动数字,帮助小动物填表。

(多媒体对应演示小动物住进宾馆的情况。)

多指几名学生操作。

四、反馈信息 体现成功

通过这节课你学会了什么?

你还有什么问题要问吗?

附:板书设计

被除数和除数同时扩大相同的倍数,商不变。

被除数和除数同时缩小相同的倍数,商不变。

被除数和除数同时扩大(或缩小)相同的倍数,商不变

篇5:商不变的规律教案

一、教材分析

“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。

二、学生分析

本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。

教学内容:

北师大版四年级上册第74页至75页。

教学目标:

1、理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

2、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功。

教学重点:使学生理解并归纳出商不变的规律。

教学难点:使学生会初步运用商不变的规律进行一些简便计算

教学课时:1课时

教学过程:

一、激趣引课

今天老师给你们带来了一张明星照,想不想看看是谁?(点击课件)哇!王老师!大家看想我吗?如果拍照时,老师的眼睛变小了,嘴巴不变,嘴巴还变大了,那么拍出的照片还像我吗?不过,这张照片太小了,我想拍一张大一点的请同学们帮老师选择一家价格便宜的照相馆:

A照相馆:“30元可以照6张!”

B照相馆:“60元可以照12张!”

c照相馆:“90元可以照18张!”

D照相馆:“10元可以照2张!”

照相馆:“15元可以照3张!”

二、探索规律

1、让学生自主看信息列出四个算式,指名板演四个算式。

①30÷6=5

②60÷12=(30×2)÷(6×2)=5

③90÷18=(30×3)÷(6×3)=5

④10÷2=(30÷3)÷(6÷3)=5

2、师提出问题:“同学们,看到这四个算式你发现了什么?”

3、小组讨论:点击课件。

以30÷6=5为标准,仔细观察其余算是中的被除数与除数的变化,你们会发现什么规律?引导学生举例说出:四个算式的商都相等,算式(2)、(3)、(4)式其实都是算式(1)变化出来的,如:算式(2)的被除数60是算式(1)的被除数30的2倍,算式(2)的除数12是算式(1)的除数6的2倍,被除数和除数都乘上2或扩大的倍数相同。我们一起来再来看看算式(3)、(4)是不是也有这规律。同桌结合算式(3)、(4)来说说被除数、除数和商的变化的情况。最后再请同学与全班交流。

师:谁能用完整的话说出上面发现的规律?学生总结以后,教师小结,今天我们发现的这个规律就是“商不变规律”(板书)

4、利用这个规律讨论

(18×0)÷(6×0)=?所以在商不变的规律中什么条件不适用?(零除外)

5、齐读商不变规律:

在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变。

三、反馈练习

1、抢答:在一道除法算式里,如果被除数除以5,除数也除以5,商()

在一道除法算式里,如果被除数乘10,要使商不变,除数()

在一道除法算式里,如果除数除以100,要使商不变,被除数()

2、填空,看谁填得又对又快。

①(90×□)÷(30×2)=90÷30

②(40×5)÷(20

篇6:《商不变的规律》教案设计

教学过程:

一、激趣导入

互动猜数124711……(一个一个出示)

师:最后猜对了,前面怎么猜不准呢?

生:最后找到规律了

师:今天我们一起再来探索一节有关规律的课。

【设计意图:由猜数激趣导入,能很快集中学生的注意力,激发学生学习的兴趣,同时为本节课探索新知做了铺垫】

二、探究规律

出示一组=2的算式

6÷3=

12÷6=

36÷18=

24÷12=

20÷10=

200÷100

24÷6=

学生口算

师:看这几个算式,你有什么发现?

生:商不变,被除数、除数变了。

师根据学生的回答板书:被除数、除数变,商不变。

师:被除数和除数怎么变,商才不变呢?这节课我们好好研究研究这个问题,拿什么来研究啊?

生:除法算式。

师:拿几个算式来研究比较合适、比较方便、比较可信呢?

师生一起探讨最后得出:拿一组算式来研究然后找一些算式看看是不是和我们所找的规律符合。

出示6÷3=212÷6=236÷18=2

生找规律

呈现学生资源,交流

师:还能找到第三组吗指出可以从上往下比较也能从下往上比较想一想还能以谁为标准?

师:进行了几次比较?在几次比较中有什么规律?

生:被除数和除数同时乘一个相同的数,商不变。

生:同时除以一个相同的数,商也不变。

重新回放课件

师:大家说说被除数和除数怎么变的时候商不变呢?

生:被除数和除数同时乘或除以相同的数,商不变。

刚才我们只研究了这3个算式,找到的规律是否可信呢?

刚才乘2、3、6符合,那乘7、8、9呢?

刚才商是2的符合,那商是3的、商是4的符合吗?

师:那么我们�咳嗽倭芯�3个算式来验证一下。

生举例、验证。

呈现资源交流

师:那么现在这个规律大家承认了吗?

【设计意图:在学生初步发现规律的基础上,教师组织学生通过

列举实例的方式,来验证在其他的除法算式中是否存在这种现

象,这样处理充分体现了学生是课堂上的主人,体现了学生的自

主学习,有利于培养学生敢于质疑、敢于探究的学习品质。】

学生齐读规律。

师:大家刚才在研究的过程中有没有遇到什么问题呢?

出示算式:6÷2=3

9÷3=3

21÷7=3

有学生在研究的过程中出现了这样的问题(倍数是小数)。

还有被除数和除数都乘以0呢?

6÷2=3

0÷0=?

生:没意义。

师:那被除数和除数能除以0吗?

生:没意义。

师:所以这个规律要怎么改善一下?

生:被除数和除数同时乘或除以相同的数(0除外),商不变。

【设计意图:在验证和交流中,学生很自然地发现了“0除外”的问题,从而真正地发现了“商不变的规律”。】

三、深化理解

师:生活中有没有商不变的规律存在?

1.学生先说自己找到的现象。

2.课件出示小轿车2小时行100千米,3小时行150千米,4小时行了200千米。

什么变了?什么没变?

生:时间变了距离变了速度没变

课件出示打字员打字情况

说说什么变了?什么没变?

课件出示购买同一种物品的情况

说说什么变了?什么没变?

【设计意图:将课堂教学延伸到了课外,从而使学生对本课知识的认识更具深度和广度,更能培养学生关注生活的情感,使学生体会到数学在生活中的广泛应用,让学生感到课已终,趣犹存,真正实现了课堂成为生活和数学的桥梁。】

四.总结

这节课我们一起研究了商不变的规律(板书课题:商不变的规律),谈各自的收获。

【设计意图:回顾和反思,有利于梳理所学的知识和方法,自评和互评有利于增强学生的主人翁意识,形成积极向上的学习氛围。】

最后老师送大家数学家开普勒的一句话:数学研究的是千变万化中不变的关系。

篇7:《商不变的规律》教学教案设计

教学目标:

1. 理解和掌握商不变的规律,并能运用这一规律口算有关除法,培养学生的观察、概括以及提出问题、分析问题、解决问题的能力。

2.学生在参与观察、比较、概括、验证等学习过程中,体验成功,收获学习的快乐。

教学重难点:

1重点:理解归纳出商不变的规律。

2.难点:会初步运用商不变的规律进行一些简便计算。

教学过程

一、创设情境,激发兴趣

导入:同学们想玩游戏吗?今天我们就一起玩一个自编除法的游戏。老师这有三个数字——8、2、0、,每个数字在一道算式中可以出现一次、两次或多次,也可以一次也不出现,但是要求每一道算式中的商必须等于4,限时一分钟,看谁写得多! 预测:

8÷2=4

80÷ 20=4

800÷ 200=4

8000÷ 2000=4

88÷ 22=4

888÷ 222=4 8888÷ 2222=488888÷ 22222=4 880 ÷220=4 8800 ÷2200=488000÷ 22000=4

发现:我们无论编出多少道不同的算式,什么是不变的?(板书:商不变)

商不变,是什么在变呢?(板书:被除数和除数)

探究:被除数和除数究竟有怎样的变化,商却不变呢?这节课我们一起来研究商不变的规律(板书课题)

二、合作学习、探究规律

探究:请观察我们自己编的一组算式,看看被除数和除数究竟是怎样变化的而商却不变?

要求:可以自己研究,也可以小组内共同探究。

交流:说出自己的发现。

预测1:学生对于“同时”、“相同”的用词不一定能用的准,理解不一定能非常透彻。

解决:让学生在自己充分的理解,叙述的基础上提炼出“同时”、“相同”一词。

预测2:对于“零除外”,有些同学可能会想到这一情况,但对于其原因不是很清楚。

解决:让学生实际举例,使其充分理解——零不能做除数。

三、应用规律,反馈内化

1.在○里填上运算符号,在 里填上适当的数。

(1)16÷ 8=(16× 2)÷ (8 ×□ )

(2)480÷80=(480÷10)÷(80○10)

(3)150÷25=(150○□ )÷(25○□)

2口算。

竞赛:一分钟内能完成几道题,并说说做的快的原因。

3简算

400÷25=你会算吗?怎样变成我们学过的形式在计算呢?

预测:400÷25=(400× 4)÷ ( 25× 4)=1600÷ 100=16 400÷25=(400÷5)÷(25÷5)=80÷5=16

四、总结延伸,应用拓展

今天我们一起研究了商不变的规律,请同学们大胆猜测一下,在乘法,加法、减法中会不会也有积、和、差不变的规律呢?请同学们利用课余时间与学习伙伴一起研究、思考。 教学反思:在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,效果很好。 上完本节课有几点收获:

1、由学生感兴趣的游戏引入新课,能激发学生探究新知的欲望;

2、练习内容形式多样,由浅入深,让学生进一步内化商不变的规律;

3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系;

4、揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后提示学生0乘任何数都得0,0不能当做除数,然后总结出商不变的规律。然而也有不足之处:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用过程中,讲解简便运算后,总结不到位:由于在讲解练习题时,把握不熟练:在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!

篇8:《商不变的规律》教学教案设计

一、教材分析:

“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。

二、学生分析

本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的`,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。

三、教学目标:

依据新课标要求,结合本课教学内容和学生的认知规律,确定如下学习目标。

知识目标:探索与发现商不变的规律,其次是理解并掌握商不变的规律,而且能利用商不变的规律,进行一些除法运算的简便运算。 能力目标:初步培养学生主动探索,独立获取知识的能力和运用商不变的规律解决生活中的数学问题的能力。

情感目标:渗透数学来自于生活实践的辨证唯物主义思想,培养学生初步的数学应用意识,唤起学生学数学的兴趣。

教学重点:探索与发现商不变的规律。

教学难点:运用商不变的规律进行除法的简便计算。

教法:观察法、对比法。

学法:小组合作交流

教学过程:

一、激趣引思,导入新课

1、创设情境:

秋天的时候,猴王在美丽的花果山上为小猴分桃子。猴王说:“我把8个桃子平均分给2只猴子。”小猴听了直叫:“太少,太少。”猴王又说:“我把80个桃子平均分给20只猴子。”小猴听了试着说:“能不能再多分一点?”猴王又说:“我拿800个桃子平均分给200只猴子,这回行了吧?”这时小猴笑了,猴王也跟着笑了。

2、启发提问,小组讨论:为什么小猴和猴王都笑了?谁是聪明的一

笑?

学生分小组交流。

能把算式列出来吗?

二、探讨新知

1、全班交流。

板书:8÷2=4

80÷20=4

800÷200=4

2、师:在除法算式里,除号左边的8、80、800这些数我们称作为什么?(被除数)

除号右边的2、20、200这些数我们称作什么?(除数) 除得的结果我们又称作什么?(商)

3、师:如果以第一个等式为标准,下面两个等式中的被除数、除数和商,什么变了,什么不变?(被除数、除数变了,商不变)

这节课我们就来讨论“商不变的规律”(板书课题:商不变的规律)

4、仔细观察黑板上的三组算式,你能说说被除数和除数都是怎样变化的吗?

先独立思考,再和同桌互相讨论

5、汇报:

我们先从上往下看,被除数和除数发生了什么变化?

(被除数从8到80,乘10,除数从2到20,也是乘10; 被除数从80到800,乘10,除数从20到200,也是乘10。) 再从下往上看,被除数和除数又发生了什么变化?

(被除数和除数同时除以相同的数)

6、你能像猴王一样分桃子吗?试试看,写一些你的算式 ( )÷( )=( )

( )÷( )=( )

( )÷( )=( )

7、你能从我们黑板上的一组算式以及你写的算式中,你发现了什么规律? 在纸上写一写

8、汇报:重点找一组乘的数不相同

师:谁能用一句话概括这两个规律?引导学生说出规律描述:被除数和除数同时乘或除以相同的数(零除外),商不变。

三、巩固练习,深入讨论

师:刚才通过大家的努力,我们找到被除数和除数的变化规律,使得商不变。现在老师要看看大家是否真正理解了

判断题:(师:听清楚要求:用手势表示对错)

(1)75÷15=(75÷5)÷(15÷5)

(2)90÷30=(90×0)÷(30×0)

师:乘以0可以吗?为什么?(因为0不能作为除数,没有意义) 看来我们要把0特殊对待,写上(0除外)

(3)25×3=(25×4)×(3×4)

师:这样对吗?口算左边75,右边1200,为什么会出现这样的问题? 商不变的规律适合在什么运算中?(除法中)

(4)60÷12=(60÷2)÷12

(5)15÷5=(15+5)÷(5+5)

(6)80÷4=(80×6) ÷(4×2)

师:同学们今天学得真细心!我们已经运用集体的智慧发现了完整的商不变规律,我们一起来读一读吧!

师:读完了这个规律,你觉得运用这个规律时应该注意什么,有什么需要提醒大家的?

(除法,同时,相同的数,零除外,教师标出重点符号)

师:大家都提醒了别人这些需要注意的,智慧老人要考考你们到底会不会运用商不变的规律

四、应用知识——星级挑战

1、一星级挑战

看例子:950÷50=(950÷10)÷(50÷10)= 95÷5

下载商不变规律教案(集锦8篇)word格式文档
下载商不变规律教案(集锦8篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    商不变规律教案

    《商不变规律》教学设计 主备人:刘占有 教学目标: 1.理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。 2.学......

    《商不变规律》教案

    商不变规律 教学内容: 人教版六年制小学数学第六册教科书第66页例15,例15下面的“做一做”,练习十四的第11~13题 教学目的: 1.通过观察、讨论、发现、验证,使学生理解和掌握被除数、......

    四年级商不变规律教案

    苏教版四年级上册《商不变的规律》教案设计 一、教学目标 知识目标:引导学生经历探索“商不变的规律”全过程,在观察、比较、讨论、交流中发现“商不变的规律”,并能运用这一......

    《商不变的规律》教案

    《商不变的规律》教案 海则庙中心小学 刘树成 第一课时 教学目标:知识与能力目标 :经历探索的过程,发现商不变定律。 过程与方法目标 :能运用商不变定律,进行一些除法运算的简便......

    商不变的规律教案

    商不变的规律教案 一、导入: 同学们,除法我也已经学了一段时间了。给同学讲一个小笑话:一天,小明回家跟妈妈说:“我们数学老师一点都不好。”妈妈问,你为什么这么说啊?“她昨天说6......

    商不变的规律教案[★]

    商的变化规律教案 教学内容: 人教版课标实验教材小学数学四年级上册第五单元第93页例5“商的不变规律”。教学目标: (1)知识与技能:使学生理解掌握商的变化规律,会用规律口算相......

    商不变的规律教案

    《商不变的规律的复习课》 平定县中社学校 杨爱俊 教学内容:四年级上册第87-88页 教学目标: 1.巩固复习商不变的规律。 2.运用商不变规律灵活的进行口算、笔算,提高正确率3.培......

    商不变规律反思

    《商不变规律》教学设计及反思 设计意图:本节课是在学习了比算乘法和笔算除法的基础上进行教学的,研究了商不变的规律引导学生探讨被除数不变上随除数的变化而变化的规律和除......