专题:上海交大10年离散数学
-
离散数学10年7月份试题
一、单项选择题(每小题3分,本题共15分)
1.若集合A={1,{2},{1,2}},则下列表述正确的是(B).
A.2AB.{1}AC.1AD.2 A
2.已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为
(D -
离散数学[本站推荐]
离散数学课件作业第一部分 集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2} A。1-2 A,B,C 为任意集合,则他们的共同
-
浅谈离散数学专题
浅谈离散数学【摘要】离散数学是一门理论性强,知识点多,概念抽象的基础课程,学生学习起来普遍感到难度很高。本文从离散数学内容、学生学习兴趣的激发、教学内容的安排、教
-
离散数学
离散数学试题(A卷答案) 一、(10分) (1)证明(PQ)∧(QR)(PR) (2)求(P∨Q)R的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。 解:(1)因为((PQ)∧(QR))(PR) ((P∨Q)∧(Q∨R))∨
-
离散数学
第一章数学语言与证明方法 例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人}, B= { x | x是走读生}, C= { x | x是数学系学生}, D= { x | x是喜
-
上海交大自荐信
个人陈述
尊敬的上海交通大学招生办老师:
您好! 我叫XXX,男,17岁,是XXX的学生。感谢您在百忙之中仍认真审阅我的资料。下面我将用尽量简短的语言向您展现一个优秀的我。
我从小 -
上海交大MBA(本站推荐)
2015年1月份MBA联考报考条件
按教育部的有关规定,须具备以下条件方可报考在职工商管理硕士:
各校要求有一定差别,但必须具备以下最基本的条件:1.中华人民共和国公民。2.拥护中国 -
离散数学第三章
第三章部分课后习题参考答案 14. 在自然推理系统P中构造下面推理的证明: (2)前提:pq,(qr),r 结论:p (4)前提:qp,qs,st,tr 结论:pq 证明:(2) ①(qr) 前提引入 ②qr ①置换 ③qr ②
-
离散数学心得体会
离散数学心得体会 离散数学,对绝大多数学生来说是一门十分困难的课程,当然也包括我在内,而当初选这门课是想挑战一下自己。通过这一学期的学习,我对这门课程有一些初步的了解,现
-
离散数学试题答案[范文]
《计算机数学基础》离散数学试题一、单项选择题(每小题2分,共10分) 1. 命题公式(PQ)Q为 (A) 矛盾式 (B) 可满足式(C) 重言式 (D) 合取范式2. 设C(x): x是国家级运动员,G(x):
-
离散数学习题集
离散数学习题集——图论分册 耿素云 北京大学出版社 定价:8元
数理逻辑(离散数学一分册) 王捍贫 北京大学出版社 定价:15元
集合论与图论(离散数学二分册) 耿素云 北京大学出 -
离散数学练(合集)
《离散数学》练习福建农林大学东方学院2009 ——2010 学年第一学期第一篇数理逻辑一、填空题及单项选择题:1、设解释I为:客体城D{2,3},a2b,3f3f,2P(2,2)1P(2,3)1P(3,2)0P
-
离散数学期末考试
一、单项选择题(本大题共10小题,每小题2分,共20分) 1、设集合M={a,},N ={{a},}则MN=( )。 A、 B、{} C、{a} D、{{a},,a} 2、设关系F={,,},G={,,}则 FG=()。 A、{,,} B、{,,} C、{,} D、{,,} 3、设集
-
离散数学证明题
离散数学证明题离散数学证明题:链为分配格证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大
-
离散数学证明题
证明题1.用等值演算法证明下列等值式:(1)┐(PQ)(P∨Q)∧┐(P∧Q)(2)(P∧┐Q)∨(┐P∧Q)(P∨Q)∧┐(P∧Q)证明:(1)┐(PQ)┐((P→Q)∧(Q→P))┐((┐P∨Q)∧(┐Q∨P))(P∧┐Q)∨(Q∧┐P
-
离散数学学习心得
离散数学学习心得 姓名:周燕 班级:12计本(2)班 学号:1204012032 当老师说这门课快要结束的时候,我才发现这门课的学习以经接近尾声了。通过这一学期的学习,我觉得离散数学是一们
-
离散数学自学
学习体会 专业:计算机 姓名:范文芳 学号: 成绩: 院校: 离散数学是计算机科学与技术专业的基础核心课程。通过本课程的学习,使学生具有现代数学的观点和方法,并初步掌握处理离散结构
-
离散数学习题
集合论 1. A={,1},B={{a}}求A的幂集、A×B、A∪B、A+B。 2. A={1,2,3,4,5}, R={(x,y)|x5, R(x,y):x+y