第一篇:七年级《解一元一次方程——移项》教学设计
一、教材内容分析
本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标:
1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则
2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点:
利用移项解一元一次方程。
五、教学难点:
移项法则的探究过程。
六、教学过程:
(一)情景引入
引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是()
A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨
设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项
(二)出示学习目标
1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。
2.会建立方程解决简单的实际问题。
设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。
(三)导教导学
1.出示自学指导
自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)
2.学生自学
学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。
3.交流展示(小组合作展示)
(合作交流一)教材问题2中这批书的'总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。
2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)
3)根据等量关系列方程: 3x+20 = 4x-25(板书)
【总结提升】解决“分配问题”应用题的列方程的基本要点:
A.找出能贯穿应用题始终的一个不变的量.B.用两个不同的式子去表示这个量.C.由表示这个不变的量的两个式子相等列出方程.设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。
(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数
(只设列即可)
(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?
设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。
(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。
(板书)把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。
《解一元一次方程——移项》教学设计(魏玉英)
师:为什么等式(方程)可以这样变形?依据什么?
(出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.
师:解一元一次方程中“移项”起了什么作用?
(出示)通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)
(基础训练)抢答:判断下列移项是否正确,如有错误,请修改
《解一元一次方程——移项》教学设计(魏玉英)
设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。
【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1)移项,(2)合并同类项,(3)系数化为1
(综合训练)解下列方程(任选两题)
设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。
(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为
设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。
(四)我总结、我提高:
通过本节课的学习我收获了??????。
设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。
(五)当堂检测(50分)
1.下列方程变形正确的是()
A.由-2x=6, 得x=3
B.由-3=x+2, 得x=-3-2
C.由-7x+3=x-3, 得(-7+1)x=-3-3
D.由5x=2x+3, 得x=-1
2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)
3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。
(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。
(六)实践活动
请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示。
设计意图:让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。
【七年级《解一元一次方程——移项》教学设计】相关文章:
1.《解一元一次方程移项》的教学反思
2.《解一元一次方程合并同类项与移项》的教学反思
3.解一元一次方程的算法教学设计案例
4.解一元一次方程课件
5.《解一元一次方程》教学反思
6.解一元一次方程去分母课件
7.解一元一次方程的教学反思
8.解一元一次方程2课件
9.《解一元一次方程》课件
第二篇:七年级《解一元一次方程——移项》教学设计
七年级《解一元一次方程——移项》教学设计
七年级《解一元一次方程——移项》教学设计
一、教材内容分析
本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标:
1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则
2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点:利用移项解一元一次方程。
五、教学难点:移项法则的探究过程。
六、教学过程:
(一)情景引入
引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是()
A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨
设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项
(二)出示学习目标
1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。
2.会建立方程解决简单的实际问题。
设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。
(三)导教导学
1.出示自学指导
自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)
2.学生自学
学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。
3.交流展示(小组合作展示)
(合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生? 1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。
2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)
3)根据等量关系列方程: 3x+20 = 4x-25(板书)
【总结提升】解决“分配问题”应用题的列方程的基本要点:
A.找出能贯穿应用题始终的一个不变的量.B.用两个不同的式子去表示这个量.C.由表示这个不变的量的两个式子相等列出方程.设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。
(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数
(只设列即可)
(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?
设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。
(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。
(板书)把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。
《解一元一次方程——移项》教学设计(魏玉英)
师:为什么等式(方程)可以这样变形?依据什么?(出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.
师:解一元一次方程中“移项”起了什么作用?
(出示)通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)
(基础训练)抢答:判断下列移项是否正确,如有错误,请修改
《解一元一次方程——移项》教学设计(魏玉英)
设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。
【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1)移项,(2)合并同类项,(3)系数化为1
(综合训练)解下列方程(任选两题)
设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。
(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为
设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。
(四)我总结、我提高:
通过本节课的学习我收获了??。
设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。
(五)当堂检测(50分)
1.下列方程变形正确的是()
A.由-2x=6, 得x=3
B.由-3=x+2, 得x=-3-2 C.由-7x+3=x-3, 得(-7+1)x=-3-3
D.由5x=2x+3, 得x=-1
2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)
3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。
(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。
(六)实践活动
请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示。
设计意图:让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。
第三篇:解一元一次方程--移项教学设计专题
解一元一次方程——移项 教学设计
一、教材内容分析
1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。
2、本节课主要内容是解一元一次方程的重要步骤移项。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。
二、教学目标(知识,技能,情感态度、价值观)知识与技能:(1)、找相等关系列一元一次方程;
(2)、用移项解一元一次方程。
(3)、掌握移项变号的基本原则
过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
情感与态度:通过学习“合并同类项”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发学生学习数学的热情。
三、学习者特征分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学策略选择与设计
(1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习.五、教学环境及资源准备
幻灯片
六、教学过程
一、复习回顾,创设情境,导入新课:
(一)、回顾:什么是一元一次方程?等式的基本性质?
1.等式的两边都加上(或减去)同一个数(或式子),结果仍相等.2.等式的两边都乘以同一个数,或除以同一个不为零的数,结果仍相等.教师提问,学生回答,复习已学过的知识
设计意图:通过复习一元一次方程及等式的性质,为进一步学习做准备
(二)、创设情境
把一些图书分给某班学生阅读,如果每人3本,还剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?
如果设这个班有学生x人,每人分3本,共分出了3x_本,加上剩余的20本,这批书共(_3x+20_)_本。每人分4本,需要4x本,减去缺少的25本,这批书共(4x-25)_本。这批书的总数有几种表示方法?它们之间有什么关系?
教师展示问题,教师和学生一起分析问题,找出相等关系,合理地设未知数、列式子。
师生共同分析:
这批书的总数是一个定值,表示它的两个式子应该相等,根据这一相等关系列出方程 3x+20=4x-25
学生自主地分析
设计意图:从学生比较熟悉的身边的问题开始,能给学生一种轻松的心理氛围,易于学生学习
新知识。
这里,可根据情况逐步放手,让学生自己解决,培养独立解决问题的习惯。说明基本事实:表示同一个量的两个式子具有相等关系,这是列方程的依据。
二、合作交流,解读探究:
(一)、移项
1、思考:方程3x +20 = 4x-25的两边都有含 x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能使它向x= a(常数)的形式转化呢 设计意图:这里渗透转化、化归的思想方法。
2、观察:(1)、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?
(2)、改变的项有什么变化?
3、归纳:把等式一边的某项改变符号后移到另一边,叫移项。
4、应用新知: 1)、慧眼找错:(1)、6 + x = 8,移项,得 x = 8+ 6
(2)、3x = 8-2x,移项,得 3x +2x =-8
(3)、5x – 2 = 3x + 7,移项,得5x + 3x = 7 + 2 2)、抢答:
将含有未知数的项放在方程的一边,常数项放在方程的另一边,对方程进行移项变形。(1)、2x-3 = 6
(2)、5x = 3x-1
(3)、2.4y +2 =-2y
(4)、8 – 5x = x + 2 3)判断改错:
下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)、从7+ x = 13.得到x=13 +7(2)、从5x=4x +8,得到5x-4x=8(3)、从3x +5=-2x-8,得到3x +2x=8-5
教师引导学生观察,学生讨论、交流后,教师说明:像这样把等式一边的某项改变符号后移到另一边,叫移项。
学生分小组讨论。
分析:解方程的目的是什么?如何向目的前进? 利用等式的基本性质可以实现向目的的转化:
为了使方程的右边没有含x的项,等号的两边同减4x ;为了使左边没有常数项,等号两边同减20。利用等式的基本性质1,得
3x +20-20-4x =4x-25-20-4x
3x – 4x =-25-20 学生分组讨论
设计意图:通过学生的思考、观察和教师的讲解得出什么是移项,便于学生理解。教学中应注意提醒学生注意:方程中的项是连同它前面的符号的。
三、应用迁移,巩固提高: 例1:解下列方程:
(1)、52x
1(2)、5y33y12yy 例2:解方程 11xx3
423、巩固新知:比一比,谁做得更快: 解下列方程,并口算检验:(1)、2.4x22x
(2)、3x + 1 =-2
(3)、10x – 3 =7x +3
(4)、8 – 5x = x + 2
4、思考:移项的根据是什么?
上面解方程中“移项”起了什么作用?
与前面解方程的程序化操作相比,现在又多了一道程序(移项),并写出完整的解题过程 教师巡视、辅导。学生练习
设计意图:使学生熟练掌握用移项解一元一次方程,培养学生规范的书写格式
5、数学小史
解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并同类项”和“移项”,早在一千多年前,数学家阿尔—花拉子米就已经对“合并同类项”和“移项”非常重视了。
引导学生回答:解方程时,应使含未知数的项集中于方程一边,常数项集中于另一边。解方程
就是要使方程不断向x = a的形式转化。教师讲解,学生思考回答
设计意图:移项的法则是根据等式的性质1得出的。教学中要注意得出它的过程,通过观察结果强调“变号”这个特点,使学生认识到移项法则是由于解方程的需要有依据地产生的,在理解的基础上记忆法则。结合解方程得过程,让学生思考有关的步骤(如“合并同类项”“移项”等)的作用,是为了让学生反复体会化归的思想,教学中可以引导学生联系解方程的目的体会解法。这里实际上回答了本节开头提出的问题,让学生重视移项的作用。
四、总结反思,拓展升华:
(一)、本节课学习了哪些内容? 教师讲解 师生共同总结:
什么是移项?为什么要移项?移项时要注意些什么?解方程的过程是什么?数学思想方法是什么?
设计意图:方程的建立是依据“表示同一个量的两个式子相等”这一基本相等关系。转化思想
(二)、当堂小测: 解下列方程:
(1)、x – 5 = 1
(2)、7 – x = 1
(3)、3x – 5 = 2x
3312(4)、10x-2 = 6x +1 + 3x
(5)、yy
522
5(三)、拓展:
小刚编了这样一道题:我是某年4月出生的,我年龄的2倍加上8,正好是我出生那一年的总天数,你猜我是哪一年出生的?你能算出来吗?
设计意图:激发学生的竞争意识,从而达到调动全体学生参与的目的 用一元一次方程解决实际问题学生不宜掌握,应反复练习。
板书设计:
解一元一次方程——移项 移项
例1 定义:
例2 移项法则: 移项注意事项:
第四篇:《3.2 解一元一次方程——移项》教学设计
《3.2 解一元一次方程——移项》教学设计
广兴学校
侯淑贞
【教学目标】
一、知识与技能
1、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.
2、掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程.
二、过程与方法
通过解形如“ax+b=cx+d”的方程,使学生感受解法中蕴涵的化归方法,体验数学中的建模思想.
三、情感态度与价值观
1、培养学生积极思考,勇于探索的精神。
2、通过探究实际问题与一元一次方程的关系,感受数学的应用价值。
【教学重点】
建立方程解决实际问题,会解 “ax+b=cx+d”类型的一元一次方程.【教学难点】
分析实际问题中的已知量和未知量,找出相等关系,列出方程。【教学方法】讲练结合 【课前准备】多媒体课件 【教学课时】1课时。【教学过程】
一、情景引入
【设计意图】以故事情景引入课题,使学生能积极思考,激发了学生浓厚的学习兴趣,使学生快速投入学习中去,既复习了等式的性质又为下面的探究埋下伏笔。
从前有一只狡猾的狐狸,它平时总喜欢捉弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x-2=2x-2,等号两边同时加上2得5x-2+2=2x-2+2,即5x=2x.等式两边同时除以x得,5=2。”老虎瞪大了眼睛,听傻了。请你们想一想,狐狸说的对吗?为什么?
显然,狐狸的说法是不对的,那是为什么呢?
二、自主学习
【活动1】自学课本88页问题2,圈出题里关键的词,并回答下列问题:
把一些图书分给七年级某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?(以学生身边的实际问题展开讨论,让学生感受数学来源于生活,又服务于生活)【设计意图】进一步渗透模型化思想,引发学生认知上的冲突,寻求解决途径,感受解决问题的方法与思路。
1、设未知数:设这个班有x名学生。根据第一种分法,分析已知量和未知量间的关系;
(1)每人分3本,那么共分出___3x___本;共分出3x本和剩余的20本,可知道这批书共有___(3x+20)_____本;
根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出__4x_____本;需要分出4x本和还缺少25本那么这批书共有
_____(4x-25)___本;
2、找相等关系:这批书的总数是一个定值(不变量),表示它的两个式子应相等;
3、列方程: 3x+20=4x-25.注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”是一个基本的相等关系,也是列方程中常用的找等量关系的方法。.
三、合作探究
【活动2】探究移项法则
思考:怎样解方程3x+20=4x-25? 问题1:它与上节课我们学过的方程x+2x+4x=140在结构上有什么不同?(独立思考,小组讨论)
学生讨论后回答:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)
问题2:怎样才能使它转化为x=a(常数)的形式呢?
学生思考探索:要使方程右边不含x的项,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即 3x+20-4x-20 =4x-25-4x-20 即 3x-4x=-25-20。
问题3:以上变形依据是什么? 学生:根据等式性质1。
将它与原来方程比较,相当于把原方程左边的+20变为-20 后移到方程右边,把原方程右边的4x变为-4x后移到左边.
归纳:像上面那样,把等式一边的某项变号后移到另一边,叫做移项. 方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,注意要先变号后移项. 小结:公元820年左右,中亚细亚的数学家阿尔·花拉子米曾经写过一本书,书名《对消与还原》,整本书重点是介绍方程的解法,这本书对后来数学的发展产生了很大的影响。书中提到的“对消”与“还原”,就是我们现在所说的“合并同类项”和“移项”。练习1:慧眼找错
(1)由x=-5+2x得x =-2x+5;(2)由2x-3=x+5得2x+x=5-3;
(3)由2x-1=x+2得2x-x=-2+1;(4)由6x-8=-4x-2得6x+4x=-2+8
在解题过程中共同得出移项注意事项。
练习2:将下列方程进行移项变换(口答)
(1)3 x-4=1(2)2 x +3=5,(3)5 x = x +1(4)2 x-7=-5 x(5)4 x =3 x-8(6)x =3 x-5 x-9 【活动3】探究解ax+b=cx+d型方程的一般步骤
1、教师以框图规范解方程3x+20=4x-25的具体过程,要求学生明确每个步骤的依据。
师生总归纳结解ax+b=cx+d型方程的一般步骤:①移项;②合并同类项;③系数化为1 思考:
问题4:移项解这个方程时,移“谁”?怎么移? 问题5:解方程中“移项”作用是什么? 学生讨论、回答,师生共同整理:
通过移项,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。解方程的过程蕴含了数学中的化归思想。
2、例题示范 学生口述解题,教师板书规范思路、格式。
【设计意图】进一步巩固利用移项,合并同类项解方程的方法。
四、展示反馈
【活动4】综合运用 【设计意图】通过对移项方法的尝试运用,加深对该方法的理解与掌握突出本节课的重点,使学生能够掌握解决形如“ax+b=cx+d”的方程。出示课本上第90页练习第1题.(1)6x-7=4x-5(2)x-6= x(要求每组每人做1题,选代表上黑板解答,其他做完后对调批改,教师巡视指导.)
(补充练习)(3)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是多少?
五、课堂小结
通过本节课的学习,你有哪些收获?
1、解一元一次方程的又一种方法——移项
移项的依据是什么?移项的目的是什么?在移项过程中注意什么?
等式的性质1,使方程的已知项和未知项分别位于方程的左边和右边,使方程更接近于ax=b的形式,注意移项要变号.2、解形如“a x +b=c x +d”的方程的一般步骤:①移项;②合并同类项;③系数化为1。
3、今天学习了两种数学思想,请你说说它们分别是什么? 建模思想;化归思想.4、解决情景问题。
六、当堂测试
1、下列移项正确的是()A.从12-2 x =-6,得到12-6=2 x B.从-8 x +4=-5 x -2,得到-8 x +5 x =-2-4 C.从5 x +3=4 x +2,得到5 x -2=4 x -3 D.从-3 x -4=2 x -8,得到8-4=2 x -3 x。
2、对方程7x =6+4x进行移项,得_______,合并同类项,得_______,系数化为1,得_______.3、当x = _______时,5 x -8与x互为相反数。
4、写出一个一元一次方程,使得方程的解为x =-3,且方程的等号两边都含有未知数项和常数项.5、解方程:
(1)x-1=-5+2x(2)10y+7=12y-5-3y
6、小明根据方程5x+2=6x-8编写了一道应用题,请你把空缺部分补充完整并解该方程。某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,就比计划少2个; ________。请问手工小组有几人(设手工小组有x人)?
7、盈不足术是我国古代数学中的优秀算法.《九章算术》有这样一个问题: 今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?(译:一些人共同买东西,每人出八元钱,则多三元钱,每人出七元钱,则少四元钱.问有多少人,物价又是多少?)
【拓展训练】
某同学在解方程 5x+2=■x+3时,把■处的数字看错了,解的x=-4/3 , 则该同学把■看成多少?
七、作业布置
课本第91页习题3.2第3题、第11题.八、板书设计:
3.2解一元一次方程——移项
一、移项
二、例题讲解
1、移项法则 例3
2、移项的中注意事项
三、数学思想
第五篇:解一元一次方程移项教学反思
解一元一次方程移项教学反思1
在《一元一次方程》“移项”一课教学中,整体设计过程是这样的:先利用等式的性质来解方程,从而引出移项的概念,然后让学生利用移项的方法来解方程,当然是第一次接触这部分内容,所以在方程的解法选择上都是移项后,合并同类项。与前一节内容相比较,可感受到这种解法简单。讲解完成后给出随堂练习2个方程:(1)-4y-1=3y-8
(2)0.5n-3=1.5n+2让学生动手去做,仔细观察学生练习过程,出现了不少问题。课后总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号③没有移动的项也改变了符号。出现以上情况,主要是在教学设计中没有把本节课困难想到,总以为这节课很简单,没有困难,学生应该很轻松解决问题,以致于课后作业中也出现两大问题。第一:解题中部分同学仍采用原来的.等式性质解题,第二:移项的符号不改变是一个大问题。这一节课后给我的反思是:备课中细致环节还不够准确,课堂上反馈练习太少,另外在新教材教学中,教学有时还要借鉴老教材的一些好方法,这样长补短更好地提高课堂教学效果。
解一元一次方程移项教学反思2
《解一元一次方程合并同类项与移项》的教学反思
一、设计
1、复习回顾:什么叫一元一次方程?解方程就是最终将方程转化为什么形式?
2、让学生尝试解这两个方程:
(1)x+2x+4x=140;
(2)x+4=—6
3、学生做好后先分析第一个方程,左边做了什么变形?这样做起什么作用?再分析第二个方程,根据等式性质1由x+4=—6变形为x=—6—4发现数据怎么变化的?从而归纳出利用移项、合并同类项等方法解一元一次方程。
4、学生练习巩固、反馈。
5、最后小结收获与运用合并、移项的注意点。
二、反思
1、本堂课是在利用等式的性质的基础上归纳解一元一次方程的常规步骤,使解题更趋合理、简洁。因此在设计复习题时有意为后面做铺垫,一题多用。
2、合并同类项起到化简的作用,把含有未知数x的项合并成一项,从而达到把方程转化为ax=b的形式,其中a、b是常数;移项使方程中含未知数x的.项归到方程的同一边(一般在左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为ax=b的形式,其中a、b是常数;再将系数化为1,从而得到方程的解x=m,m为常数。整个过程体现了化归的数学思想。
3、在练习的过程中始终让学生铭记要移项首先要变号(变号移项),并知道它的依据,加深对变号的理解。
4、本堂课如果前面能更紧一些,最后有足够的时间让学生自主小结就更好了。
解一元一次方程移项教学反思3
在上这节课时,我采用了这样的流程:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的几个方程,让学生动手去做。
由于这节课是同课异构,我发现第一位老师上完课,学生做题过程大致有以下几种比较常见的情况:
①含未知数的项不知道如何处理;
②移项没有变号;
③没移动的项也改变了符号;(①、②两种情况出现最多);针对以上情况,我在上课时,先让有困难的'学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。
再让学生总结注意点,教师进行点拨。最后对解一元一次方程的一般步骤进行了小结,通过小结教师能很好地看出学生的知识形成和掌握情况。
作为本堂课的难点,也就是解方程过程中的移项变号问题,我认为:虽然教师的主导作用发挥出来了,但学生的主体作用没有得到很好的发挥,移项变号的法则不应是让学生记住其概念,而应是让学生在探究中去理解和掌握,在课堂上应让学生有足够的时间去讨论,去练习,教师有针对性的给学生中出现的错误予以纠正,这样才能达到事半功倍的效果,才能真正掌握好这一知识点。因此,在以后的教学中,首先在备课这一环节上,备课就是备学生,要充分朝学生方面考虑,有针对性地对教学重点和难点设计题型;同时在教学过程中要留有一定的时间让学生充分地探讨和交流,发挥学生学习的主观能动作用;再者,要有针对性地布置适量的练习,让其巩固,这样才能达到预期的教学效果。我想:对于本堂课存在的问题在以后的教学中要及时的进行解决,认真反思自己的教学方法和手段,及时反馈学生学习的信息,注重课堂教学效果。
解一元一次方程移项教学反思4
学生之前已经学习了用合并同类项的方法来解一元一次方程,这种方程的特点是含x的项全部在左边,常数项全部在右边。今天要学习的方程类型是两边都有x和常数项,通过移项的方法化归到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。
我是从复习旧知识开始,合并同类项一节解方程都是之前学过的知识,为本节课作铺垫,再引出课本上的“分书”问题,应用题本身对学生来说,理解上有点难度,讲解其中的数量关系不是本节课的重点,所以我避重就轻地给了学生分析提示,通过填空的形式,找出数量关系,进而列出方程。
列出方程后,发现方程两边都有x和常数项,这个方程怎么解?从而引出本节课的学习内容:怎样解此类方程。方程出示后,通过学生观察,怎样把它变为我们之前的方程,也就是含x的项全部要在左边,常数项在右边。学生回答右边的4x要去掉,根据等式性质1,两边要同时减去4x才成立。左边常数项20用同样的方法去掉,通过方框图一步步演示方程的变化,最后成为3x—4x=—25—20,变为之前学过的方程类型。
通过原方程、新方程的'比较(其中移项的数用不同颜色表示出来),发现变形后相当于把4x从右边移到左边变为—4x,20从左边移到右边变为—20,进而揭示什么是移项,在移项中强调要变号,没有移动的项是不要变号的,再让学生思考移项的作用:把它变为我们学过的合并同类项的方程。
学习了原理之后,把例题做完,板示解题步骤,特别是每一步的依据,进而给学生总结出移项解方程的三步:移项、合并同类项、系数化为1。
练习反馈环节,让学生自己练习一道解方程,明确各步骤,下面分别是移项正误判断、解方程、应用题,分层次让学生掌握移项法则以及解方程,最后再解决实际问题。
本节课主要存在的问题有:
1、对学生的实际情况了解不够,学生已经知道了移项变号的知识,那么怎样在认识的基础上再来讲授该知识,我有点困惑,还是接学生的话,通过学生来挖掘“移项”的原理。
2、语言不够简练,教师分析得多,学生的参与讨论性不高,发表看法机会少,限制了学生的语言表达能力和数学思维的锻炼。
3、课堂学生练习环节有问题,其中男生板演了一道题,以为简单就过了,实际在后面发现错了,导致教学进入到应用题部分,再回过头来纠错,这是课堂教学中的大忌。点评作业时,应该让学生多说是怎么做的,说出各步骤,使得学生真正掌握移项解一元一次方程的方法。在教学媒体允许的情况下,应该使用实物投影对学生作业进行点评,可以清晰地展示作业中的典型错误,从而更好地了解学生的。掌握情况。
解一元一次方程移项教学反思5
在《一元一次方程》“移项”一课教学中,整体设计过程是这样的:先利用等式的性质来解方程,从而引出移项的概念,然后让学生利用移项的方法来解方程,当然是第一次接触这部分内容,所以在方程的解法选择上都是移项后,合并同类项。与前一节内容相比较,可感受到这种解法简单。讲解完成后给出随堂练习四个方程:(1)10x—3=9(2)5x—2=7x+8(3)X=3/2x+16(4)1—3/2x=3x+5/2。让学生动手去做,仔细观察学生练习过程,出现了不少问题。课后总结一下,大致有以下几种比较常见的'情况:①含未知数的项不知道如何处理;②移项没有变号③没有移动的项也改变了符号。出现以上情况,主要是在教学设计中没有把本节课困难想到,总以为这节课很简单,没有困难,学生应该很轻松解决问题,以致于课后作业中也出现两大问题。第一:解题中部分同学仍采用原来的等式性质解题,第二:移项的符号不改变是一个大问题。这一节课后给我的反思是:备课中细致环节还不够准确,课堂上反馈练习太少,另外在新教材教学中,教学有时还要借鉴老教材的一些好方法,这样取长补短更好地提高课堂教学效果。
解一元一次方程移项教学反思6
在《一元一次方程》“移项”一课教学中,整体设计过程是这样的:先利用等式的性质来解方程,从而引出移项的概念,然后让学生利用移项的方法来解方程,当然是第一次接触这部分内容,所以在方程的`解法选择上都是移项后,合并同类项。与前一节内容相比较,可感受到这种解法简单。讲解完成后给出随堂练习2个方程:
(1)—4y—1=3y—8
(2)0.5n—3=1.5n+2让学生动手去做,仔细观察学生练习过程,出现了不少问题。课后总结一下,大致有以下几种比较常见的情况:
①含未知数的项不知道如何处理;
②移项没有变号
③没有移动的项也改变了符号。
出现以上情况,主要是在教学设计中没有把本节课困难想到,总以为这节课很简单,没有困难,学生应该很轻松解决问题,以致于课后作业中也出现两大问题。
第一:解题中部分同学仍采用原来的等式性质解题,第二:移项的符号不改变是一个大问题。这一节课后给我的反思是:备课中细致环节还不够准确,课堂上反馈练习太少,另外在新教材教学中,教学有时还要借鉴老教材的一些好方法,这样长补短更好地提高课堂教学效果。
解一元一次方程移项教学反思7
学生之前已经学习了用合并同类项的方法来解一元一次方程,这种方程的特点是含x的项全部在左边,常数项全部在右边。今天要学习的方程类型是两边都有x和常数项,通过移项的方法化归到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。
我是从复习旧知识开始,合并同类项一节解方程都是之前学过的知识,为本节课作铺垫,再引出课本上的“分书”问题,应用题本身对学生来说,理解上有点难度,讲解其中的数量关系不是本节课的重点,所以我避重就轻地给了学生分析提示,通过填空的形式,找出数量关系,进而列出方程。
列出方程后,发现方程两边都有x和常数项,这个方程怎么解?从而引出本节课的学习内容:怎样解此类方程。方程出示后,通过学生观察,怎样把它变为我们之前的方程,也就是含x的项全部要在左边,常数项在右边。学生回答右边的.4x要去掉,根据等式性质1,两边要同时减去4x才成立。左边常数项20用同样的方法去掉,通过方框图一步步演示方程的变化,最后成为3x—4x=—25—20,变为之前学过的方程类型。
通过原方程、新方程的比较(其中移项的数用不同颜色表示出来),发现变形后相当于把4x从右边移到左边变为—4x,20从左边移到右边变为—20,进而揭示什么是移项,在移项中强调要变号,没有移动的项是不要变号的,再让学生思考移项的作用:把它变为我们学过的合并同类项的方程。
学习了原理之后,把例题做完,板示解题步骤,特别是每一步的依据,进而给学生总结出移项解方程的三步:移项、合并同类项、系数化为1。
练习反馈环节,让学生自己练习一道解方程,明确各步骤,下面分别是移项正误判断、解方程、应用题,分层次让学生掌握移项法则以及解方程,最后再解决实际问题。
本节课主要存在的问题有:
1、对学生的实际情况了解不够,学生已经知道了移项变号的知识,那么怎样在认识的基础上再来讲授该知识,我有点困惑,还是接学生的话,通过学生来挖掘“移项”的原理。
2、语言不够简练,教师分析得多,学生的参与讨论性不高,发表看法机会少,限制了学生的语言表达能力和数学思维的锻炼。
3、课堂学生练习环节有问题,其中男生板演了一道题,以为简单就过了,实际在后面发现错了,导致教学进入到应用题部分,再回过头来纠错,这是课堂教学中的大忌。点评作业时,应该让学生多说是怎么做的,说出各步骤,使得学生真正掌握移项解一元一次方程的方法。在教学媒体允许的情况下,应该使用实物投影对学生作业进行点评,可以清晰地展示作业中的典型错误,从而更好地了解学生的掌握情况。