专题:离散数学第二章练习题
-
离散数学练习题1
1、下列句子是简单命题的是( )A)3是素数。B) 2x+3 GD) G => H4、下列命题不为真的是( ) .A)Φ ΦB)Φ∈ΦC){a,b}∈{a,b,c,{a,b}}}D){a,b}{a,b,c,{a,b}}5、1到300之间(包含1 和10
-
离散数学练习题及答案(共五篇)
离散数学试题一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设P:天下大雨,Q:他在室内运动,命
-
离散数学练习题B(共5篇)
离散数学练习题B
一、简要回答下列问题:
1.什么是消去环?请举一例。
2.请给出公式R→P的真值表。
3.什么是恒真公式?举一例。
4.什么是子句?什么是短语?
5.请给出命题xG(x)的真值规定 -
离散数学[本站推荐]
离散数学课件作业第一部分 集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2} A。1-2 A,B,C 为任意集合,则他们的共同
-
浅谈离散数学专题
浅谈离散数学【摘要】离散数学是一门理论性强,知识点多,概念抽象的基础课程,学生学习起来普遍感到难度很高。本文从离散数学内容、学生学习兴趣的激发、教学内容的安排、教
-
离散数学
离散数学试题(A卷答案) 一、(10分) (1)证明(PQ)∧(QR)(PR) (2)求(P∨Q)R的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。 解:(1)因为((PQ)∧(QR))(PR) ((P∨Q)∧(Q∨R))∨
-
离散数学
第一章数学语言与证明方法 例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人}, B= { x | x是走读生}, C= { x | x是数学系学生}, D= { x | x是喜
-
离散数学第三章
第三章部分课后习题参考答案 14. 在自然推理系统P中构造下面推理的证明: (2)前提:pq,(qr),r 结论:p (4)前提:qp,qs,st,tr 结论:pq 证明:(2) ①(qr) 前提引入 ②qr ①置换 ③qr ②
-
离散数学心得体会
离散数学心得体会 离散数学,对绝大多数学生来说是一门十分困难的课程,当然也包括我在内,而当初选这门课是想挑战一下自己。通过这一学期的学习,我对这门课程有一些初步的了解,现
-
离散数学试题答案[范文]
《计算机数学基础》离散数学试题一、单项选择题(每小题2分,共10分) 1. 命题公式(PQ)Q为 (A) 矛盾式 (B) 可满足式(C) 重言式 (D) 合取范式2. 设C(x): x是国家级运动员,G(x):
-
离散数学习题集
离散数学习题集——图论分册 耿素云 北京大学出版社 定价:8元
数理逻辑(离散数学一分册) 王捍贫 北京大学出版社 定价:15元
集合论与图论(离散数学二分册) 耿素云 北京大学出 -
离散数学练(合集)
《离散数学》练习福建农林大学东方学院2009 ——2010 学年第一学期第一篇数理逻辑一、填空题及单项选择题:1、设解释I为:客体城D{2,3},a2b,3f3f,2P(2,2)1P(2,3)1P(3,2)0P
-
离散数学期末考试
一、单项选择题(本大题共10小题,每小题2分,共20分) 1、设集合M={a,},N ={{a},}则MN=( )。 A、 B、{} C、{a} D、{{a},,a} 2、设关系F={,,},G={,,}则 FG=()。 A、{,,} B、{,,} C、{,} D、{,,} 3、设集
-
离散数学证明题
离散数学证明题离散数学证明题:链为分配格证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大
-
离散数学证明题
证明题1.用等值演算法证明下列等值式:(1)┐(PQ)(P∨Q)∧┐(P∧Q)(2)(P∧┐Q)∨(┐P∧Q)(P∨Q)∧┐(P∧Q)证明:(1)┐(PQ)┐((P→Q)∧(Q→P))┐((┐P∨Q)∧(┐Q∨P))(P∧┐Q)∨(Q∧┐P
-
离散数学学习心得
离散数学学习心得 姓名:周燕 班级:12计本(2)班 学号:1204012032 当老师说这门课快要结束的时候,我才发现这门课的学习以经接近尾声了。通过这一学期的学习,我觉得离散数学是一们
-
离散数学自学
学习体会 专业:计算机 姓名:范文芳 学号: 成绩: 院校: 离散数学是计算机科学与技术专业的基础核心课程。通过本课程的学习,使学生具有现代数学的观点和方法,并初步掌握处理离散结构
-
离散数学习题
集合论 1. A={,1},B={{a}}求A的幂集、A×B、A∪B、A+B。 2. A={1,2,3,4,5}, R={(x,y)|x5, R(x,y):x+y