专题:中国科学院离散数学
-
离散数学[本站推荐]
离散数学课件作业第一部分 集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2} A。1-2 A,B,C 为任意集合,则他们的共同
-
浅谈离散数学专题
浅谈离散数学【摘要】离散数学是一门理论性强,知识点多,概念抽象的基础课程,学生学习起来普遍感到难度很高。本文从离散数学内容、学生学习兴趣的激发、教学内容的安排、教
-
离散数学
离散数学试题(A卷答案) 一、(10分) (1)证明(PQ)∧(QR)(PR) (2)求(P∨Q)R的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。 解:(1)因为((PQ)∧(QR))(PR) ((P∨Q)∧(Q∨R))∨
-
离散数学
第一章数学语言与证明方法 例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人}, B= { x | x是走读生}, C= { x | x是数学系学生}, D= { x | x是喜
-
离散数学第三章
第三章部分课后习题参考答案 14. 在自然推理系统P中构造下面推理的证明: (2)前提:pq,(qr),r 结论:p (4)前提:qp,qs,st,tr 结论:pq 证明:(2) ①(qr) 前提引入 ②qr ①置换 ③qr ②
-
离散数学心得体会
离散数学心得体会 离散数学,对绝大多数学生来说是一门十分困难的课程,当然也包括我在内,而当初选这门课是想挑战一下自己。通过这一学期的学习,我对这门课程有一些初步的了解,现
-
离散数学试题答案[范文]
《计算机数学基础》离散数学试题一、单项选择题(每小题2分,共10分) 1. 命题公式(PQ)Q为 (A) 矛盾式 (B) 可满足式(C) 重言式 (D) 合取范式2. 设C(x): x是国家级运动员,G(x):
-
离散数学习题集
离散数学习题集——图论分册 耿素云 北京大学出版社 定价:8元
数理逻辑(离散数学一分册) 王捍贫 北京大学出版社 定价:15元
集合论与图论(离散数学二分册) 耿素云 北京大学出 -
离散数学学习心得
离散数学学习心得 姓名:周燕 班级:12计本(2)班 学号:1204012032 当老师说这门课快要结束的时候,我才发现这门课的学习以经接近尾声了。通过这一学期的学习,我觉得离散数学是一们
-
离散数学自学
学习体会 专业:计算机 姓名:范文芳 学号: 成绩: 院校: 离散数学是计算机科学与技术专业的基础核心课程。通过本课程的学习,使学生具有现代数学的观点和方法,并初步掌握处理离散结构
-
离散数学习题
集合论 1. A={,1},B={{a}}求A的幂集、A×B、A∪B、A+B。 2. A={1,2,3,4,5}, R={(x,y)|x5, R(x,y):x+y
-
离散数学复习题
离散数学复习题
• 设命题p,r的真值为1,命题q,s的真值为0,则(p→q)(﹁r→s)的真值
为。
• 只要4不是素数,3就是素数,用谓语表达式符号化为。
• D={},则幂集ρ(D)=
• A={a,{b}},B={},则A×B -
离散数学复习题
离散数学复习题一 、填空1、 命题中的否定联接词;蕴含联接词2、 一个命题公式,若在所有赋值下取值为真,则称此公式为式;若……假,则……..为 永假 式;若至少存在一组赋值,其命题为
-
离散数学期末试卷
北京工业大学经管学院期末试卷《离散数学》(A)学号姓名:成绩一、单项选择题(每题2分,共18分)1.令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D ) .A.P→QC.P∧Q B.P
-
离散数学例题
离散数学例题 一、证明对任意集合A,B,C,有 a)A-B)-C=A-(B∪C); b)(A-B)-C=(A-C)-B; c)(A-B)-C=(A-C)-(B-C)。 证明 a)(A-B)-C=(A∩~B)∩~C =A∩(~B∩~C) =A∩~(B∩C) =A-B∪C) b)(A-B)-C= A∩~B∩~C = A∩~C∩~B
-
离散数学总结
一、课程内容介绍:
1.集合论部分: 离散数学学习总结
集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。只是对于以后的应用还不是很 -
离散数学证明题
证明题1.用等值演算法证明下列等值式:(1)┐(PQ)(P∨Q)∧┐(P∧Q)(2)(P∧┐Q)∨(┐P∧Q)(P∨Q)∧┐(P∧Q)证明:(1)┐(PQ)┐((P→Q)∧(Q→P))┐((┐P∨Q)∧(┐Q∨P))(P∧┐Q)∨(Q∧┐P
-
离散数学证明题
离散数学证明题离散数学证明题:链为分配格证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大