专题:构造法证明不等式一
-
巧用构造法证明不等式
巧用构造法证明不等式构造法是指在解决数学问题的过程中,为了完成由条件向结论的转化,通过构造辅助元素,架起一座沟通条件和结论的桥梁,从而使问题得到解决。不等式证明是高中数
-
构造法证明不等式(合集五篇)
构造法证明不等式由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使得不等式证明成为中学数学的难点之一.下面通过数例介绍构造法在证明不等式中的应用.一、构造一次函数
-
构造法证明不等式5
构造法证明不等式(2)(以下的构造方法要求过高,即使不会也可以,如果没有时间就不用看了)在学习过程中,常遇到一些不等式的证明,看似简单,但却无从下手,多种常用证法一一尝试,均难以凑效
-
构造法证明函数不等式
构造法证明函数不等式 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点. 2、解题技巧是构造辅助函
-
构造函数法证明不等式
构造函数法证明不等式河北省 赵春祥不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等
-
巧用构造函数法证明不等式
构造函数法证明不等式一、构造分式函数,利用分式函数的单调性证明不等式【例1】证明不等式:|a||b||ab|1|a||b|≥1|ab|证明:构造函数f(x)=x1x (x≥0)则f(x)=x1x=1-11x在0,上单调
-
例谈运用构造法证明不等式
例谈运用构造法证明不等式湖北省天门中学薛德斌在我们的学习过程中,常遇到一些不等式的证明,看似简单,但却无从下手,很难找到切入点,几种常用证法一一尝试,均难以凑效。这时我们不
-
构造法证明不等式例说(精选5篇)
构造法证明不等式例说
【中图分类号】g633.5 【文献标识码】a 【文章编号】
2095-3089(2012)11-0081-01
对于如何解题,g.波利亚曾这样精辟地说过:“解题的成功要靠正确的选择。 -
用构造局部不等式法证明不等式(精选五篇)
用构造局部不等式法证明不等式 有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。 例1. 若a,求
-
构造一次函数证明不等式
构造一次函数证明不等式一次函数是同学们非常熟悉的函数.由一次函数ykxb的图象可知,如果f(m)0,f(n)0,则对一切x(m,n)均有f(x)0.我们将这一性质称为一次函数的保号性.利用一
-
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
构造函数证明不等式
构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l
-
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
构造函数法证明不等式的八种方法[最终定稿]
导数之构造函数法证明不等式 1、移项法构造函数 【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有 1 【解】f(x)1ln(x1)x x11x1 x1x1∴当1x0时,f(x)0,即f(x)在x(1,0)上为增函数当x0
-
构造函数法证明不等式的八种方法
构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造
-
导数证明不等式构造函数法类别(教师版)
导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:
-
构造函数证明数列不等式
构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3
-
构造法证明等差
构造法证明等差、等比数列等差、等比数列的判定与证明【例2】已知数列{an}的前n项和为Sn,且满足:an-2SnSn-1=0(n≥2,n∈11N+,Sn≠0),a1=2,判断S与{an}是否为等差数列,并说明你的理由. n[