专题:抽屉原理教学案例
-
抽屉原理教学案例五篇
《抽屉原理》教学案例 本节课我主要鼓励学生借助学具、实物操作等方式进行“说理”, 让学生初步经历“数学证明”的过程。在经历“数学化”过程中,结合学生已有的知识水平和
-
《数学广角-抽屉原理》教学案例-(范文)
《数学广角-抽屉原理》教学案例 《抽屉原理》是义务教育课程标准实验教科书人教版六年级下册第五单元数学广角的教学内容。本节课我主要鼓励学生借助学具、实物操作、观看课
-
抽屉原理
抽屉原理 把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为: 第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至
-
抽屉原理
《抽屉原理》教学设计 教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问
-
抽屉原理范文合集
抽屉原理 【知识要点】 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,一定
-
抽屉原理
抽屉原理 一、 起源 抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称"迪里赫莱原理",也有称"鸽巢原理"的.这个原理可以简单地叙述为
-
抽屉原理
抽屉原理(1) 抽屉原则(1) 如果把n+k (k 大于等于1)件东西放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的东西。 学习例题 例1.某次联欢会有100人参加,每人在这个联欢会上至少有
-
抽屉原理
4分割图形构造“抽屉”与“苹果” 在一个几何图形内, 有一些已知点, 可以根据问题的要求, 将几何图形进行分割, 用这些分割成的图形作抽屉, 从而对已知点进行分类, 再集中对
-
抽屉原理
B15六年级专题讲座(十五)简单的抽屉原理 赵民强 抽屉原理一 把n+1个苹果放入n个抽屉中,则必有一个抽屉中至少放了两个苹果. 在解答实际问题时,关键在于找准什么是“抽屉”和
-
抽屉原理
抽屉原理专项练习1.把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由. 2.某校有201人参加数学竞赛,按百分制计分且得
-
抽屉原理
抽屉原理(鸽巢问题) 抽屉原理有两条: (1)如果把xk(k>1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。 (2)如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至
-
抽屉原理
抽屉原理 1、某校六年级有367人,一定有至少有两个学生的生日是同一天,为什么?2、某校有30名同学是2月份出生的,能否有两个学生的生日是在同一天?3、15个小朋友中,至少有几个小朋友
-
抽屉原理
三、 抽屉原理的应用 1、 求抽屉中物品至多数 例:17 名同学参加一次考试,考试题是三道判断题(答案只有对错之分),每名同学都在答题纸上依次写下三道题的答案。请问至少有几名同
-
抽屉原理
大家知道,两个抽屉要放置三只苹果,那么一定有两只苹果放在同一个抽屉里,更一般地说,只要被放置的苹果数比抽屉数目大,就一定会有两只或更多只的苹果放进同一个抽屉,可不要小看这一
-
抽屉原理
抽屉原理 内容概述 抽屉原理在教字、表格、图形等具体问题中有较复杂的应用.能够根据已知条件合理地选取和设计“抽屉”与“苹果”,有时还应构造出达到最佳状态的例子. 典型问
-
抽屉原理
2013河南省考数量关系预测题型:抽屉原理 2013-6-7 11:17:51 来源:京佳教育 [我要评论(0)] 字号:T|T 在近几年的公务员考试中,行测数量关系中的抽屉原理问题逐年升温,已成为当前的
-
抽屉原理
六年级抽屉原理复习知识点: 1、把m个物体任意分放进n个空抽屉中(mn,n是非0的自然数),那么一定有一个抽屉中至少放进了2个物体。 2、把多于kn个物体任意分放进n个空抽屉中(k是正
-
抽屉原理
金实教育 2012—2013 学年度 下学期 四年级 抽屉原理 一、最不利原则 点子最背的情况就是最少的情况(保证完成任务) 例1、盒子里有5个蓝球,3个红球,7个黄球, ① 至少取几个,才能保