第3章
一元一次不等式
3.3
一元一次等式
第3课时
一元一次不等式的应用
1.进一步巩固求一元一次不等式的解集;
2.能利用一元一次不等式解决一些简单的实际问题.
3.通过学生独立思考,培养学生用数学知识解决实际问题的能力.
4.通过学生自主探索,培养学生学数学的好奇心与求知欲,他们能积极参与数学学习活动,锻炼克服困难的意志,增强自信心.
1.求一元一次不等式的解集;
2.用数学知识去解决简单的实际问题.
能结合具体问题发现并提出数学问题.
解下列不等式,并把它们的解集分别表示在数轴上.
【教学说明】通过对这两个一元一次不等式的求解,让学生回顾解一元一次不等式的基本步骤以及在数轴上表示解集的方法.
探究:利用一元一次不等式解决简单的实际问题
一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
分析:解不等式应用题也和解方程应用题类似,我们先回忆一下列方程解应用题应如何进行.
先审题,弄清题中的等量关系;设未知数,用未知数表示有关的代数式;列出方程,解方程;最后写出答案.
总的题量有25题.答对一题得4分,答错或不答扣1分,最后得分在85分或85分以上,所以关系式应为:
4×答对题数-1×答错题数≥85
请大家自己写步骤.
解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得
4x-1×(25-x)≥85
解这个不等式,得x≥22.
所以,小明至少答对了22道题,他可能答对了22,23,24,25道题.
大家依据列方程解应用题的过程,对照上面解不等式应用题的步骤,总结一下两者的不同,并给出解一元一次不等式应用题的一般步骤,请互相交流.
【归纳结论】
第一步:审题,找不等关系;
第二步:设未知数,用未知数表示有关代数式;
第三步:列不等式;
第四步:解不等式;
第五步:根据实际情况写出答案.
【教学说明】通过学生之间的合作、交流,让学生体会不等式在解决实际问题时的作用,增加了学生间的交流、合作,提高了学生教学语言的表达能力.
例1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打(
)
A.6折
B.7折
C.8折
D.9折
答案:B.
例2.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则至多只能安排人种甲种蔬菜.
答案:4.
例3.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可以买几支笔?
解:设她还可以买n支笔,根据题意得
3n+2.2×2≤21
解这个不等式,得n≤16.6/3
因为在这一问题中n只能取正整数,
所以,小颖还可以买1支,2支,3支,4支或5支笔.
例4.某市的一种出租车起步价为7元,起步路程为3
km(即开始行驶路程在3
km以内都需付7元),超过3
km,每增加1km加价2.4元(不足1
km以1
km计价),现在某人乘出租车从甲地到乙地,支付车费14.2元,问从甲地到乙地的路程最多是多少?
解:设从甲到乙地的路程为x
公里,则由题意,可得
7
+
2.4
(x-3)≤
14.2
,
解得
x
≤6
.
所以
从甲到乙地的路程为乙地的路程最多是6
km.
【教学说明】通过学生独立对随堂练习的解答,及时发现问题、解决问题,让学生熟练解一元一次不等式,并能利用不等式解决一些实际问题.
通过本节课的学习,你学到了哪些知识?