《解方程》教学设计

时间:2022-04-08 15:44:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了5篇相关的《《解方程》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《解方程》教学设计》。

第一篇:《解方程》教学设计

《解方程》教学设计

教学目标:

1.通过课件演示操作理解天平平衡的原理。

2.初步理解方程的解和解方程的含义。

3.会解形如x+a=b, x-a=b 的方程,会检验-一个具体的值是不是方程的解,掌握检验的格式。

4.提高学生的比较、分析的能力,培养学生的合作交流的意识。

教学重点:运用等式的性质1解方程。

教学难点:理解方程的解和解方程的含义,会检验方程的解。

教学过程:

一、知识铺垫回顾等式的性质1

在○里填运算符号,在()里填数字。

如果 x+5=38

那么 x+5○()=38○()

指名完成,第一题你这样填的依据是什么?

今天我们就利用等式的性质1解方程(板书课题:解方程)

二、解方程

1.这有一个盒子,你猜猜这盒子里可能有几个球?(可以是任意数)

我再给你一些条件,已知箱子里的球再加上3个球共9个球,那盒子里球的数量还能是任意数吗?

你能根据这幅图的意思列一个方程吗?

生列的方程有: x+3=9 9-x=3,重点讨论: x+3=9

师:在这个方程中,x的值是多少呢?请同学们想一想。(同桌交流一下,互相说说你的想法),然后在堂练本上试着写一下这个找x的过程。

2.师巡视,了解学情

(1).运用四则运算各部分之间的关系来解方程。

(2).用等式的性质来解方程。

3.展示

(1)利用等式的性质,看一下这位同学的,为什么减去3而不是加3或是减其他数呢?(可以使方程的一边只剩x,就可以知道x=?)

我还想问:两边都拿掉3个,天平还能平衡吗?两边还相等吗?为什么?(天平演示)

(2)利用四则运算各部分之间的关系

对比引导学生体会用等式的性质来解方程的优越性。

学到这,我想问一下,解方程的时候我们要注意什么呢?(指名回答)

需要提醒一下各位同学的,解方程要注意:

(1)、先写“解:”。

(2)、利用等式的性质,使方程左边只剩下x。(注意:“=”要对齐)

(3)、求出x的值。(注意:x =6 后面不带单位,因为它是一个数值。)

4.介绍概念:

下面我有两个问题想知道,什么叫“方程的解”;什么叫“解方程”,像这个方程x+3=9,它的解是什么呢?请学生回答。

三、验算

师:刚才我们解出来x=6是不是正确的答案呢?你觉得可以怎样检验?

学生各抒己见

师:大家心里都有了想法,但方程的检验也是有一定格式的,接下来请同学们把目光聚焦到白板上学习检验的方法及书写格式。

师小结:大家学会了吗?接下来我们要把我们学到的知识运用到练习中。

请在堂练本完成书本 67页做一做,第一题请检验。

四、展示。

师生点评学生的练习,格式各方面

五、谈收获。

第二篇:《解方程》教学设计

《解方程》教学设计

教学内容:教材P67例

1、教学目标:

(1)知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。(2)过程与方法:利用等式的性质解简易方程。

(3)情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:理解“方程的解”和“解方程”之间的联系和区别。教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证.教学准备:多媒体。教学过程 : 一.复习导入:

提问:(1)什么叫做方程?

(2)方程和等式之间的关系是什么?

(3)等式的性质有哪些。

(3)判断下面的是不是方程? 1.4x=9.8

+y<30

21÷7=3

(3x-8y=14 二.新课讲授:并出示教材第67页例1情境图。

问:从图上你知道了哪些信息? 引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

(学生能快速并正确的列出方程,但是今天我们要学习的不仅是列出方程,而是如何求出x的值。同学们自己讨论,交流,最后请同学们来说一说,通过说了以后,让同学把我们刚才的文字语言转换成我们的数学符号和数字。

1.汇报:x +3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

4.师小结:刚才我们计算出的x =6,就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

验算:x =6是不是正确答案呢?我们怎么来检验一下? 引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。方程的左边:=x+3

=6+3

=9

=方程的右边

所以,X=6方程的解 让学生尝试验算,并注意指导书写。

5.我们除了用等式的性质来解方程,我们是否还可以用别的方法来解,请同学们思考并回答,还可以根据加数+加数=和。一个加数=和-另一个加数,我们就可以得到

x +3=9

解:

x=9-3 X=6

让学生对比两种解法,对比两种解法那种更好理解,更方便,三:巩固练习

(1)解方程,(用你喜欢的方法解并检验)

3.5+x=10.77 250-x=100(2)小明的妈妈以前买了100千克的大米,现在已经吃了y 千克,还剩下32千克。已经吃了的大米是多少千克?

四.总结这堂课学习了什么? 五.板书设计:

方法一:x +3=9

解:

x +3-3=9-3

x =6

检验:方程的左边 =x+3

=6+3

=9

=方程的右边

所以,X=6方程的解。

方法二:

x +3=9

解:

x=9-3 X=6

使方程左右两边相等的未知数的值,叫做方程的解。求方程的解得过程叫做解方程。

第三篇:《解方程》教学设计

《解方程》第一课时教学设计

教学时间:2018年11月5日

教学内容:教材P67例1及做一做。教材分析:

本节课是五年级数学下册第五单元《解简易方程》中解简易方程的第三课时“解方程(一)”的内容,本节课是学生在掌握了等式的性质及方程的意义及理解“方程的解”与“解方程”的含义的基础上继续学习解方程。主要讨论x+a=b,ax=b,x÷a=b的方程的解法。这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的重点内容之一,与原有教材不相同的是,新课标实验教材以等式的基础性质为基础,而不是依据逆运算关系教学解方程,这有利于加强中小学数学教学的衔接。对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。本节课是数与代数领域的重要内容,由于学生在前面已经积累了大量采用逆运算关系来解方程的经验,再结合我校开展的“小学数学教学一题多解·培养学生发散思维”的课题研究,在本课的教学中,我将同时鼓励学生采用不同的方法——等式的性质或依据逆运算关系去解方程。教学目标:

1、使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、用不同的方法(等式的性质或依据逆运算关系)解简易方程,培养学生的代数思想。

3、培养规范书写和自觉检查的习惯。教学重点:

理解“方程的解”和“解方程”之间的联系和区别;用不同的方法(等式的性质或依据逆运算关系)解方程。教学难点:

引导学生确立解方程的一般思路,掌握正确的解方程格式及检验方法。教学方法:创设情境;观察、猜想、验证。教学准备:多媒体。教学过程:

一、情境导入

1、谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)

2、教师继续通过多媒体补充条件,并出示教材第67页例1情境图。问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

3、并用等式表示:x+3=9(教师板书)

二、新知探究

(一)教学67页例1

1、先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。学生思考、交流,并尝试说一说自己的想法。

2、教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。

长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x+3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。)

3、追问:怎样用算式表示?学生交流,汇报:

x+3=9 解:x +3-3=9-3 x=6 质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

3、师小结:刚才我们计算出的x=6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x=6就是方程x+3=9的解。求方程解的过程叫做解方程。(板书:方程的解

解方程)

4、引导:谁来说一说,方程的解和解方程有什么区别?

学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

5、验算:x=6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边=x+3

=6+8

=9

=方程右边

让学生尝试验算,并注意指导书写。

6、想一想:你还有其他方法解方程:x+3=9吗?(鼓励学生依据逆运算关系解方程。)

x+3=9 解: x=9-3

x=6

三、巩固拓展

1、根据解方程的过程填一填。

(1)x+90=160 x+90=160 解:x+90-()=160-()解: x=160()x=()x=()(2)x-18=7 x-18=7 解:x-18+()=7+()解:x=7+()x=()x=()

2、判断。(对的打“√”,错的打“×”)(1)使方程左右两边相等的未知数的值,叫做方程的解。()(2)x=4是方程x-6=10的解。()(3)解方程9+x=16时,方程左右两边要加上9。()(4)x+y=0不是方程。()

3、完成教材第67页“做一做”第1、2题。

4、你能求出课本62页水的质量吗?

5、看图列方程并解答。

287

四、课堂小结

1、师:这节课你学会了什么知识?有哪些收获? 引导总结:(1)解方程时是根据等式的性质来解。

(2)使方程左右两边相等的未知数的值,叫做方程的解。(3)求方程解的过程叫做解方程。

2、作业:教材第70~71页练习十五第1、2、7题。3

第四篇:解方程教学设计

解方程教学设计

教学内容:

五年级数学(人教版)上册第57、58页的内容。教学目标: 知识与技能:

(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)能用等式的性质解简易方程,并掌握检验的方法。过程与方法:

结合生活中的实例和学生已有的知识,采用多媒体,通过学生探索、讨论、交流等活动,让学生初步理解解方程及方程的解的概念,并掌握解方程及检验的方法。情感态度与价值观:

感受简易方程与现实生活的密切联系;培养学生的数学语言表达能力,让学生养成良好的学习习惯。

教学重、难点:(1)“方程的解”和“解方程”的含义。(2)理解并掌握解方程的方法。教学准备: 多媒体课件 教学过程:

一、游戏导入,揭示课题

1、师生共同做个游戏:用手指指尖顶住直尺,使直尺能保持平衡,感知平衡。

说说生活中,你还见过哪些平衡现象?

2、勤劳聪明的人类根据平衡原理制成了天平,今天我们要借助天平来学习新的知识《解方程》。(板书课题)看了课题,同学们想知道些什么?

3、同学们我们已经学了方程的意义,你还记得什么叫方程吗?

4、你能判断下面哪些是方程吗?说说你的判断理由。(1)x+24=7

3(2)4x<36+17

(3)72=x-16

(4)x+8

5(因为它含有未知数,而且是等式。)

二、探究新知

(一)理解方程的解和解方程

1、看图写方程

(1)师:同学们真厉害把学过的知识全都记得,请同学们观察这幅图(课件出示天平图)从图中你知道了什么?(2)你能根据这幅图列出方程吗?

学生思考后回答:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学习的内容其中一个知识点解方程。

2、求方程中的未知数

方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报教师随着学生的回答演示课件)

3、引出方程的解和解方程两个概念

(1)利用课件帮助学生理解。

(2)“方程的解”和“解方程”这两个概念相同吗?

教师小结:“解方程”是指求未知数的过程,它是一个计算过程。“方程的解”是指未知数的值,这个值必须使这个方程左右两边相等。

(3)练习:下面括号中,哪个是方程的解?(同桌讨论)X+8=1

5(x=x=7)

(二)教学例1

1、课件出示书本第58页的例1(1)图上画的是什么?你能列出方程吗?(X+3=9)

(2)X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解。

2、引导学生思考怎样解方程。

(1)我们解方程的目的是求X,怎样才能使天平左边只剩x呢?

(根据学生回答后,演示课件:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。)

(2)为什么同时减3而不是减其它数呢?(3)这时X的值是多少?

3、检验方程的解.问:我们怎么验证X=6是这个方程的解呢?(将X=6代入原方程,看方程的左边是否等于方程的右边。)引导学生对方程进行检验,教会学生检验的方法。

4、强调解方程的格式步骤 电脑显示:

解方程要注意:

(1)先写“解”,等号要对齐。(2)做完后要注意检验。

5、看书质疑

三、实践应用

1、下面的方程你打算怎样算。

①X+0.3=1.8

②X+5=32

2、引导学生小结解方程的步骤。

四、课堂小结 拓展延伸

1、通过今天的学习,你有什么收获?

师:请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

2、你会解下面的方程吗?

x-2=15(说出你做题的根据)

作业:课本P63第4题,第5题第一横排。

第五篇:《解方程》教学设计

——三岔河镇2009—2010学年上学期数学课堂教研课赛

《解方程 》教学设计

太平明德小学 太灿华

【教学内容】:《义务教育课程标准实验教科书数学》五年级上册第58、59页例

1、例2。

【教材分析】:

本节课是学生在掌握了等式的性质及方程的意义的基础上正式学习解方程的初始课。主要讨论x+a=b,ax=b的方程的解法。这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的重点内容之一。对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。

【教学目标】:

1、能根据等式的性质解较简单的方程。

2、通过探究较简单的方程的解法,培养利用已有知识解决问题的意识和能力。

3、培养规范书写和自觉检查的习惯。

【教学准备】:挂图、天平、小球、小黑板等。【教学课时】:1课时。【教学过程】:

(一)、复习旧知,导入新课

1、什么叫方程的解?什么叫解方程?

方程的解:使方程左右两边相等的未知数的值,叫做方程的解; 解方程:求方程的解的过程叫做解方程;

揭示课题:这节课我们就来学习解最简单的方程——简易方程。板书:解简易方程。(学生齐读课题)

(二)、提出问题,探究新知

1、提出问题,教学例1 师:请看挂图,请你说出图上的意思。(盒子里有x个小球,盒子外有3个球,合起来一共是9个小球。)

师:能不能用我们新学的方程解决这个问题

学生列出方程:X+3=9(引导学生根据加法的意义列出方程。)

师:同学们根据加法的意义的到方程X+3=9,(板书:X+3=9)那么X是多少?(异口同声说6)

X+3=9 解: X+3-3=9-3 X=6 提问书写解方程的过程要注意什么?

教师示范书写格式,①、先写方程X+3=9。②、接下来写“解:”。③、方程的左右两边同时减去3。④方程的左边只剩下未知数X。方程的右边9-3是6。得到方程的解是X=6。

在这里需要强调一点,解方程时每一步得到的都是一个等式,不能连等。另外还要注意等号对齐。

师:X=6是不是就是正确答案呢?我们来验算一下。指名学生回答,教师板书:方程的左边= X+3 =6+3 =9 =方程的右边

所以X=6是方程的解

像这样我们就把X+3=9这个方程的解解了出来,那么我们是怎么做到的?

我们是在方程两边同时减去同一个数,方程左右两边仍然相等。

5、巩固练习

20+x=47 解: 20+x○□=47○□ x=□

(自己解方程,对照答案,检查自己做的,哪儿错了。)

(设计意图:从一开始就强化必要的书写规范,以发挥首次感知先入为主的强势效应,有利于促进良好的书写习惯的形成。)

6、教学例2 师:同学们我们刚才用解方程的方法求出了X+3=9这个方程的解是X=6那么你对解方程这个概念是不是有一点感觉不知道换一种形式你还有没有把握。

出示例2:解方程3X=18 师:你能用解这个方程吗? 3X表示什么意思?

那么这个方程就可以理解成已知3个X等于18,求一个X等于多少? 师:请同学们独立思考,自己试着完成例2的填空,并自己验算。

7、讨论交流:

①、你是怎样让方程的左边只剩下X,还能让方程的两边相等? ②、怎样把这个过程在方程中表示出来,又使方程左右两边保持相等?

3X÷3=18÷3

下载《解方程》教学设计word格式文档
下载《解方程》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《解方程》教学设计

    《解方程》教学设计 江西省萍乡市莲花县城厢小学:贺建蓉 教学内容: 人教版数学五年级上册第57-58页“解方程”。 教学目标: 1、以“学生的发展为本,以活动为主线,以创新为主旨”,......

    解方程教学设计

    《解方程》教学设计 教学内容:《义务教育课程标准实验教科书数学》五年级上册第57、58页例1 教学目标:1、初步理解方程的解和解方程的含义,能根据等式的性质解较简单的方程。会......

    《解方程》教学设计

    教学内容: 教材p67~68例1、例2、例3及练习十五第1、2、7题。 教学目标: 知识与技能:使学生初步理解方程的解与解方程的含义以及方程的解和解方程之间的联系和区别。 过程与......

    解方程教学设计

    解方程教学设计(公开课) 学习内容:人教版五年级上册P57页 学习目标: 1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,进一步理解方程的......

    解方程教学设计

    《解方程》教学设计 教学内容:人教版五年级数学上册67页例1。 教学目标: 知识与技能: 1、使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联......

    解方程教学设计

    4.解方程 第1课时 解方程(一) 【教学内容】教科书第83页例1、例2,练习二十四第1~3题。 【教学目标】 1.理解方程的解、解方程的意义。 2.借助天平图等几何直观手段,探究并理解解......

    解方程教学设计

    解方程教学设计 焦村镇辛庄小学 尚旭东 教学内容:第九册教材57——58页内容。 教学目标: 1、 知识目标:初步学会如何利用方程来解应用题。 2、 能力目标:能比较熟练的解方程。......

    《解方程》教学设计

    《解方程》教学设计 要庄完小 刘齐斌 基本信息: 课题:解方程 教材所属目录:冀教版小学数学五年级第八单元方程 教学目标: 1.结合具体事例,经历应用等式的性质解方程以及检验方程......