专题:基本不等式的构造问题

  • 构造函数处理不等式问题

    时间:2019-05-13 21:41:49 作者:会员上传

    构造函数处理不等式问题函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,直接把握

  • 巧用构造法解不等式问题

    时间:2019-05-13 21:42:18 作者:会员上传

    巧用构造法解不等式问题湖州中学黄淑红数学中有许多相似性,如数式相似,图形相似,命题结论的相似等,利用这些相似性,通过构造辅助模型,促进转化,以期不等式得到证明。可以构造函数、

  • 构造向量巧解不等式问题

    时间:2019-05-12 20:50:33 作者:会员上传

    构造向量巧解有关不等式问题新教材中新增了向量的内容,其中两个向量的数量积有一个性质:ab|a||b|cos(其中θ为向量a与b的夹角),则|,又,则易得到以1cos1ab|||a|||bcos|下推论:(1)ab|ab|

  • 构造一次函数证明不等式

    时间:2019-05-12 20:33:43 作者:会员上传

    构造一次函数证明不等式一次函数是同学们非常熟悉的函数.由一次函数ykxb的图象可知,如果f(m)0,f(n)0,则对一切x(m,n)均有f(x)0.我们将这一性质称为一次函数的保号性.利用一

  • 构造函证不等式范文大全

    时间:2019-05-15 13:54:57 作者:会员上传

    造函证不等式
    b-a2
    求证:>1-(b>a).(*)
    2eb+1x2
    证明:令φ(x)=+x-1(x≥0),
    2e+112e
    则φ-
    2(e+1)
    (e+1)-4e(e-1)=x2x2≥0(仅当x=0时等号成立).
    2(e+1)2(e+1)
    ∴φ(x)在[0,+∞)上单调递增, ∴x>0时,φ(x)>φ(0)=0

  • 构造函数证明不等式

    时间:2019-05-14 13:48:10 作者:会员上传

    在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化

  • 构造函数证明不等式

    时间:2019-05-12 20:33:40 作者:会员上传

    构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l

  • 构造函数证明不等式

    时间:2019-05-12 20:35:48 作者:会员上传

    在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化

  • 构造直线巧破不等式恒成立问题

    时间:2019-05-13 21:42:15 作者:会员上传

    龙源期刊网 http://.cn
    构造直线巧破不等式恒成立问题
    作者:苏文云
    来源:《学习与研究》2013年第05期
    不等式恒成立,求解参变量取值范围的问题,由于集不等式、方程、函数知识于

  • 构造函数巧解不等式

    时间:2019-05-13 21:41:49 作者:会员上传

    构造函数巧解不等式湖南 黄爱民函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,

  • 巧用构造法证明不等式

    时间:2019-05-13 21:42:27 作者:会员上传

    巧用构造法证明不等式构造法是指在解决数学问题的过程中,为了完成由条件向结论的转化,通过构造辅助元素,架起一座沟通条件和结论的桥梁,从而使问题得到解决。不等式证明是高中数

  • 构造法证明不等式(合集五篇)

    时间:2019-05-13 21:42:48 作者:会员上传

    构造法证明不等式由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使得不等式证明成为中学数学的难点之一.下面通过数例介绍构造法在证明不等式中的应用.一、构造一次函数

  • 构造法证明不等式5

    时间:2019-05-13 21:42:56 作者:会员上传

    构造法证明不等式(2)(以下的构造方法要求过高,即使不会也可以,如果没有时间就不用看了)在学习过程中,常遇到一些不等式的证明,看似简单,但却无从下手,多种常用证法一一尝试,均难以凑效

  • 构造函数,妙解不等式

    时间:2019-05-12 20:33:41 作者:会员上传

    构不等式与函数是高中数学最重要的两部分内容。把作为高中数学重要工具的不等式与作为高中数学主线的函数联合起来,这样资源的优化配置将使学习内容在函数思想的指导下得到重

  • 构造法证明函数不等式

    时间:2019-05-14 16:01:00 作者:会员上传

    构造法证明函数不等式 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点. 2、解题技巧是构造辅助函

  • 构造函数法证明不等式

    时间:2019-05-12 20:33:43 作者:会员上传

    构造函数法证明不等式河北省 赵春祥不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等

  • 构造函数证明数列不等式

    时间:2019-05-15 14:10:27 作者:会员上传

    构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3

  • 基本不等式练习题

    时间:2019-05-13 21:42:29 作者:会员上传

    基本不等式练习题一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若aR,下列不等式恒成立的是A.a21aB121C.a296aD.lg(a1)lg|2a