第一篇:直线的方程一复习课的说课稿
作为一名教学工作者,就难以避免地要准备说课稿,说课稿有助于顺利而有效地开展教学活动。那要怎么写好说课稿呢?下面是小编帮大家整理的直线的方程一复习课的说课稿,欢迎大家分享。
1、教学目标:
(1)知识目标:通过师生互动教学,培养学生自编自练自查能力,提高学生应用数学的意识,使学生掌握求直线方程的方法,进行综合能力训练;使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
(2)能力目标:培养学生在分析问题和解决问题中运用数形结思想的能力;培学生在分析问题和解决问题中运用转化思想的能力;
(3)德育目标:引导、激发学生积极参与教学,使学生在获得成功的同时,培养学生爱学、乐学情感。通过对数学客观规律的揭示,培养学生透过现象看本质的能力;培养学生辩证唯物主义世界观和方法论。
2、重点:
求直线方程的基本方法。
3、难点:
使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
4、教具:
多媒体辅助教学设备。
5、教学方法:
问题情境教学法;启发式教学法;反思式教学法。
6、教学步骤:
(一)课前展示课题与相关知识
(二)由三点坐标联想、发散自编习题并解答。
已知:点a、b、c的坐标分别为(3,4)、(6,0)、(-5,-2)。可联想到:
(1)三角形三边所在直线的方程、三个内角
(2)三角形三边中线、高所在直线的方程
(3)三角形三个内角的角平分线所在方程。
(4)变题1:已知三角形的两个顶点坐标、一条角平分线的方程,求:第三个顶点的坐标与相关直线方程
(5)变题2:已知三角形一个顶点及两条角平分线所在直线方程,求相关量
(6)变题3:已知三角形一个顶点及两条中线所在直线方程,求相关量
(7)变题4:已知三角形两个顶点及一条中线方程,求相关量
(8)变题5:已知三角形一个顶点及两条高所在直线方程
(9)变题6:已知三角形两个顶点及一条高所在直线方程,(10)变题7:已知三角形两个顶点坐标及垂心坐标,(11)变题8:已知三角形两个顶点坐标及重心坐标,(12)变题9:已知三角形两个顶点坐标及内心坐标
························
课堂小结、作业布置
7、直线方程教法设计的几点说明:
本节是“直线综合复习”第一节课,重点是与学生共同研究求解直线方程的一般方法,在师生的双向交流中,让学生自己考查自己,从而了解学生对知识的理解与掌握程度,灵活调整教学进度,以期达到最佳教学效果。旧知的回顾通过“屏保”让学生提前预览,这样节约了课堂教学时间,从而提高课堂教学效益。
“以学生主体性发展作为教学改革的起点和依据,对原有传统教育中不合理的行为和思维方式进行改革,真正实现教育观念上的转变,实现人的发展的社会化和个性化”是当代教学论的研究主题。本节课,学生在执教者的指导下积极主动的参与学习,从兴趣与学习的内在需求上下工夫,克服学生原有的知识经验、认知结构、情感、意志、性格等制约,发挥学生的自主性与创造性,在已知三点坐标的前提下,通过执教者的启发与引导,让学生采用猜想、类比、联想等思维方法,运用数形结合、参数、化归等数学思想,适时使用发散思维、逆向思维,通过自编自练自查,力争培养学生的应用数学的意识、提高学生的综合能力。这样,以知识为媒介,以人为中心、以学生素质获得充分、自由、全面地发展原则组织教学。
从发展的'角度来看,让学生经历数学知识的发现过程,体验学习过程中的各种感受,比获得知识本身更重要。学生在由三点坐标联系所学知识考查自己时通常会遇到一定的困难,只有让学生处于“愤悱”状态中,通过引导、讨论,获得所需知识或解决了问题时,然后进行必要的发散、逆向思维训练,才能对学生的思维、能力的发展起推进作用。因此,要让学生在游泳中学会游泳,在创造中学会创造。
“教育要面向现代化”已基本形成共识,现代教育技术应用于数学教学正逐渐变成现实。而在数学教学中,使用媒体有效的标志是:“有利于学生的主动参与,有利于揭示教学内容的实质,有利于课堂交流的高效实现,有利于学生思维和技能的训练”。本节课在媒体的选择上,主要运用“几何画板”通过图形对称、旋转变化进行直观教学,联系点线、线线关系解决问题;将“旧知复习”制成“屏幕保护”,在课前、课中展示,既能起温故知新作用,又为课堂教学的深入提供必要的理论保证。本节课多媒体的使用努力以朴素、使用高效为原则,仍以思维训练、能力培养为教学重点。
【直线的方程一复习课的说课稿】相关文章:
1.《直线的点斜式方程》说课稿
2.直线的方程的教学反思
3.《马说》复习课的说课稿
4.直线的点斜式和斜截式方程说课稿范文
5.《方程》第一课时说课稿
6.方程第一课时数学说课稿
7.小学数学《方程》苏教版第一课说课稿
8.方程复习教学反思
9.《一元二次方程复习课》教学反思
第二篇:高二直线方程数学说课稿
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.
教学设计示例
直线方程的一般形式教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.
高二直线方程数学说课稿教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.
学生或独立研究,或合作研究,教师巡视指导.
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.
当存在时,直线
的截距也一定存在,直线的方程可表示为,它是二元一次方程.
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要
么形如这样的方程”.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即
(1)当时,方程可化为这是表示斜率为、在轴上的截距为的直线.
(2)当时,由于、不同时为0,必有,方程可化为
这表示一条与轴垂直的直线.因此,得到结论:在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的【动画演示】
演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.
(三)练习巩固、总结提高、板书和作业等环节的设计在此从略
第三篇:直线方程教案
Ⅰ.课题导入
[师]同学们,我们前面几节课,我们学习了直线方程的各种形式,以一个方程的解为坐标的点都是某条直线上的点;反之这条直线上的点的坐标都是这个方程的解。这是这个方程叫做这条直线的方程;这条直线叫做这个方程的直线。现在大家回忆一下,我们都学习了直线方程的哪些特殊的形式。我们学习了直线方程的点斜式、斜截式、两点式、截距式等形式,对直线方程的表示形式有了一定的认识.现在,我们来回顾一下它们的基本形式.点斜式的基本形式:y-y1=k(x-x1)适用于斜率存在的直线.斜截式的基本形式:y=kx+b适用于斜率存在的直线;
两点式的基本形式:直线;
截距式的基本形式:
yy1xx1(x1≠x2,y1≠y2)适用于斜率存在且不为0的y2y1x2x1xy=1(a,b≠0)适用于横纵截距都存在且不为0的直线.ab在使用这些方程时要注意它们时要注意它们的限制条件。
那么大家观察一下这些方程,都是x,y的几次方程啊?[生]都是关于x,y的二元一次方程.那么我们原来在代数中学过二元一次方程它的一般形式是什么呀?(板书)Ax+By+C=0 我们现在来看一次这几种学过的特殊形式,它们经过一些变形,比如说去分母、移项、合并,这样一些变形步骤。能不能最后都化成这个统一的形式呢?比如说y=kx+b,xayb=1,这些我们最终都可以吧它们变成这种形式。剩下的两种形式的变形留给同学们课下自己去完成。那么在学习这些直线的特殊形式的时候,应该说各有其特点,但是也有些不足。在使用的过程中有些局限性。比如说点斜式和斜截式它们的斜率都必须存在,两点式适用于适用于斜率存在且不为0的直线,截距式适用于横纵截距都存在且不为0的直线.那么我们现在想一想有没有另外一种形式,可以综合他们各自的一些特点,也就是这些方程最后化成一个统一的形式。能不能代表平面直角坐标系中的直线。要解决这些问题呢,要分两个方面进行讨论。
1.直线和二元一次方程的关系
(1)在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程.一个方面:是不是平面上的任意直线,表示它的方程都可以写成Ax+By+C=0的形式,刚才大家做了一些练习,当然这只是特殊形式,是不是所有的直线都可以写成这种形式呢?直线按斜率来分类可以分几类?斜率存在和斜率不存在。这两类是不是都可以转化成一元二次方程的形式。当倾斜角不等于90°是斜率存在,直线方程可以写成y=kx+b的形式。可以转化成kx-y+b=0和Ax+By+C=0比较发现什么?A=k B=-1 C=b。当倾斜角等于90°斜率不存在,直线方程可以写成x=x0的形式。可以转化成x-x0=0和Ax+By+C=0比较发现什么?A=1 B=0 C=-x0 好,我们就把它分为这两种情况,当斜率存在的时候我们一般把它设成一个简单的斜截式,斜截式经过变形就可以化成一般的形式。而对于斜率不存在的时候,它的方程形式就是x=x0直线方程也可以转化成这样的一个形式。那么由此可以下这样一个结论:平面上的任意的一条直线,表示它的方程最后都可以转化成二元一次方程的形式。刚才我们从这个角度考虑,就是直线都可以转化成二元一次方程,现在我们反过来看,是不是任意的一个二元一次方程最终在直角坐标系下都能够表示直线。
(2)在平面直角坐标系中,任何关于x,y的二元一次方程都表示一条直线.因为x,y的二元一次方程的一般形式是Ax+By+C=0,其中A、B不同时为0,在B≠0和B=0的两种情况下,二元一次方程可分别化成直线的斜截式方程y=-示与y轴平行或重合的直线方程x=-
ACx和表BBC.A也就是说Ax+By+C=0(A,B不同时为零)大家想想如果AB都等于零这个直线方程就没了。现在我们考虑一下,这个方程能不能经过一些适当的变形,变成我们熟悉的形式,而确定它就是一个在平面直角坐标系中就是一条直线呢?By=-Ax-C 斜截式方程,斜率是 是y轴上的截距。二元一次方程通过变形在直角坐标系下都表示一条直线。那么我们从两个方面在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程.在平面直角坐标系中,二元一次方程都表示一条直线.根据上述结论,我们可以得到直线方程的一般式.我们就把代数中的二元一次方程定义为直线的一般式方程。
定义:我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫做直线的一般式方程。我们在学习前面直线的几种特殊形式的方程,一眼就可以看出这条直线的某些特点,比如说点斜式就可以看出它的斜率还有过一个定点,还有两点式可以看出它过两个定点。那么我们怎么通过直线的一般式方程观察直线的一些特点呢?比如说A=0表示什么样一条直线?y=-平行于x轴的直线,也有可能与x轴重合。如果要平行于y轴这个系数要满足什么样的条件?如果旦旦是c等于零,通过原点的直线。假如AB都不等于零它的斜率我们怎么看出来?这些直线的特点我们要能掌握住。我们对直线的一般式方程有了一定的了解。直线的一般式方程和和那几种特殊的形式之间有一个互相的转化,那么我们来看一个例子,通过一些转化来解决实际问题。
[例1]已知直线经过点A(6,-4),斜率为-
4,求直线的点斜式和一般式方程.3分析:本题中的直线方程的点斜式可直接代入点斜式得到,主要让学生体会由点斜式向一般式的转化,把握直线方程一般式的特点.解:经过点A(6,-4),并且斜率等于-
4的直线方程的点斜式是: 3y+4=-4(x-6)3化成一般式得:4x+3y-12=0 同学们在以后解题时,可能求直线方程的时候,求出不一定是一般式,可能是点斜式、两点式等等,如题目没有特殊要求我们都要把各种形式化成一般式。对于直线方程的一般式,一般作如下约定:x的系数为正,x,y的系数及常数项一般不出现分数,一般按含x项,含y项、常数项顺序排列.
第四篇:直线与方程教案
平面解析几何 第一讲 直线方程 知识归纳:
一、直线的倾斜角与斜率
1、确定直线的几何要素是:直线上两不同的点或直线上一点和直线的方向两个相对独立的条件
注意:表示直线方向的有:直线的倾斜角(斜率)、直线的方向向量、直线的法向量
2、直线的倾斜角:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角。
注意:①从用运动变化的观点来看,直线的倾斜角是由x 轴绕交点按逆时针方向转到与直线重合时所成的角;
②规定:直线与x 轴平行或重合时,直线的倾斜角为00 ③直线倾斜角α的取值范围是:00≤α<1800
④在同一直角坐标系下,任何一条直线都有倾斜角且唯一,倾斜程度相同的直线,其倾斜角相等,倾斜程度不同的直线,其倾斜角不相等。
3、直线的斜率:倾斜角不是900的直线,它的倾斜角α的正切值叫做这条直线的斜率,即k =tan α(α≠900)。它从另一个方面反映了直线的倾斜程度。注意:一条直线必有一个确定的倾斜角,但不一定有斜率,当α=00时,k =0;当00<α<1800时,k >0;当α=900时,k 不存在,当900<α<1800时,k <0。即:斜率的取值范围为k ∈R 例
1、给出下列命题:①若直线倾斜角为α,则直线斜率为tan α;②若直线倾斜角为tan α,则直线的倾斜角为α; ③直线的倾斜角越大,它的斜率越大;④直线的斜率越大,其倾斜角越大;⑤直线的倾斜角的正切值叫做直线的斜率。其中正确命题的序号为 例
2、已知直线的倾斜角为α,且sin α=4,求直线的斜率k 5
4、直线斜率的坐标公式
经过两点P 的直线的斜率公式:k =y 1-y 2 1(x 1, y 1), P 2(x 2, y 2)(x 1≠x 2)x 1-x 2 注意:①斜率公式与两点的顺序无关,即k =y 1-y 2=y 2-y 1(x ≠x)12 x 1-x 2 x 2-x 1 ②特别地:当y 1=y 2, x 1≠x 2时,k =0;此时直线平行于x 轴或与x 轴重合;当y 1≠y 2, x 1=x 2时,k 不存在,此时
直线的倾斜角为900,直线与y 轴平行或重合。
例
3、已知点P(2,1),Q(m ,-3),求直线P , Q 的斜率并判断倾斜角的范围。
例
4、(三点共线问题)已知A(-3,-5), B(1,3), C(5,11)三点,证明这三点在同一条直线上 例
5、(最值问题)已知实数x , y,满足2x +y =8,当2≤x ≤8时,求y 的最大值和最小值 x
5、直线的方向向量:已知P 是直线l 上的两点,直线上的向量PP 及与它平行的向量都1(x 1, y 1), P 2(x 2, y 2)(x 1≠x 2)12称为直线的方向向量。直线PP 与x 轴不垂直时,x 1≠x 2,此时,向量12的坐标是
1也是直线PP 的方向向量,且它PP 1212 x 2-x 1 1,其中k 为直线PP 的斜率(x 2-x 1, y 2-y 1),即(1,k)12x 2-x 1
6、直线的法向量:如果向量n 与直线l 垂直,则称向量n 为直线l 的法向量。
二、直线的方程
1、定义:一般地,以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上点的坐标都是这个方程的解,这是,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
2、直线方程的几种形式(1)点斜式:
问题:若直线l 经过点P,且斜率为k,求直线l 的方程。0(x 0, y 0)解析:设点P(x , y)是直线l 上不同于点P 的任意一点,根据经过两点的直线的斜率公式,得k =y-y 0,可化为0 x-x 0、斜率为k 的直线l 的方程。y-y 0=k(x-x 0),即为过点P 0 方程y-y 0=k(x-x 0)是由直线上一点及其斜率确定的,把这个方程叫做直线的点斜式的方程,简称点斜式。注意:①k =y-y 0与y-y 0=k(x-x 0)是不同的,前者表示直线上缺少一个点x ≠x 0,后者才是整条直线; x-x 0 ②当直线l 的倾斜角为00时,tan 00=0,即k =0,这时直线l 的方程为y =y 0 ③当直线的倾斜角为900时,直线l 斜率不存在,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示,它的方程是x =x 0。即:局限性是不能表示垂直于x 轴的直线。④经过点P 的直线有无数条,可分为两类情况: 0(x 0, y 0)ⅰ、斜率为k 的直线,方程为y-y 0=k(x-x 0)ⅱ、斜率不存在的直线,方程为x-x 0=0或写为x =x 0 例
6、根据条件写出下列各题中的直线的方程
①经过点P,倾斜角α=450,②经过点P , 2),斜率为2 ③经过点(4,2),且与x 轴平行 1(-2,3)1(1④经过点(-2,-3),且与x 轴垂直(2)斜截式:
问题:已知直线l 的斜率是k,与y 轴的交点是P(0,b),代入直线方程的点斜式,得直线l 的方程y-b =k(x-0),也就是y =kx +b,我们称b 是直线l 在y 轴上的截距。
这个方程是由直线l 的斜率k 和它在y 轴上的截距确定的,所以叫做直线的斜截式方程,简称斜截式。注意:①b ∈R ②局限性:不表示垂直于x 轴的直线
③斜截式方程和一次函数的解析式相同,都是y =kx +b,但有区别:当斜率不为0时,y =kx +b 是一次函数,当k =0时,y =b 不是一次函数;一次函数y =kx +b(k =0)必是一条直线的斜截式方程。例7、求倾斜角是直线y =+1的倾斜角的1,且在y 轴上的截距为-5的直线的方程。4(3)两点式:
问题:已知直线l 经过两点P 1(x 1, y 1), P 2(x 2, y 2)(x 1≠x 2),求直线l 的方程 解析:因为直线l 经过两点P ≠1(x 1, y 1), P 2(x 2, y 2)(x 1
x 2,)所以它的斜率k =y 2-y 1,代入点斜式,得 x 2-x 1 y-y 1= y 2-y 1(x-x 1),当y 2≠y 1时,方程可以写成y-y 1=x-x 1 x 2-x 1y 2-y 1x 2-x 1 这个方程是由直线上两点确定的,所以叫做直线的两点式方程,简称两点式。注意:①方程y-y =y 2-y 1(x-x)与方程y-y 1=x-x 1比较,后者比前者表示直线的范围更小了,前者不能 11 x 2-x 1 y 2-y 1 x 2-x 1 表示斜率不存在的直线,后者除此外,还不能表示斜率为0的直线;局限性:不能表示垂直于坐标轴的直线。②两点式方程与这两个点的顺序无关。例
8、已知点A(-5, 0),B(3,-3),求直线AB 的方程
例
9、一条光线从点A(3,2)出发,经x 轴反射,通过点B(-1, 6),求入射光线和反射光线所在直线的方程(4)截距式:
问题:已知直线l 与x 轴的交点为(a , 0),与y 轴的交点为(0,b),其中a ≠0, b ≠0,求直线l 的方程。解析:因为直线l 经过A(a , 0)和B(0,b)两点,将这两点的坐标代入两点式,得如果直线与x 轴的交点为(a , 0),则称a 为直线在x 轴上的截距。
以上直线方程是由直线在x 轴和y 轴上的截距确定的,所以叫做直线的截距式方程,简称截距式
注意:方程x +y =1中a ≠0, b ≠0,所以它不能表示与坐标轴平行(重合)的直线,还不能表示过原点的直 a b y-0x-a,即为x +y =1 = b-00-a a b 线。
例
10、过两点A(-1,1),B(3,9)的直线在x 轴上的截距为(5)一般式方程:
以上几种形式的直线方程都是二元一次方程,即平面上任何一条直线都可以用一个关于x y 的二元一次方程表示; 而关于x y 的二元一次方程,它都表示一条直线。因此我们把x y 的二元一次方程 Ax +By +C =0(其中 A,B 不同时为0)叫做直线的一般式方程,简称一般式。
注意:①直线的一般式方程能表示所有直线的方程,这是其他形式的方程所不具备的。②直线的一般式方程成立的条件是A,B 不同时为0。
③虽然直线的一般式有三个系数,但是只需两个独立的条件即可求直线的方程,若A ≠0, 则方程可化为x +B y +C =0;若B ≠0,则方程可化为A x +y +C =0,即y =-A x-C;A A B B B B 若A =0,B ≠0时,方程化为y =-C , 它表示与x 轴平行或重合的直线; B 若A ≠0,B =0时,方程化为x =-C,它表示一条与y 轴平行或重合的直线; A 若ABC ≠0时,则方程可化为 x-A + 因此只需要两个条件即可。y =1-B ④直线方程的其他形式都可以转化为一般式,因此在解题时若没有特殊说明,应把最后结果互为直线的一般式 例
11、设直线l 的方程为(m-2m-3)x +(2m +m-1)y =2m-6,根据下列条件分别确定m 的值(1)l 在x 轴上的截距为-3(2)l 的斜率是-1(6)点向式:
问题:设直线l 经过点P,v =(a , b)是它的一个方向向量,求直线l 的方程 0(x 0, y 0)解析:设P(x , y)是直线l 上的任意一点,则向量P 与v 共线,根据向量共线的充要条件,存在唯一实数t,0P x =x 0+at ①,使P,即(x-x 0, y-y 0)=t(a , b),所以⎧方程组①称为直线的参数式方程。0P =tv ⎨ ⎩y =y 0+bt 2 2 如果直线l 与坐标轴不平行,则ab ≠0,于是可得 x-x 0y-y 0 =t , =t,消去参数t,得到直线l 的普通方程 a b x-x 0y-y 0 这个方程称为直线l 的点向式方程,a , b 叫做直线l 的方向数。= a b 思考:若给出直线的一般式方程Ax +By +C =0,如何确定直线的方向向量?(7)点法式:
问题:设直线l 有法向量n =(A , B),且经过点P,求直线l 的方程 0(x 0, y 0)解析:设P(x , y)是直线l 上的任意一点,则有P,即P 0P ⊥n 0P ⋅n =0 因为PP 0=(x-x 0, y-y 0),n =(A , B),所以有A(x-x 0)+B(y-y 0)=0 这个方向是由直线l 上一点P 及直线l 的法向量n 确定的,称为直线l 的点法式。0(x 0, y 0)思考:若给出直线的一般式方程Ax +By +C =0,如何确定直线的法向量?
三、直线的位置关系(同一平面上的直线)
1、平行与垂直(1)两条直线平行的判定
①当两条直线的斜率存在时,均可化成它的斜截式方程,所以以斜截式为例来研究直线平行的判定
设两条直线分别为,则l 1, l 2的倾斜角相等,即由α1=α2,l 1:y =k 1x +b 1 l 2:y =k 2x +b 2 若l 1//l 2,可得tan α1=tan α2,也即k 1=k 2,此时b 1≠b 2;反之也成立。所以有l 1//l 2⇔k 1=k 2且b 1≠b 2 ②当两条直线的斜率都不存在时,二者的倾斜角均为900,若不重合,则它们也是平行直线 注意:当不考虑斜率,即给出直线的一般式时,有如下结论: 设两条直线分别为l 1:A 1x +B 1y +C 1不为0)或l 1//l 2⇔A(可用直线的方向向量或法向量解释)1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0或AC 12-A 2C 1≠0例
12、已知点A(2,2)和直线l :3x +4y-20=0,求过点A 和直线l平行的直线。(引出平行直线系方程)(2)两条直线垂直的判定
①当两条直线的斜率存在且不为0时,均可化成它的斜截式方程,所以以斜截式为例来研究直线平行的判定 设两条直线分别为,l 1:y =k 1x +b 1 l 2:y =k 2x +b 2 则得直线l 1的方向向量为:a =(1, k 1)l 2的方向向量为:b =(1, k 2),所以有l 1⊥l 2⇔a ⊥b ⇔a ⋅b =0⇔1⨯1+k 1⋅k 2=0 即l 1⊥l 2⇔k 1⋅k 2=-1 注意: 或用两条直线的倾斜角推倒:即tan α2=tan(900+α1)=-=0,l 2:A 2x +B 2y +C 2=0 可得l 1//l 2⇔A 1=B 1≠C 1(其中分母 A 2 B 2 C 2 1,得到k 1⋅k 2=-1 tan α1
②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直。由①②得,两条直线垂直的判定就可叙述为:一般地,l 1⊥l 2⇔k 1⋅k 2=-1或一条斜率不存在,同时另一条斜率等于零。
注意:当不考虑斜率,即给出直线的一般式时,有如下结论: 设两条直线分别为l 1:A 1x +B 1y +C 1 例
14、已知两直线l 1:x +my +6=0,l 2:(m-2)x +3y +2m =0,当m 为何值时,直线l 1与l 2:①平行 ②重合 ③垂直
例
15、已知长方形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D 的坐标
例
16、求证:不论m 为取什么实数,直线(2m 2-1)x +(m 2-1)y =m 2-5总通过某一定点 =0,l 2:A 2x +B 2y +C 2=0 可得l 1⊥l 2⇔A 1A 2+B 2B 1=0 例
13、求与直线3x +4y +1=0垂直且过点(1,2)的直线方程(引出垂直直线系方程))例
17、已知直线ax-y +2a +1=0,(1)若x ∈(-1(2)若a ∈(-, 1, 1)时,y >0恒成立,求a 的取值范围; 16 时,恒有y >0,求x 的取值范围
四、到角、夹角(1)到角公式
定义:两条直线l 1和l 2相交构成四个角,他们是两对对顶角,为了区别这些角,我们把直线l 1绕交点按逆时针方向旋转到与l 2重合时所转的角,叫做l 1到l 2的角,如图,直线l 1到l 2的角是θ1,l 2到l 1的角是θ2(θ1>0, θ2>0, θ1+θ2=π)
推倒:设已知直线方程分别是l 1:y =k 1x +b 1 l 2:y =k 2x +b 2.l 1到l 2的角是θ ① 若1+k 1⋅k 2=0,即k 1⋅k 2=-1,那么θ= π 2 ② 若1+k 1⋅k 2≠0,设l
1、l 2的倾斜角分别为α1, α2,则tan α1=k 1, tan α2=k 2 由图1)的θ=α2-α1,所以tan θ=tan(α2-α1)由图2)的θ=π-(α1-α2)=π+(α2-α1),所以tan θ=tan*π+(α2-α1)+=
tan π+tan(α2-α1)0+tan(α2-α1)==tan(α2-α1)
1-tan πtan(α2-α1)1-0 于是tan θ=tan(α2-α1)= tan α2-tan α1k-k =21 1+tan α2tan α11+k 1k 2
即tan θ= k 2-k 1 就是l 1到l 2的角θ1+k 1k 2(2)夹角公式
定义:由(1)得,l 2到l 1的角是π-θ,所以当l 1与l 2相交但不垂直时,在θ和π-θ中有且只有一个角是锐角,我们把其中的锐角叫做两条直线的夹角,记夹角为α,则tan α=当直线l 1⊥l 2时,直线l 1与l 2的夹角为 k 2-k 1,即为夹角公式 1+k 1k 2 π 2 例
18、等腰三角形一腰所在直线l 1的方程是x-2y-2=0,底边所在直线l 2的方程是x +y-1=0,点(-2,0)在另一腰上,求这条腰所在直线l 3的方程
五、两条直线的交点坐标:
1、设两条直线分别为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0 则l 1与l 2是否有交点,只需看方程组
⎧A 1x +B 1y +C 1=0是否有唯一解 ⎨ ⎩A 2x +B 2y +C 2=0 若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行; 若方程组有无穷多解,则两直线重合
例
19、求经过两直线2x-3y-3=0和x +y +2=0的交点且与直线3x +y-1=0平行的直线方程。经过两直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0交点的直线系方程为其中λ是待定系数,在这个方程中,无论λ取什么实数,A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,都得到A 2x +B 2y +C 2=0,因此,它不能表示直线l 2。
2、对称问题
(1)点关于点的对称,点A(a,b)关于P , y 0)的对称点B(m,n),则由中点坐标公式0(x 0 m =2x 0-a , n =2y 0-b,即B(2x 0-a , 2y 0-b)。
(2)点关于直线的对称,点A(x 0, y 0)关于直线l :Ax +By +C =0(A、B 不同时为0)的对称点
A '(x 1, y 1),则有AA ’的中点在l 上且直线AA ’与已知直线l 垂直。
(3)直线关于直线的对称,一般转化为点关于直线的对称解决,若已知直线l 1与对称轴l 相交,则交点必在与l 1对称的直线l 2上,然后再求出l 1上任意不同于交点的已知点P 1关于对称轴对称的点P 2,那么经过交点及点
P 2的直线就是l 2;若直线l 1与对称轴l平行,则在l 1上任取两不同点P
1、P 2,求其关于对称轴l 的对称
点P
1、P 2,过P
1、P 2的直线就是l 2。
例题20、已知直线l :x +y-1=0,试求①点P(4,5)关于l 的对称坐标;②直线l 1:y =2x +3关于直线 ' ' ' ' l 的对称的直线方程。例题21、求函数y =
六、两点间的距离,点到直线间的距离 +的最小值。
P(1)两点间的距离:已知P 1P 2=1(x 1, y 1), P 2(x 2, y 2)则
(2)点到直线的距离: l 已知点P,求点P 0(x 0, y 0),直线l :Ax +By +C =0(A、B 不同时为0)0到直线的距离。解法一:如图,作P 0Q ⊥l 于点Q,设Q(x 1, y 1),若A,B ≠O, 则由k 1=-A B(, 得k P 0Q = B A k 1k P 0Q =-1),⎧Ax +By +C =0 ⎪
B ⎨B y-y =(x-x)从而直线P 的方程为,解方程组Q y-y =(x-x 0)得0000⎪A ⎩A ⎧B 2x 0-ABy 0-AC x =⎪⎪1A 2+B 2 ⎨2 ⎪y =A y 0-ABx 0-BC 1⎪⎩A 2+B 2 ∴d =PQ ==0 Ax 0+By 0+C ==A 2+B 2 容易验证当A=0或B=0时,上式仍然成立。
l 解法二:如图,设A ≠0,B ≠0,则直线l 与x 轴和y 轴都相交,过点P 0分别作x 轴和y 轴的平行线,交直线
于R 和S,则直线P 0R 的方程为y =y 0,R 的坐标为(-By 0+C , y 0); A x ,-直线P 0S 的方程为x =x 0,S 的坐标为(-0 Ax 0+C),B 于是有P 0R =-Ax 0+By 0+C By 0+C-x 0=, A A = Ax 0+By 0+C Ax 0+C P-y 0= , RS =0S =-B B 0+By 0+C。
=d,由三角形面积公式可得d ⋅RS =P 设PQ 00R ⋅P 0S.于是得d = 因此,点P 0(x 0, y 0)到直线l :Ax +By +C = 0的距离d =上式仍成立。注意: P 0R ⋅P 0S RS = 容易验证,当A=0或B=0时,①若给出的方程不是一般式,则应先把方程化为一般式,再利用公式求距离; ②点到直线的距离是点到直线上的点的最短距离;
③若点在直线上,则点到直线的距离为0,但距离公式仍然成立,因为此时Ax 0+By 0+C =0。(3)两平行线间的距离。
定义;两条平行直线间的距离是指夹在两条平行直线间公垂线段的长,即一条直线上的点到另一条直线的距离。
两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2= 0的距离公式d = 推导过程:设P 则P 到l 2:Ax +By +C 2=0的距离
0(x 0, y 0)为直线l 1:Ax +By +C 1=0上任意一点,0为d =,又因为P 0在l 1:Ax +By +C 1=0上,所以Ax 0+By 0+C 1=0,即Ax 0+By 0=-C 1, 所以d = 注意:应用此公式时,要把两直线化为一般式,且x、y 的系数分别相等。
例题
22、求经过点A(-1,2)与B(-,0)的直线上一点C(5,n)到直线x +y =1的距离。例题
23、求经过点A(1,2)且到原点的距离等于1 的直线方程。例题
24、已知三角形ABC 中,点A(1,1),B(m)(1 例题 25、求过点P(1,2)且与A(2,3),B(4,-5)两点距离相等的直线方程。作业: 1、设θ∈(52 π 2 , π),则直线x cos θ+y sin θ+1=0的倾斜角α为()(B)θ(C)θ+(A)θ-π 2 π 2(D)π-θ 2、设P(x,y)是曲线C :x 2+y 2+4x +3=0上任意一点,则 y 的取值范围是()x A .[-3, 3] B .(-∞,-3]⋃*, +∞)C .[-3, ] D .(-∞,-]⋃*, +∞)3333 3、已知M(2,-3),N(-3,-2),直线l 过点A(1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是 3 或k ≤-4 4 3 B.-4≤k ≤ 4 33 C.≤k ≤4D.-≤k ≤4 44 4.过点P(6,-2)且在x 轴上的截距比在y 轴上的截距大1的直线的方程是 A .2x +3y-6=0 C .x-y +3=0 B .2x +3y-6=0或3x +4y-12=0 D .x +2y-2=0或2x +3y-6=0 5、若直线l 经过点(1,1),且与两坐标轴所围成的三角形的面积为2, 则直线l 的条数为(A)1(B)2(C)3(D)4 6、如图所示,直线l 1:ax -y +b=0与l 2:bx -y +a=0(ab≠0,a ≠b)的图象只可能是() 7、若三点A(3,a)、B(2,3)、C(4,b)在一条直线上, 则有()(A)a=3,b=5(B)b=a+1(C)2a-b=3(D)a-2b=3 8、直线l 经过原点和点(-1, -1), 则它的倾斜角是 a A.π5ππ5ππ B.C.或 D.- 44444 9.已知直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0相交,则方程λ1(A 1x +B 1y +C 1)+λ2(A 2x +B 2y +C 2)2 =0,(λ1≠0)表示()+λ22 A.过l 1与l 2交点的一切直线 B.过l 1与l 2的交点,但不包括l 1可包括l 2的一切直线 C.过l 1与l 2的交点,但包括l 1不包括l 2的一切直线 D.过l 1与l 2的交点,但既不包括l 1又不包括l 2的一切直线 10.方程(a -1)x -y +2a +1=0(a ∈R)所表示的直线()A.恒过定点(-2,3)B.恒过定点(2,3)C.恒过点(-2,3)和点(2,3)D.都是平行 11、过点(-1,)且与直线3x-y +1=0的夹角为 π 的直线方程是()6 A、x-3y +4=0 B、x +1=0或x +3y-2=0 C、x+1=0或x-y +4=0 D、y =或x +3y-2=0 12、直线x cos α+3y +2=0的倾斜角的取值范围是_________。 13、直线l 的方向向量为(-1,2),直线l 的倾斜角为 14、已知直线L 过P(-2,3)且平行于向量d=(4,5),则直线L 的方程为。 15、已知点M(a , b)在直线3x +4y = 15上,则 16、△ABC 的三个顶点A(-3,0),B(2,1),C(-2,3).求: (1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 的方程.17、求到两直线l 1: 3x +4y-5=0和 l 2:6x +8y-9=0距离相等的点P(x , y)满足的方程 《直线的方程》教案 一、教学目标 知识与技能:理解直线方程的点斜式的特点和使用范围 过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程 情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。 二、教学重难点 教学重点:点斜式方程 教学难点:会使用点斜式方程 三、教学用具:直尺,多媒体 四、教学过程 1、复习导入,引入新知 我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率) 那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。 2、师生互动,探索新知 探究一:在平面直角坐标系中,直线L过点P(0,3),斜率K=2,Q(X,Y)是直线L上不同于点P的任意一点,如ppt上图例所示。通过上节课所学,我们可以得出什么? 由于P,Q都在这条直线上,我们就可以用这两点的坐标来表示直线L的斜率,可以得出公式:Y-3X-0=2 那我们就可以的出方程Y=2X+3 所以就有L上的任意一点坐标(X,Y)都满足方程Y=2X=3,满足方程Y=2X+3的每一个(X,Y)所对应的点都在直线L上。 因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。 3、知识剖析,深化理解 我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。设 Q(X,Y)是直线L上不同于点P的任意一点,由于点P,Q都在L,求直线的方程。设点P(X0,,Y0),先表示出这个直线的额斜率是Y-Y0X-X0=K,然后可以推得公式Y-Y0=K(X-X0)那如果当X=X0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(X不能等于X0) 1)过点,斜率是K的直线L上的点,其坐标都满足方程(1)吗? P(X0,Y0) (X0,Y0),斜率为K的直线L上吗? 2)坐标满足方程(1)的点都在经过P那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。直线的点斜式是不是满足坐标平面上所有的直线呢? 小组讨论:当直线与X轴垂直时,倾斜角为直角时,直线方程怎么写?(Y-Y0=KX)当直线与Y轴垂直时,倾斜角为零时,直线方程怎么写?(Y=K(X-X0)那我们带入与X垂直的一条线上的坐标(3,0)(3,1),斜率为K,算出(Y=3K,Y=3K+1) 点斜式就不满足这个条件的直线,大家子啊照例做做下一个,还是不一样是吧,这个点斜式不能满足。(它只能满足斜率存在的直线。) 4、巩固提高:做一做习题1的第一小题:经过点p(1,3)斜率为1,求出方程,并且画图。(Y=X+2) 5、课堂小结:这节课我们学习了直线方程的点斜式方程,知道了这种方程也有他的局限性,就是不使用斜率不存在的直线,那怎么办呢?我们下节课继续学习。课后大家预习后边的内容,巩固今天所学习的知识。 6、板书:点斜式的概念及图形。第五篇:直线的方程教案