方程教案

时间:2019-05-11 20:36:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《方程教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《方程教案》。

第一篇:方程教案

方程教案

1、关于式子、等式、方程。

教学教材1到2页时,我发现:学生对于列方程问题不大(只是少数学生在列方程时写单位),问题出在学生对“等式”与“方程”概念的理解和区分上。用等式和方程的集合图来表示他们的关系。结果我发现少数学生对集合图仍然不理解。在实际作业中,还有学生列出类似于6+4.6=x这样的方程。我只好不断地向学生强调:尽量避免单独把x写在方程的左边或右边。

2、关于等式性质

教学这部分内容时,感觉学生对于等式的性质(1)掌握还比较好,但学生学习的等式的性质(2)的时候,没有学生能想到同时除以0,结果是怎样的。只能由自己向学生提出问题,得出同时除以一个不为0的数的范围。等式的两边同时乘或除以一个不等于0的数,所得结果仍然是等式。这也是等式的性质。根据这段话,下面的判断是否正确“等式的两边同时乘一个数,所得结果仍然是等式”。这里我们需要思考的是:是否要强调“0除外”?我的理解是同时乘或除以的数都是不等于0的数.等式两边同时乘0,结果仍然是等式从字面上说这句话有两个意思:1、两边不可以同时乘0,更不可以同时除以0。2、两边可以同时乘0,但不可以同时除以0。但就等式的性质来说,两边可以同时乘0。所以教学时重点强调两边不能同时除以0。

3、关于解方程 新教材用等式的性质解方程,学生容易理解,和以后学习比较复杂的方程统一起来,对学生以后的发展是有利的。但是教材中故意不安排减数和除数为未知数的方程,所以在现在学习的方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,他以为运用了等式性质后自己找到了巧妙方法,如何处理减数和除数为未知数的方程,他根本不会,毕竟每次在解方程时学生善于运用小窍门,而不是每题仔仔细细的分析。不知道将来六年级是否会安排减数和除数是未知数的方程,如果安排,不知道编者会用什么方法。如果不安排,那么是否编者每次在有疑难问题出现的时故意回避,让教师自己摸索呢?例如练一练第1小题,学生中很多人列出了这样的方程:36-x=2.5,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维那不就和现在冲突了吗?希望有人能解释!如果需要向学生讲解,那该怎么讲解?讲解到什么程度?而且类似的问题在其后的练习中不断的出现,困惑中!

方程的检验,以前检验方法是很明确的的,现在教材似乎简化了检验的书写要求,便是配套光盘中还是和以前的一样,尤其是最后一句“所以X=40是原方程的解。”现在教材中已经删去了“方程的解”的概念,再这样写显然不好。检验的过程到底怎么进行?我是按照书上的简单形式书写的,只是强调40+10=50,这个50是方程左边的式子算出来的,要用它与右边的去比较。但是,以后学生会知道什么是“方程的解”吗?

4、关于列方程解决问题

我的意见是,把它分成了几种类型来教,(1)一个数比另一个数多(少)多少,(2)一个数是另一个数的几倍,(3)常见的数量关系如,路程=速度×时间,总价=单价×数量,工作总量=工作效率×工作时间,以及一些面积和周长,这常用关系式包括面积公式、数量关系式等。让学生建立一种学习模型。同时按照传统的教学步骤去教学,(1)理解题意,找出关键句,说出数量关系式。(2)根据数量关系式列出方程。(3)解方程(4)检验。

用方程方法解应用题相比较于算术方法解应用题,其优点在于顺向思维,降低思维难度,但在这一单元中似乎少有体现。学生初次利用列方程来解决实际问题时,都用算术思维去列式,他们认为书上的题目算术方法比方程简便。

第二篇:方程教案

北师大版

四年级数学下册《方程》教学设计

北关小学 宋红娟

学习目标

1、理解并掌握方程的意义,弄清方程与等式间的联系与区别。

2、通过在不同的情景中建立等量关系列方程,经历方程模型的建构的过程。

3、初步培养学生的观察、抽象概括等能力。教学重﹑难点

1﹑会用方程表示事物之间简单的数量关系。2﹑能根据图义,找到等量关系列出方程。教学过程

一、谈话引入

师:生活中经常遇到各种各样的数,对吗?比如说,谁愿意告诉我你今年多大了?(学生说)自己的年龄对你来说是已知数,那老师的年龄对你来说是……..(未知数)以此来引出未知数。

二、利用等量关系,正确列出等式

1、出示天平图

(1)谁能根据这幅图写出等量关系式?(樱桃的质量+ 2克=10克)。如果用未知数X来表示樱桃的质量,那么,可以列出一个什么样的等式呢?(2+X=10)

2、出示情景图2:四盒种子的质量一共是2000克。你从图中发现了什么?(4盒种子的质量=2000克)(1)能根据这个相等关系写出一个等式吗?

(2)请你给同学们介绍一下你的等式,先说字母表示什么意思?(3)如果用y表示每块月饼的质量,怎样用数学式子表示这个等式呢?(板书:4y=2000)

(4)下面老师加大难度,敢接受挑战吗?(同学们在家里帮爸爸妈妈倒过开水吗?现在请同学们仔细观察老师倒开水的过程,找一找这里有相等关系吗?)

3、课件出示图3:一壶水刚好倒满两个开水瓶和一个杯子。(1)你们找到其中的相等关系了吗?(两个热水瓶的盛水量+200毫升=2000毫升)

(2)如果用z表示每个热水瓶的盛水量,那么这个关系式可以怎样表示?(板书:2z+200=2000)

4.理解方程的意义。

(1)刚才我们通过称樱桃,称种子和水壶倒水的三次实践活动,得出了下面这三个等式:(x+5=10 4y=380 2z+200=2000)

(1)同桌交流。说一说:上面的等式有什么共同特点?(2)全班交流。

教师小结:这样含有未知数的等式叫方程。(板书课题:方程)自己读一读,你认为关键词是什么?(3)巩固知识。

说一说方程必须具备哪几个条件?(一必须是等式,二必须含有未知数)

5、会写方程

你会自己写出一些方程吗?写下来同桌交换检查。(学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。)

三、巩固练习

1.判断 下面式子哪些是方程,哪些不是方程?

x +5=18 x+7<9 2+7+9 x+32 x÷3=9 3x+7=22 x+x+x=15 5(x-2)=15 x+y=9

2、练一练课本67页第一题说一说各图中的等量关系,再列出方程。

四、总结评价

关于方程还有很多有趣的内容,相信同学们还会以饱满的精神、积极地态度去研究、去探索方程的奥妙。

五、板书设计:

方 程

樱桃的质量+2克=10克 x+2=10 每盒种子的质量×4=2000克 4y=2000 每个热水瓶盛水量×2+200=2000克 2z+200=2000

含有未知数的等式叫做方程。

第三篇:《方程》教案

苏教版《方程》教案

苏教版《方程》教案1

复习内容:第12册P92—93“练习与实践”7—9题。

复习目标:

1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。

2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。

3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。

教学准备:课件

课时安排:第二课时

课前设计:

1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?

2.学生练习、交流、检验。

3.练习P93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。

4.练习P93第9题。

学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。

苏教版《方程》教案2

教学内容:

教科书P8例7、P9练一练,P11练习二第1~5题

教学目标:

1.使学生在具体的情境中,根据题中数量间的相等关系,能正确列方程解决简单的实际问题,掌握列方程解决实际问题的思考方法。

2.使学生在经历将实际问题抽象成方程的过程中,积累将现实问题数学化的经验,进一步感受方程的思想方法和应用价值。

3.通过学习,进一步培养学生独立思考,主动与他人合作,自觉检验的良好习惯。

教学重点:

学会列方程解决一步计算的实际问题。

教学难点:

掌握列方程解决实际问题的基本思考方法。

教学过程:

一、新课导入

1.谈话:我们已经学习了等式的两个性质,今天这节课,我们将继续学习用不同的方法写出方程的数量关系,但不管是什么形式,其本质是一样的。

2.课件出示例7

学生读题,理解题意说说题中的条件和问题,再找出数量之间的相等关系。学生的回答可能有

①去年的体重+=今年的体重

②今年的体重—去年的'体重=2.5米

根据学生的回答列方程解答。

解:设小红去年的体重为x千克。

X+2.5=36 36-X=2.5

你是怎样检验的?在小组里交流后,集体交流。

3.列方程解决实际问题时要注意什么?

二、完成“练一练”

先说说题中的数量关系,再说说怎样设未知数,然后根据数量关系列方程解答。

三、完成练习二的第1~5题。

1.完成练习二的第1题

先让学生说说解方程的思路,然后让学生独立完成,集体交流。

2.完成练习二的第2题

先说说题中的数量关系,再说说怎样设未知数。

3.完成练习二的第3题

先让学生独立完成,再说说每题中的数量关系和解题过程。

4.完成练习二的第4题

学生理解题意后独立完成,再说说每题中的数量关系和解题过程。

5.完成练习二的第5题

三生板演,其余生独立完成在自备本上后集体校对,再向同桌说说解方程的注意点:写上“解”,利用等式的性质一步一步解出x的值,最后要检验。

四、全课小结

提问:今天这节课我们学习了什么内容?要注意什么?

五、作业

补充习题

苏教版《方程》教案3

教学内容:

教科书第p4~ P5例5~例6、 P5试一试、练一练P6~P7练习一第6~8题

教学目标:

1.使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。

2.使学生掌握利用相应的性质解一步计算的方程。

教学重点:

使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。

教学难点:

使学生掌握利用相应的性质解一步计算的方程。

教学过程:

一、复习等式的性质

1.前一节课我们学习了等式的性质,谁还记得?

2.在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?

3.生自由猜想,指名说说自己的理由。

4.那么,下面我们就通过学习来验证一下我们的猜想。

二、教学例5

1.引导学生仔细观察P4例5图,并看图填空。

2.集体核对

3.通过这些图和算式,你有什么发现?

X=20 2x=202

3x 3x3=603

4.接下来,请大家在练习本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?

5.通过刚才的活动,你又有什么发现?

6.引导学生初步总结等式的性质(关于乘除的)乘或除以0行吗?

7.等式性质二

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

8.P5试一试

(1)指名读题

(2)你是根据什么来填写的?

三、教学例6

1.出示P5例6教学挂图。

指名读题,同时要求学生仔细观察例6图

2.长方形的面积怎样计算?

3.根据题意怎样列出方程?你是怎么想的?板书:40X=960

4.在计算时,方程两边都要除以几?为什么?

苏教版《方程》教案4

教学内容:

教科书P12练习二第9~15题

教学目标:

1.渗透数学中的语感训练,使学生能熟练找出问题中相等关系的量,根据其数量关系列出方程。

2.使学生掌握应用等式的性质解两步解的方程。

3.注重联系生活实际,获得成功体验。

教学重点:

学生能熟练根据其数量关系列出方程。

教学难点:

注重联系生活实际,获得成功体验。

教学过程:

一、 复习导入

找出下列句中的数量关系

松树和杨树一共56棵

学校的建筑面积是总面积的一半

底楼高3.4米,其余三层平均每层高2.8米,这幢楼高多少米?

小亮现在的身高比出生时的3倍高0.04米

三瓶墨水的价钱比一个文件夹便宜2.8元

二、巩固练习

1.练习二第9题

指名板演,其余生独立完成在自备本上后集体校对。

说说注意点和解两步方程的步骤。

2. 练习二第10题

先要求学生只列出方程,校对所列方程根据的等量关系后再解方程。

3. 练习二第11题

生理解题意,找出数量关系,独立列方程解答,集体交流。

4. 练习二第12题

生理解题意,并独立完成在自备本上。校对,说说题目的意思,注意要求两问。

5. 练习二第13题

生理解题意,让学生找准对应的量,提醒学生有2问。集体交流。

6. 练习二第14题

生独立完成后校对,其中12题的物品有“文件夹”和“墨水”,各一个与12瓶,总价25.10元。

7. 练习二第15题

学生利用公式独立列式计算,集体交流时让学生说说是怎样计算的?

三、总结

师:今天在解方程的过程中,你有哪些进步?

四、作业

补充习题

苏教版《方程》教案5

一、复习

根据关键句找单位“1”,并说数量关系。

1、女生是全班人数的4/5

2、一条路,已经修好了2/3

3、妈妈买回两种水果,苹果的重量是橘子的4/3

二、导入

出示例题5的图,小瓶标注600ml,大瓶标注?ml

启发:这两瓶果汁,从图中你知道了什么?

学生口答后,追问:根据图中的已知条件,你能求出一大瓶果汁有多少毫升吗?为什么?

提出要求:如果让你补充一个条件表示这两瓶果汁数量关系,你打算怎么样补充条件?

学生可能补充:大瓶的果汁比小瓶多300毫升,大瓶是小瓶的3/2等等,教师参与学生的交流并出示:小瓶里果汁是大瓶的2/3

引导:根据老师补充的这个条件,你能求“一大瓶果汁有多少ML吗?

三、探究

1、教学例题5

提问:小瓶里的果汁是大瓶的2/3,这个条件中的2/3是哪两个数量比较的结果?

提问:把哪个数量看做单位1,单位1的2/3是哪个数量?

提出要求:你能根据上面的讨论,找出题目中的数量之间的相等的关系吗?

先请学生互相说,再请全班说。

板书:大瓶果汁量×2/3=小瓶果汁的量

启发:现在你准备如何来进行解决?

在学生回答:可以列方程后,追问:可以怎么样列方程?

根据学生的回答,板书:

解:设:一大瓶果汁有x毫升。

X×2/3=600

学生完成课本上的解方程,并指名板演

启发:x=900是不是正确的解呢?你会进行检验吗?

让学生进行检验,并交流检验的方法

2、教学试一试

学生读题后,提问:你能根据题目意思说出两个分数之间的含意吗?在讨论中明确:1/2表示已经喝的是一盒的1/2;而2/5L表示已喝的牛奶升数。

启发:根据对题意的理解,你能先把数量关系补充完整吗,再解答吗?

学生解答以后,再让学生说说怎么想的?

四、练习

1.做“练一练”。

各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

2.做练习十二第1题。

(1)读题,画出题目中的关键句。

(2)让学生说一说“一桶油用去 ”和“黑兔是白兔的 ”各表示什么意思?

(3)引导学生说出并在书上写出数量关系式。

(4)独立解答,并指名板演。

(5)集体评议并校正。

五、小结

今天这节课,你学到了什么内容?

苏教版《方程》教案6

教学内容:

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与整理

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)

(含有未知数的等式是方程。)

(等式性质:)

(求方程中未知数的值的过程叫做解方程。)

3、小结。

同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

苏教版《方程》教案7

教学内容:

教科书P17第9~15题。思考题。

教学目标:

1.通过练习,使学生进一步掌握列方程解决实际问题的思考方法,提高列方程解决问题的能力。

2.在练习中,使学生进一步感受方程的思想方法和应用价值,获得成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

教学重点:

掌握列方程解决实际问题的基本思考方法。

教学难点:

根据情境,学生自己提出问题、解决问题。

教学过程:

一、 基本练习

1.先设要求的数为X,再列出方程。(口答且不解答)

(1)一个数的12倍是84,求这个数。

(2)2.9比什么数少1.5?

(3)什么数与2.4和是6?

2.根据题意说出等量关系式并列方程

(1)果园里有124棵梨树和桃树,梨树是桃树棵数的3倍。桃树梨树各有多少棵?

(2)书架上层有36本书,比下层少8本。书架下层有多少本书?

提问:每一题的数量关系式分别根据哪一个条件列的?

师生交流。

二、指导练习

1.P17第9题

(1)引导学生说一说数量关系式。

天鹅只数+丹顶鹤只数=960

(2)根据关系式列方程

X+2.2x=960

(3)解方程

2.P17第10题

(1)引导学生说一说数量关系式。

六年级植树棵数-五年级植树棵树=24

(2)根据关系式列方程

1.5x-x=24

(3)解方程

3.P17第13题

(1)引导学生说一说数量关系式。

历史故事总价+森林历险记总价=83

(2)根据关系式列方程

7x+124=83

(3)解方程

三、综合练习

1.P17第11~12题

(1)学生先说一说数量关系式。

(2)根据关系式列方程

(4)解方程

(5)集体评讲

四、思考题

(1)引导学生说一说等量关系式

速度差追击时间=路程差

甲路程-乙路程=路程差

(2)列方程

(280-240)x=400

280x-240x=400

(3)解方程

五、课堂小结

今天这节课是练习课,有谁来简单总结一下呢?还有什么问题吗?

板书设计:

列方程解决实际问题练习课

天鹅只数+丹顶鹤只数=960 六年级植树棵数-五年级植树棵树=24

X+2.2x=960 1.5x-x=24

历史故事总价+森林历险记总价=83 速度差追击时间=路程差 甲路程-乙路程=路程差

7x+124=83 (280-240)x=400 280x-240x=400

苏教版《方程》教案8

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:理解等式的性质,理解方程的意义。

教学难点:利用等式性质和方程的意义列出方程。

教学准备:多媒体课件

教学过程:

一、情景引入

1、出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100 (板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100 x+50=150

X+50<200 x+x=200

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”。

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练。

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计:

方程

等式 50+50=100 x+50>100 x+50=150

方程 X+50<200 x+x=200

第四篇:简易方程教案

第四单元 简 易 方 程

第一课时

教学内容:教材P44-P46例1-例3 做一做,练习十第1-3题

教学目的:

1、使学生理解用字母表示数的意义和作用。

2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。

3、使学生能正确进行乘号的简写,略写。教学重点:理解用字母表示数的意义和作用

教学难点:能正确进行乘号的简写,略写。

教学过程:

一、初步感知用字母表示数的意义

教学例1。

1、投影出示例1(1):

引导学生仔细观察两行图中,数的排列规律。

问:每行图中的数是按什么规律排列的?(指名口答)

2、学生自己看书解答例1的(2)、(3)小题

提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)

师:在数学中,我们经常用字母来表示数。问:你还见过那些用符号或字母表示数的例子?

如:扑克牌,行程A、B两地,C大调…….二、新授:

1、学习用字母表示运算定律和性质的意义和方法。教学例2:

(1)学生用文字叙述自己印象最深的一个运算定律。

(2)如果用字母a、b或 c表示几个数,请你用字母表示这个运算定律。

(3)当用字母表示数的时候,你有什么感觉?

看书45页“用字母表示………….”这一段。

(4)你还能用字母表示其它的运算定律和性质吗?

请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)

2、教学字母与字母书写。引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)

a×b=b×a(a×b)×c=a×(b×c)可以写成:a·b=b·a或ab=ba(a·b)·c=a·(b·c)或(ab)c=a(bc)(a+b)×c=a×c+b×c 可以写成:(a+b)·c=a·c+b·c或(a+b)c=ac+bc 其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。

3、教学用字母表示计算公式的意义和方法。教学例3(1):

师:字母不但可以表示运算定律还可以表示公式、及数量关系。

用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?

学生先自己试写,然后小组交流,看书讨论。

问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?(2)字母和数字之间的乘号省略后,谁写在前面? 师强调:a 表示两个a相乘,读作a的平方;

省略数字和字母之间的乘号后,数字一定要写在字母的前面。

4、练习:省略乘号写出下面各式。x×x m×m 0.1×0.1 a×6 3×n χ×8 a×c 教学例3(2):

学生自学并完成相关练习。两生板演。师强调书写格式。

三、巩固练习:

1、完成做一做1、2题。

要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。

2、练习十:第1-3题 先独立解答后,再集体评议。

四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)

第二课时

教学内容:教材P47-P48例4 做一做,练习十第4-6题

教学目的:

1、使学生进一步理解用字母表示数的意义和作用。

2、能正确运用字母表示常用数量关系。

3、能较熟练地利用公式、常用数量关系求值。教学重、难点:能正确运用字母表示常用数量关系。

教学过程:

一、复习。

1、用字母表示数,有哪些好处?但要注意什么?

2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。

3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。

4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6

二、新授。

1、教学例4(1):

(1)引导学生看书提问:从图、表中你了解到哪些信息?

A、爸爸比小红大30岁。B、当小红1岁时,爸爸()岁,…… 师:这些式子,每个只能表示某一年爸爸的年龄。

(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)

结合讨论情况师适时板书:

法1:小红的年龄+30岁=爸爸的年龄

法2:a+30 提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。

在式子a+30中,a表示什么?30表示什么?a+30表示什么?

(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)

想一想:a可以是哪些数?a能是200吗?为什么?

(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和 结果填在书上。

2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。

3、教学例4(2):

引导学生看书讨论:(可分成四人小组进行讨论)

(1)从图、表中你了解到哪些信息?

(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?

(3)式子中的字母可以表示哪些数?

(4)图中小朋友在月球上能举起的质量是多少?

请小组派代表回答以上问题。

4、总结:今天你学会了什么?有哪些收获?

三、巩固练习:

1、独立完成P48做一做 集体评议。

2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?

3、独立解答P49 第4题做完后在投影仪上展示评议。(问问字母、式子表示的含义)

四、作业:

1、独立完成P50 第5题

2、独立完成P50 第6题 第三课时

教学内容:练习课,教材P51-P52 练习十第7-13题 教学目的:

1、能较熟练的掌握用字母表示数的方法。

2、能正确运用字母表示常用数量关系、数量。

3、会利用公式、常用数量关系求值。教学重、难点:能熟炼地运用字母表示数。

教学过程:

一、基本练习:

1、填空:(1)a+a=()a×a=()

(2)当a=5时,2a=(),a的平方=()

2、同学们在操场上做操,五年级站了x列,平均每列20人,六年级有a人。说出下面各式所表示的意义:

(1)30x(2)30x+a(3)a—30x

3、小结;用含有字母的式子不仅可以表示数量关系,也可以表示数量。

二、综合练习:

1、独立解答P51 第7题 师巡视指导个别学困生。

投影展示,集体评议,注意评讲求值的书写格式。

2、讨论口答P51 第8题 注意指导学生理解(3)小题,3x表示投中3分球得的总分数。

3、分小组完成P51 第9题请几个小组派代表说说式子表示的含义。

4、独立完成P52 第10-12题 师注意巡视指导学困生。

三、全课总结:通过练习,你还有什么疑困?你觉得你掌握得比较好的知识是什么?有困难需要帮助的地方是什么?

四、发展练习:

1、讨论P52 第13题 请学生先独立思考,再集体讨论。

2、在下面算式中,a、b、c、s各代表什么数? a b c s × 9 s c b a

2.解简易方程 第一课时

教学内容:数学书P53-54及“做一做”,练习十一1-3题。

教学目标:

1、初步理解方程的意义,会判断一个式子是否是方程。

2、会按要求用方程表示出数量关系。

3、培养学生观察、比较、分析概括的能力。

教学重难点:会用方程的意义去判断一个式子是否是方程。

教具准备:天平、空水杯、水(可根据实际变换为其它实物)

教学过程:

一、导入新课:今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、新知学习

1、实物演示,引出方程。

操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

1、写方程,加深对方程的认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

1、反馈练习。

完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

2、小结:这节课学习了什么?怎么判断一个式子是不是方程? 提问:方程是不是等式?等式一定是方程吗?

看“课外阅读”,了解有关方程产生的数学史。

四:练习

1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

五、作业:练习十一第1题。

第二课时

教学内容:数学书P55-56及“做一做”。

教学目标:

1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。

3、培养学生观察与概括、比较与分析的能力。

教学重难点:理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。教具准备:天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)

教学过程:

一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?

二、新知探究

(一)探寻发现“天平保持平衡的规律1”。

第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。

第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。

第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?

第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)

第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。

(二)探寻发现“天平保持平衡的规律2”。第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2。

第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。

第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。

(三)小结天平保持平衡的变换规律,引出等式不变的规律。

通过刚才的实验,我们发现了什么,谁来总结一下。

得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。

老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。

交流,发现:等式保持不变的规律:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。

三、练习。

实物演示并判断:(准备8袋花生,4袋盐)

天平两端分别放有一袋500克的盐和两袋250克的花生。

1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?

2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)

3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?

4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?

四:小结。

有什么收获?还有什么问题?

第三课时

教学内容:数学书P57,及“做一做”,练习十一第4题。

教学目标:

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

教学重难点:比较方程的解和解方程这两个概念的含义。教学过程:

一、导入新课

上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习。

1、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

2、认识、区别方程的解和解方程。得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

3、练习。(做一做)齐读题目要求。

怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x =5×3 =15 =方程右边

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

二、作业。

独立完成练习十一第4题,强调书写格式。

三、小结。

通过这节课学到了什么?还有什么问题?

第四课时

教学内容:数学书P58-P59及“做一做”,练习十一第5-7题。

教学目标:

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。教学重难点:掌握解方程的方法。

教学过程:

一、导入新课

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

二、新知学习

(一)教学例1 出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9 要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢? 抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3 化简,即得: x=6 这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3 =6+3 =9 =方程右边

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2 利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

(三)反馈练习

1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

试着解方程:x-2.4=6 x÷9=0.7(强调验算)

(四)课堂作业:“做一做”第2题。

三、课堂小结。

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

四、作业:练习十一5—7题。

第五课时

教学内容:数学书P60:例

3、及61页的做一做,练习十一的第8题。

教学目标:

1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

教学重难点:找题中的等量关系,并根据等量关系列出方程。

教学过程:

一、复习导入

解下列方程:

x+5.7=10 x-3.4=7.6 1.4x=0.56 x÷4=2.7 学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。

二、新知学习。

1、教学例3.(1)出示题目。(课件)

出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。

“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.” 我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。

同学们想想,“警戒水位是多少米?”

(2)分析,解题。根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。

它们之间有哪些数量关系呢?(板)

警戒水位+超出部分=今日水位①

今日水位—警戒水位=超出部分②

今日水位—超出部分=警戒水位③

同学们能解决这个问题吗?

学生独立解决问题。

(3)评讲、交流。(侧重如何用方程来解决本题。)

学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。

学生列出的方程可能有:

① x+0.64=14.14 ②14.14﹣x= 0.64 ③14.14﹣0.64= x 每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

(4)小结 在解决问题中,我们是怎样来列方程的?

将未知数设为x,再根据题中的等量关系列出方程。

三、练习。

(5)解决“做一做”中的问题。

从题中知道哪些信息?有哪些等量关系?

用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。

(6)独立完成练习十一中的第8题。

四、课堂小结

第五篇:直线方程教案

Ⅰ.课题导入

[师]同学们,我们前面几节课,我们学习了直线方程的各种形式,以一个方程的解为坐标的点都是某条直线上的点;反之这条直线上的点的坐标都是这个方程的解。这是这个方程叫做这条直线的方程;这条直线叫做这个方程的直线。现在大家回忆一下,我们都学习了直线方程的哪些特殊的形式。我们学习了直线方程的点斜式、斜截式、两点式、截距式等形式,对直线方程的表示形式有了一定的认识.现在,我们来回顾一下它们的基本形式.点斜式的基本形式:y-y1=k(x-x1)适用于斜率存在的直线.斜截式的基本形式:y=kx+b适用于斜率存在的直线;

两点式的基本形式:直线;

截距式的基本形式:

yy1xx1(x1≠x2,y1≠y2)适用于斜率存在且不为0的y2y1x2x1xy=1(a,b≠0)适用于横纵截距都存在且不为0的直线.ab在使用这些方程时要注意它们时要注意它们的限制条件。

那么大家观察一下这些方程,都是x,y的几次方程啊?[生]都是关于x,y的二元一次方程.那么我们原来在代数中学过二元一次方程它的一般形式是什么呀?(板书)Ax+By+C=0 我们现在来看一次这几种学过的特殊形式,它们经过一些变形,比如说去分母、移项、合并,这样一些变形步骤。能不能最后都化成这个统一的形式呢?比如说y=kx+b,xayb=1,这些我们最终都可以吧它们变成这种形式。剩下的两种形式的变形留给同学们课下自己去完成。那么在学习这些直线的特殊形式的时候,应该说各有其特点,但是也有些不足。在使用的过程中有些局限性。比如说点斜式和斜截式它们的斜率都必须存在,两点式适用于适用于斜率存在且不为0的直线,截距式适用于横纵截距都存在且不为0的直线.那么我们现在想一想有没有另外一种形式,可以综合他们各自的一些特点,也就是这些方程最后化成一个统一的形式。能不能代表平面直角坐标系中的直线。要解决这些问题呢,要分两个方面进行讨论。

1.直线和二元一次方程的关系

(1)在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程.一个方面:是不是平面上的任意直线,表示它的方程都可以写成Ax+By+C=0的形式,刚才大家做了一些练习,当然这只是特殊形式,是不是所有的直线都可以写成这种形式呢?直线按斜率来分类可以分几类?斜率存在和斜率不存在。这两类是不是都可以转化成一元二次方程的形式。当倾斜角不等于90°是斜率存在,直线方程可以写成y=kx+b的形式。可以转化成kx-y+b=0和Ax+By+C=0比较发现什么?A=k B=-1 C=b。当倾斜角等于90°斜率不存在,直线方程可以写成x=x0的形式。可以转化成x-x0=0和Ax+By+C=0比较发现什么?A=1 B=0 C=-x0 好,我们就把它分为这两种情况,当斜率存在的时候我们一般把它设成一个简单的斜截式,斜截式经过变形就可以化成一般的形式。而对于斜率不存在的时候,它的方程形式就是x=x0直线方程也可以转化成这样的一个形式。那么由此可以下这样一个结论:平面上的任意的一条直线,表示它的方程最后都可以转化成二元一次方程的形式。刚才我们从这个角度考虑,就是直线都可以转化成二元一次方程,现在我们反过来看,是不是任意的一个二元一次方程最终在直角坐标系下都能够表示直线。

(2)在平面直角坐标系中,任何关于x,y的二元一次方程都表示一条直线.因为x,y的二元一次方程的一般形式是Ax+By+C=0,其中A、B不同时为0,在B≠0和B=0的两种情况下,二元一次方程可分别化成直线的斜截式方程y=-示与y轴平行或重合的直线方程x=-

ACx和表BBC.A也就是说Ax+By+C=0(A,B不同时为零)大家想想如果AB都等于零这个直线方程就没了。现在我们考虑一下,这个方程能不能经过一些适当的变形,变成我们熟悉的形式,而确定它就是一个在平面直角坐标系中就是一条直线呢?By=-Ax-C 斜截式方程,斜率是 是y轴上的截距。二元一次方程通过变形在直角坐标系下都表示一条直线。那么我们从两个方面在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程.在平面直角坐标系中,二元一次方程都表示一条直线.根据上述结论,我们可以得到直线方程的一般式.我们就把代数中的二元一次方程定义为直线的一般式方程。

定义:我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫做直线的一般式方程。我们在学习前面直线的几种特殊形式的方程,一眼就可以看出这条直线的某些特点,比如说点斜式就可以看出它的斜率还有过一个定点,还有两点式可以看出它过两个定点。那么我们怎么通过直线的一般式方程观察直线的一些特点呢?比如说A=0表示什么样一条直线?y=-平行于x轴的直线,也有可能与x轴重合。如果要平行于y轴这个系数要满足什么样的条件?如果旦旦是c等于零,通过原点的直线。假如AB都不等于零它的斜率我们怎么看出来?这些直线的特点我们要能掌握住。我们对直线的一般式方程有了一定的了解。直线的一般式方程和和那几种特殊的形式之间有一个互相的转化,那么我们来看一个例子,通过一些转化来解决实际问题。

[例1]已知直线经过点A(6,-4),斜率为-

4,求直线的点斜式和一般式方程.3分析:本题中的直线方程的点斜式可直接代入点斜式得到,主要让学生体会由点斜式向一般式的转化,把握直线方程一般式的特点.解:经过点A(6,-4),并且斜率等于-

4的直线方程的点斜式是: 3y+4=-4(x-6)3化成一般式得:4x+3y-12=0 同学们在以后解题时,可能求直线方程的时候,求出不一定是一般式,可能是点斜式、两点式等等,如题目没有特殊要求我们都要把各种形式化成一般式。对于直线方程的一般式,一般作如下约定:x的系数为正,x,y的系数及常数项一般不出现分数,一般按含x项,含y项、常数项顺序排列.

下载方程教案word格式文档
下载方程教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《简易方程》教案

    《简易方程》教案 教学目标 1.会解简易方程,并能用简易方程解简单的应用题; 2.通过学习代数法解简易方程,进一步培养学生的运算能力,发展学生的实际应用意识; 3.通过解决问题的实......

    简易方程 教案

    第一单元简易方程 一、教学内容: 本单元教学方程的知识,是在五年级(下册)―用字母表示数‖的基础上编排的。第一次教学方程,涉及的基础知识比较多,教学内容分成三部分编排。第1—2......

    方程意义教案

    方程的意义 执教者:吴霜 教学内容:人教版五年级上册 教学目标 1.知识目标:在自主探索的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系,使学生初步理解等式的基本性质......

    苏教版《方程》教案

    教学内容:教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。教学目标:1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建......

    11.1直线方程教案

    11.1 (2)直线方程(点法向式) 一、教学目标 在理解直线方程的意义,掌握直线的点方向式方程的基础上,进一步探究点法向式方程;学会分类讨论、数形结合等数学思想,形成探究能力。 二、教......

    11.1直线方程教案[精选合集]

    11.1(1) 直线方程(点方向式) 一、教学目标 理解直线方程的意义,掌握直线的点方向式方程;加强分类讨论、数形结合等数学思想和探究能力的培养;体验探究新事物的过程,树立学好数学的信......

    五年级 简易方程 教案

    简易方程 教案 一、导入部分 教师谈话导入新课 (实物投影出示动物图片) 二、新授部分 1、找出白鳍豚这组资料的等量关系,用字母表示。 (1)师提出问题:你获得了哪些信息?能写出等量......

    椭圆及其标准方程 教案.doc

    学习资 料 教学目标 1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程; 2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 3.通过对椭圆概念的引入......