第一篇:九级数学下册.二次函数的应用教学设计(新版)青岛版(新)-课件
二次函数的应用
教材分析:
二次函数是中学数学中的第三类基本函数,是数形结合的典型之一,是中学数学的知识重点。二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。最值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,为求解最大利润等问题奠定基础。其目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。学情分析:
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。教学目标:
1、经历数学建模的基本过程。
2、会运用二次函数求实际问题中的最大值或最小值。
3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。教学重点:
利用二次函数的图象与性质求实际问题中的最大值或最小值。教学难点:
正确分析问题,找到解决问题的途径,建立适当的数学模型解决实际问题。教学方法:
由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。教学过程:
一、课前检测:
21.二次函数y=x-2x+3的顶点坐标是,当x 时,y随x的增大而增大,当x 时,y有最 值,是。
22.已知二次函数y=x-2x+3,当0≤x<4时,当x 时,y有最 值,是。
23.已知二次函数y=x-2x+3,当2≤x<4时,当x 时,y有最 值,是。(学生自主做完后,交流答案,教师适时进行纠错指导。)
(设计意图:学生经历由易到难求二次函数最值的过程,为二次函数应用做好铺垫。)
二、新知体验:一“形”多“模”
体验一:如图,矩形ABCD的一边靠墙,另三边用长为60米的竹篱笆围成,若矩形的宽为x米,面积是450平方米,求这个矩形的长。
体验二:若矩形的宽AB长为x米,面积为60平方米,写出矩形的长y(米)与x(米)的函
数关系式.体验三:若矩形的宽AB长为x米,另三边的长为60米,写出矩形的长y(米)与宽x(米)的函数关系式.体验四:若矩形的宽AB长为x米,另三边的长为60米,写出矩形的面积s(平方米)与宽x(米)的函数关系式.(学生积极思考,自己解答,小组内讨论,教师给予引导。)
(设计意图:这四个体验的求解分别是一元二次方程、反比例函数、一次函数、二次函数,它们都是数学中的模型,函数的取值在自变量的取值范围内有无数个,其中二次函数还有最值,从而进入本节的学习。)
三、新知应用:一题多变
(一)例1 用篱笆围成一个有一边靠墙的矩形养鸡场,已知篱笆的长度为60m,问:应该怎样设计才能使养鸡场的面积最大?最大面积是多少?
(高程生到黑板板演,其余同学在练习本上做出;然后小组内展示、交流,最后教师根据学生存在的问题进行讲解。)
(设计意图:例1是把体验4转变成了一个实际问题,首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑自变量的取值,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)
(解答例1之后及时让学生总结方法,为下一阶段的学习打下思想方法基础。)归纳总结:如何运用二次函数求实际问题中的最大值或最小值? 1.首先求出函数解析式 2.求出自变量的取值范围,3.通过配方变形或利用公式法,求它的最大值或最小值。(学生畅所欲言,自己归纳得出二次函数应用求最值的步骤。)
(二)变式训练1:用篱笆围成一个有一边靠墙的矩形养鸡场,已知篱笆的长度为60m,墙长32m,问:应该怎样设计才能使养鸡场的面积最大?最大面积是多少?
变式训练2:用篱笆围成一个有一边靠墙的矩形养鸡场,已知篱笆的长度为60m,墙长18m,问:应该怎样设计才能使养鸡场的面积最大?最大面积是多少?
(设计意图:例
1、变式
1、变式2围绕同一个背景,使用一题多变,能够更好地让学生理解其异同及解法的不同。变式2是在前两个问题的基础上对自变量取值进行改变,意在体现对函数图象顶点、端点与最值关系的理解与应用。通过此题的有意训练,学生必然会对自变量的取值有更加深刻的理解。)
注:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定。
四、知识升华:多形一变
如图,ABCD是一块边长为2m的正方形铁板,在边AB上取一点M,分别以AM,MB为边截取
两块相邻的正方形板材,当AM的长为多少时,截取的板材面积最小?
c
(学生自主完成后,组长本组内交流答案,高程生讲解,教师适时点评。)
(设计意图:此题是对本节所学知识的进一步升华与巩固,使学生深刻体会到,解决这类问题,首先要建立二次函数的数学模型,将生产实际中的最大值和最小值问题,转化为利用二次函数的性质解决。)
五、课堂小结:学习了今天的内容,你最深的感受是什么?
实际问题实际问题的解答数学模型回归实际问题转化为数学问题数学结论
(1)利用二次函数的最值问题可以解决实际几何问题。
(2)实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处。
(对本节知识的总结,先让学生交流总结,然后教师适时点拨,让学生对于最值问题的解决有一定的思路。)(设计意图:在教师的引导下,学生自主进行归纳,使所学的知识及时纳入学生的认知结构。)
六、堂堂清检测题 基础题:
1.已知某矩形周长为20厘米,一边长为x厘米,当x= 时,此矩形的面积最大,最大是平方厘米。拓展题:
(2014•四川成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
2(1)若花园的面积为192m,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
七、布置作业:必做题:P51、1;能力题:P56、4 教学反思:
函数的应用一直是数学中的一大难点,如何让学生灵活运用函数的相关性质解决相关的实际问题,是我们一直在探讨和思考的问题。性质的应用应是在对性质掌握熟练的情况下进行,并且要注意教学策略,知识的应用要符合学生的认知水平,由已知到未知,由简单到复杂。在整节课的教学过程中,注重学生分析问题、解决问题能力的培养,能够将实际问题转化为数学问题,体会数学中的建模思想。
第二篇:九级数学下册.圆锥的侧面展开图教学设计(新版)青岛版(新)-课件
圆锥的侧面展开图
预习要求:
1.先精读教材P149-P152初步了解圆锥的有关概念,再针对预习案二次阅读教材,解答预习案中的问题;疑惑随时记录在“我的疑惑”栏内,准备课上讨论质疑.2.本节要点是:计算圆锥的侧面积和表面积以及圆锥中的最短路径,通过观察圆锥的形成过程,理解它的基本概念,认识它的底面、侧面,感受“面动成体”的过程,体会转化思想。
3.制作一个直角三角形,绕一直角边进行旋转,观察旋转后的几何体,思考圆锥的形成过程。4.剪一个扇形,并将其卷成一个圆锥,思考圆锥的侧面展开图是一个怎样的平面图形。5.回顾半径为r,圆心角为的弧长公式和扇形的面积公式。课前准备与提示:
带上我们的激情,动力和目标,让我们前行!送给孩子们一句话:只要激情在,一切皆有可能!教学过程 情境导入
圣诞节当天老师收到了一顶圣诞帽,(展示图片)给出问题:帽身是什么几何体? 学生:圆锥
给出问题2:若圆锥形帽身的母线长为40cm,底面半径是10cm,你能计算出制作这顶帽子的帽身所需要的布料吗?(不及接缝用料)引导学生思考要计算圆锥形帽身的用料,也就是计算圆锥侧面展开图的扇形面积,用刚刚结束的圣诞节为主题引入新课激发起学生的学习兴趣,并且跃跃欲试,老师手里的这顶圣诞帽到底用料多少?带着这个问题开启新课。——圆锥的侧面展开图 解读学习目标
首先.理解圆锥的基本概念,会计算它的侧面积和表面积,并能解决最短距离问题.通过本节课的学习进一步.体会转化的思想.感受数学与实际生活的联系.(通过学习目标的解读,让学生明白本节课要学习哪些知识,要达到哪些能力学会哪些思维方法)探究学习
要求以及要点:
1.结合手中的圆锥理解圆锥的侧面展开过程及相应的对应关系,并能推导圆锥侧面积公式,探究圆锥中的最短路径问题。
2.自主探究过程中遇到的疑惑用红笔进行勾画和标记,以备讨论过程中解决。3.注意总结题目的解题规律、方法。原生态展示:
学生当堂完成探究,个别小组进行现场展示,大屏幕打出展示分工任务以及展示小组和地点以及展示要求.展示完成的小组回到原地继续完成其他题目。展示要求:
①展示人及时到位,规范快速。注意总结题目的易错点和考查知识点,尝试总结规律方法。
②其他同学认真完成探究案,并注意勾画疑难问题,准备在讨论中解决。展示结束同学完成探究案其他题目。
展示分工以及展示位置如图: 展示具体内容(详见附录本节课预习案以及探究案)
A B C 通过学生的原生态展示能够很好地发现学生容易出错的关键点,以及观察学生的自主学习状态,提升学生的应变能力和限时训练能力。学习超市(组内→组间讨论)重点探究:
1.面动成体:直角三角形 → 圆锥 例1 2.圆锥中的最短路径:将曲面转化为平面,将曲线转化为直线 例2 要求:
1.组内先一对一讨论,再互相交流,红笔标记未解决问题,在组间进行交流,仍未解决的疑惑问题及时写在黑板的疑问区。
2.组间讨论时题目注意总结题目的解题规律、方法和易错点。
通过学生在组内的讨论发现问题,借助小组的力量第一次完成智慧的碰撞,找到小组内未解决的问题,然后自由自合。在新生成的小组内继续讨论解决问题,提升学生的口头表达能力以及应变能力,让学生自由发挥,老师课前进行必要的培训提升学生的点评能力。
超市结束后,让学生自主整理5分钟,思考本节课收获以及规律方法的总结。表述反馈
1.将你的疑惑提出来,我们一同分享 2.将你的所得说一说,我们共同分享
通过学生的自主总结,让学生站在学生的角度上,进一步理解和掌握本节课基本知识,并能从中知道学生的掌握程度以及在超市过程中,点评同学的点评程度。
在学生自我总结的过程中老师给予相应的总结提升,进一步凝练本节课知识点以及回扣目标。拓展提升
回扣本节引课,通过本节课的知识能否解决开篇问题,圣诞帽的帽身用料。通过例2,进一步拓展圆锥中的最短路径问题。
如图,一个圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点B出发,沿圆锥的侧面爬过母线AB的轴截面上另一母线AC上,问它爬行的最短路径是多少? 首先让全体学生进行思考,现场作答,提升学生的思维能力和应变能力。整理巩固
整理本节课的收获,落实本节课的学案。学科班长进行总结
学科班长对本节课的情况进行总结,老师结合初三的学生特点进行情感升华,在以后的学习和生活中,善于转化,将复杂问题简单化,将困难问题容易化,相信未来的你一定不平凡!
注:后附本节课预习学案,探究学案
圆锥的侧面展开图 预习案
班级:________ 小组:________ 姓名:_________ 等级:__________ 【学习目标】
1.理解圆锥的基本概念,会计算它的侧面积和表面积,并能解决最短距离问题.2.体会转化的思想。
3.感受数学与实际生活的联系.【重点】圆锥的形成过程以及圆锥的基本概念,计算圆锥的侧面积、表面积.【难点】准确进行圆锥有关数据与展开图有关数据的转化.【使用说明与学法指导】
先精读教材P149-P152初步了解圆锥的有关概念,再针对预习案二次阅读教材,解答预习案中的问题;疑惑随时记录在“我的疑惑”栏内,准备课上讨论质疑.本节要点是:计算圆锥的侧面积和表面积以及圆锥中的最短路径,通过观察圆锥的形成过程,理解它的基本概念,认识它的底面、侧面,感受“面动成体”的过程,体会转化思想。知识回顾
请写出右图半径为r,圆心角为的弧长公式和扇形的面积公式
二、基础过关
1.圆锥的形成
请从旋转的角度叙述圆锥的形成过程,以右图圆锥为例。
将Rt△OAB绕它的一条直角边 旋转一周,便得到一个。另一条直角边OB旋转所成的面是圆锥的 面,斜边AB旋转所成的面是圆锥的 面。2.圆锥的侧面展开
(1)结合图形,写出圆锥的顶点,母线,高。
若圆锥的高是h,底面圆的半径是r,母线长为l,试写出h,r,l三者之间的关系:
(3)将圆锥的侧面沿它的一条母线展开,得到的图形是
(4)比较圆锥和它的侧面展开图,探究圆锥的母线与侧面展开图的半径有什么关系?圆锥的底面周长与侧面展开图中的扇形弧长有怎样的关系?
若圆锥的底面圆的半径为r,母线长为l,则圆锥的侧面积公式是什么?表面积公式是什么?
预习自测
一个扇形,半径长为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为________.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.3.若圆锥的底面半径r =4cm,高线h =3cm,则它的侧面展开图中扇形的圆心角是 ______.4.如图,若圆锥的侧面展开图是半圆,那么这个展开图的圆心角是___度;圆锥底半径 r与母线 l 的比r :l = ______ ;这个圆锥轴截面的顶角是_______.5.圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是 _______.6.已知:在RtABC中,C90,AB5,BC3,求以AB为轴旋转一周所得到的几何体的 A 表面积.DC
B
四、我的疑惑
圆锥的侧面展开图 探究案
班级:________ 小组:________ 姓名:_________ 等级:__________ 【学习目标】
1.理解圆锥的基本概念,会计算它的侧面积和表面积,并能解决最短距离问题.2.体会转化的思想。
3.感受数学与实际生活的联系.【重点】计算圆锥的侧面积、表面积,以及圆锥中的最短路径问题.【难点】准确进行圆锥中的数据与展开图有关数据的转化.例1.直角三角形的两条直角边的长分别为3和4,分别以它们所在的直线为轴旋转一周,求所得的 立体图形的表面积.例2.如图,圆锥的底面半径为1,母线长为6,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬行一圈再回到点B,问它爬行的最短路线是多少?
第三篇:二次函数的应用教学设计
二次函数的应用教学设计
一、教学分析
(一)教学内容分析
二次函数yax2bxc的图像和性质是人教版九年级数学下册的内容,是在学生学习了二次函数的基本概念及yax2bxc的图像和性质之后引入的新内容。本节课的教学内容既是对yax2bxc的图像和性质的引申,也是后面研究其它模块知识的基础。所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。
(二)教学对象分析
九年级的学生在前面的学习过程中已经接触过一次函数和反比例函数的内容,从学习情况看,他们对函数的理解和掌握情况并不理想。通过课下的了解,学生们对二次函数有一定的畏难情绪,对学习非常的不利,掌握图像和性质是本节应用的基础。所以我们在教学过程中,要想方设法的调动学生的积极性,帮助他们突破难点。
二、教学目标设计
(一)知识与技能: 通过本节学习,巩固二次函数yax2bxc,(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
(二)过程与方法:
能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
(三)情感、态度与价值观:
1、在进行探索活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
三、教学方法设计
由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
四、教学过程设计
(一)导学提纲
设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
(二)前情回顾:
1、复习二次函数yax2bxc,(a0)的图象、顶点坐标、对称轴和最值。
2、抛物线在什么位置取最值?(三)适当点拨,自主探究 1.在创设情境中发现问题
[做一做]:请你画一个周长为40厘米的矩形,算算它的面积是多少,再和同学比比,发现了什么,谁的面积最大,2、在解决问题中找出方法
[想一想]:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大,(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体会其应用价值——我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)
3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大,(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)
解:设垂直于墙的边AD=x米,则AB=(32-2x)米,设矩形面积为y米,得到: yx(322x),错解,由顶点公式得: x=8米时,y最大=128米
而实际上定义域为[11,16],由图象或增减性可知x=11米时,y最大=110米。(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)(四)总结交流:(1)同学们经历刚才的探究过程,想想解决此类问题的思路是什么,.(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?(五)我来试一试: 如图在RtABC中,点P在斜边AB上移动,PMBC,PNAC,M,N分别为垂足,已知AC=1,AB=2,求:(1)何时矩形PMCN的面积最大,把最大面积是多少?(2)当AM平分CAB时,求矩形PMCN的面积.作业:课本随堂练习、习题1,2,3
(六)板书设计
二次函数的应用——面积最大问题
五、课后反思
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流,让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。
就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。
第四篇:二次函数利润应用教学设计
二次函数与实际问题
利润的最大化问题——教学设计
教学目标:
1、探究实际问题与二次函数的关系
2、让学生掌握用二次函数最值的性质解决最大值问题的方法
3、让学生充分感受实际情景与数学知识合理转化的过程,体会如何遇到问题—提出问题—解决问题的思考脉络。教学重点:
探究利用二次函数的最大值性质解决实际问题的方法 教学难点:
如何将实际问题转化为二次函数的数学问题,并利用函数性质进行决策 教学过程 : 情境设置:水果店售某种水果,平均每天售出20千克,每千克售价60元,进价20元。经市场调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量减少1千克;若每降价1元,日销售量将增加2千克。现商店为增加利润,扩大销售,尽量减少库存,决定采取适当措施。
(1)如果水果店日销水果要盈利1200元,那么每千克这种水果应涨价或降价多少元?
解:设每千克这种水果降价x元。
(60-20-x)(20+2x)=1200
解得x=10或x =20 水果店扩大销售,尽量减少库存 x=10不合题意,舍 x=20 答:每千克这种水果应降价20元。
(2)如果水果店日销水果要盈利最多,应如何调价?最多获利多少元?
设计:问题1是利用一元二次方程解决问题,引导学生先根据题意判断出应只选择降价,只是一种可能。通过分析“降价”让学生自主完成,教师点评,强调验根。因学生已经学习过一元二次方程,困难不会太大。
问题2,引导学生由一元二次方程过度到二次函数,并想到利用二次函数最值的性质去解决问题。给学生空间时间去思考。老师问两个问题;1 怎样设?2什么方法去解决?
解:设每千克这种水果降价x元。y=(60-20-x)(20+2x)=-2 x²+60x+800(0< x≤40)a=-2<0 y有最大值
当x= 15时,y最大 此时,y=1250
答:每千克应降价15元,使获利最多,最多可获利1250元。得到答案后,学生自做帮学生梳理过程,并画图象,更深刻体会。易忽略自变取值范围。
小结:解决利润最大化问题的基本方法和步骤: 方法:二次函数思想
步骤
1、设自变量
2、建立函数解析式
3、确定自变量取值范围
4、顶点公式求出最值(在自变量取值范围内)
变式:若将题中“扩大销售,尽量减少库存”去掉,水果店应如何调价?
解:分两种情况讨论:
(1)设每千克这种水果降价x元。y=(60-20-x)(20+2x)=-2 x²+60x+800(0< x≤40)a=-2<0 y有最大值
当x =15时,y最大 此时,y=1250 答:每千克应降价15元,使获利最多,最多可获利1250元。
(2)设每千克这种水果应涨价x元 y=(60-20+x)(20-x)=-x²-20x+800(0< x≤20)a=-1<0 y有最大值 x =-10-10<0
当x>-10 时,y随x增大而减小
当x=0时,y取最大值
此时y=800 由上述讨论可知:应每千克降价15元,获利最多,最多可获利为1250元。
让学生想到是二种可能,涨价和降价,得分类讨论思想,函数思想,数形结合思想。强调在自变量取值范围内取最值,如顶点不在这个范围,根据函数图象的增减性来判断,而且实际问题的图象不是整个的抛物线,而是局部,这取决于自变量取值范围。学生自己整哩书写,教师指导。练习与作业
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件。设每件涨价x元(x为非负整数),每星期的销售为y件。
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
第五篇:二次函数的应用教学设计专题
课题 :第26章 二次函数 专项训练 抛物线的变换
教学背景:
二次函数是九年级下册数学中的重要教学内容,它从具体问题入手,通过实例巩固学生所学的知识。让学生通过平移旋转的特征,充分感受求解析式的重要性。
教学目标:
1、知识目标:学生能够利用平移旋转的特征;能够二次函数的关系式,从而熟练运用数形结合的方法解决问题。
2、技能目标:培养学生根据平移旋转的实际情况求二次函数关系式进行而解决问题的能力,引导学生把平移旋转实际化,即建立数学模型解决实际问题。
3、情感目标:经历“问题情境——自主探究——交流与讨论——猜想结论——得出结论”的数学思维、活动过程,体验成功的喜悦,感受数学与实际生活的紧密联系,增加学习数学的兴趣。
教学重点:利用平移旋转的特征感受二次函数关系式的变换规律 教学难点:利用平移旋转求二次函数关系式 教学用具:多媒体 教学过程:
一、引入练习:
1.点的坐标关于X轴对称坐标的特点,Y轴对称坐标的特点,原点对称坐标特点。
二、专项训练一
抛物线的平移
类型之一 抛物线与平移 1.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(D)A.y=3x2+2 B.y=3(x-1)2 C.y=3(x-1)2+2 D.y=2x2 2.(2015·临沂)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是(C)A.先向左平移1个单位,再向上平移2个单位 B.先向左平移1个单位,再向下平移2个单位 C.先向右平移1个单位,再向下平移2个单位 D.先向右平移1个单位,再向上平移2个单位
3.如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后抛物线的解析式是(C)A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1
14.如图在平面直角坐标系中,抛物线y=x2经过平移得21到抛物线y=x2-2x,其对称轴与两段抛物线弧所围成的阴2影部分的面积为(B)A.2 B.4 C.8 D.16
15.在平面直角坐标系中,把抛物线y=-x2+1向上平2移3个单位,再向左平移1个单位,则所得抛物线的解析式1是__y=-(x+1)2+4__. 26.已知二次函数y=3x2的图象不动,把x轴向上平移2个单位长度,那么在新的坐标系下此抛物线的解析式是__y=3x2-2__. 7.在平面直角坐标系中,平移抛物线y=-x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式:__y=-x2+2x(答案不唯一)__.
8.(2015·岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的给纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是__③④__.(填序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.19.如图,点A(-1,0)为二次函数y=x2+bx-2的图象2与x轴的一个交点.(1)求该二次函数的解析式,并说明当x>0时,y值随x值变化而变化的情况;(2)将该二次函数图象沿x轴向右平移1个单位,请直接写出平移后的图象与x轴的交点坐标.
类型之二 抛物线与轴对称 10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1.下列结论中错误的是(D)A.abc<0 B.2a+b=0 C.b2-4ac>0 D.a-b+c>0
11.如图所示,在一张纸上作出函数y=x2-2x+3的图象,沿x轴把这张纸对折,描出与抛物线y=x2-2x+3关于x轴对称的抛物线,则描出的这条抛物线的解析式为__y=-x2+2x-3__.
类型之三 抛物线与旋转 12.将二次函数y=x2-2x+1的图象绕它的顶点A旋转180°,则旋转后的抛物线的函数解析式为(C)A.y=-x2+2x+1 B.y=-x2-2x+1 C.y=-x2+2x-1 D.y=x2+2x+1 13.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是(B)A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4 14.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为__y=-(x+1)2-2__.
15.在平面直角坐标系中,将抛物线y1=x2-4x+1向左平移3个单位长度,再向上平移4个单位长度,得到抛物线y2,然后将抛物线y2绕其顶点顺时针旋转180°,得到抛物线y3.(1)求抛物线y2,y3的解析式;(2)求y3<0时,x的取值范围;(3)判断以抛物线y3的顶点以及其与x轴的交点为顶点的三角形的形状,并求它的面积.