第一篇:数学读后感
读完了这个“奇妙的数王国”这片文章,让我的数学方面又提高了很多,读起来轻松自如,让我们在阅读中接触数学,让我们更多的了解数学,数学读后感,读后感《数学读后感》。在第4页的里面,我知道了,凡是能被2整除的数就叫偶数;反之,不能被2整除的数就是奇数。偶数也称为“男人数”,奇数就是“女人数”。是不是特别的有趣呀!“奇妙的数王国”让我们看到了数学,让我们学到了数学,以后我们要多看书,才会学到更多知识。
第二篇:数学读后感
数学读后感
人类最早用来计数的工具是手指和脚趾,但它们只能表示20以内的数字。当数目很多时,大多数的原始人就用小石子来记数。渐渐地,人们又发明了打绳结来记数的方法,或者在兽皮、树木、石头上刻画记数。中国古代是用木、竹或骨头制成的小棍来记数,称为算筹。这些记数方法和记数符号慢慢转变成了最早的数字符号(数码)。如今,世界各国都使用阿拉伯数字为标准数字
随着生产力的发展,数字符号的产生使得人类能够在时候进行更大规模的记录,进而产生了较早期的数字运算规律,再后来,阿拉伯数字符号的发明使得“算数”往“数学”过度有了可能。
而数学运用数字符号表达记录了各种高级的,高度符号化了的,抽象的数学定律。随之产生的还有“几何”。
正是这些数学规律使得人类能够量化地进行工程设计和施工,人类的工业开始能够制造出复杂庞大的系统。
数学也是近代化学,物理,计算机科学等重要学科的基础和研究工具。
所以说,数字符号的出现,是人类社会和智能发展的必然结果,也是人类社会进步的基石之一。
数字符号见证了我们的人类史上光辉传奇。
成功对每个人来说都是一件幸运的事,但不是每一个人都能获得成功。成功不是路边的小石子随处可捡,也不是田间的小草随意可觅。要成功,需要有一段漫长的路要走,在这期间是要经过许多挫折的。
1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。”
熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。
从此,华罗庚就成为清华转载自百分网http://,请保留此标记大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会
儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。
第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。
几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。”
华罗庚没有拿到博士学位。在剑桥的两年内,他写了 20 篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。
华罗庚曾说:“科学上没有平坦的大道,真理的长河中有无数礁石险滩。只有不畏攀登的采药者,才能登上高峰觅得仙草;只有不怕巨浪的弄潮儿,才能深入水底觅得骊珠。”科学上的每一个真理都是在经历无数次的挫折、失败之后才得出的。我们要正视挫折,正确对待挫折,只有这样,才能让挫折变成我们走向成功的阶梯。
华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。最终,他的事业成功了。
华罗庚把科学研究与实际应用紧密结合起来。华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献。
挫折可以战胜,挫折孕育着成功,而前提是具有坚定的信念和勇往直前的精神。当具备了这些条件之后,挫折就会被你踩在脚下,明天就是拨开浮云见丽日之时
第三篇:数学读后感
读数学史有感
与其把数学科学化,把它当做一门严谨的学科小心翼翼地探寻着,倒不如把它当做一件普通不过的事物,至少,这样的数学更加灵动迷人。
数学,是一样很孤独的东西。它不像是诗歌那样,文人骚客共聚一堂举酒高歌,动情处就即兴脱口,一首千古传唱的诗就诞生了。它也不像艺术品那样,饱含着美感与灵感,可它却汗艺术气息,虽然它的成果是冷冰冰的智慧结晶,但是它的发展过程是饱含悲欢愁的。我想这个过程是孤独的,但是那个创造者对于这样的孤独,他(她)是甘之如饴的。因为那是属于他(她)世界里的一朵奇葩,他(她)看着那株他们倾尽所有汗水与智慧浇灌出来的数学之花,灿烂绽放在这片大地上,何其欣喜。
诸多数学家中,我尤其敬佩祖冲之一家。他们是把数学当做传家宝一样,代代相传,一脉同心。或许因学术有所成而名垂青史、流芳千古的只有祖冲之与祖恒二人,但是也正因为他们的前辈潜心研究,让他俩拥有比常人更加优越的条件,他们也更加容易成功。他们的家族史让我所钦佩的,无论是他们的成就或是执着,都那么的独树一帜,至少在数学史上是如此。
但在数学发展过程中,它也受到了一些人的亵渎。把它当做成名的手段。并不是说这些人有错,他们只是从自己的成果里获取一些名利,满足个人的欲望,正所谓,人不为己,天诛地灭。这些人的初衷是纯洁的,只是在成就与名利俱来的诱惑下变了味。比如说数学怪人卡尔达诺,我不对他的行为加以任何评论,只是为数学惋惜,它并非为功利造台阶,但它却成全了功成名就。它原本只是单纯而神圣的智慧成就,但它的发展却掺杂了许许多多人情世故。更令人伤心的是阿贝尔。当他是一名无名而有志的少年时,受尽嘲笑与蔑视;当他守得云开见月明,证明了一般五次一元方程的不可性时,他被一句“不可能的事”否定了;当上天给了他一次次希望在一次次让他失望而归,他终于无力和命运抵抗,为他遗憾的一生画上句点了。然而讽刺的事情发生在两天之后,阿贝尔被聘任为教授。阿贝尔的不幸事数学发展史上的灾难,或许曾经因为这样那样原因被埋没的人大有人在,他们本拥有一腔热情为数学做贡献,但现实击垮了他们。
无论如何,我还是想在最后说一句,不管被誉为“伟大数学家“的人还是为数学研究默默奉献着的人,他们都是可敬的,因为他们对这份孤独的数学有着不一样的热爱。
第四篇:数学读后感
读《小学数学与数学思想方法》有感
郭红卫
数学思想是对数学知识内容和所使用方法的本质认识。数学方法是解决数学问题的策略。小学数学内容比较简单,以基础知识为主,这其中隐藏的思想和方法很难决然分开,通常把数学思想和方法看成一个整体概念,即小学数学思想方法。这就要求我们教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入数学目标之中,在课堂教学的各环节中有效渗透一些基本的数学思想方法。
一、导入中渗透
如在教学“圆柱的认识”时,教师提出如下问题:“同学们,你们知道孙悟空之所以神通广大不仅仅是他有七十二般变化,更是因为他有一件降妖除魔的法宝,同学们知道它是什么吗?”学生异口同声的回答:“如意金箍棒。”“同学们知道它是什么形状的吗?”“是圆柱形的”“同学们你们知道它和我们平常见到的如粉笔、电线杆等柱体有什么不同吗?”这时学生的学习兴趣就浓了,踊跃发言。老师这时可以趁势打铁:“我们这一节课要学习的圆柱和粉笔、电线杆不一样。哪我们所学习的圆柱又是什么形状的呢?圆柱圆柱,两头是圆,中间是柱。两头是什么样的两个圆?中间是柱,中间又是什么样的柱子?”这时老师可以要求学生分组讨论交流,课堂气氛一下子就活跃了。有同学们熟悉而又感兴趣的话题迁移到教学中来,教学效果可想而知。让学生初步感悟数学的思想方法,为学生搭建有意建构的桥梁,让学生运用转化类比的数学思想方法进行合理的正迁移
二、新授中渗透
1、渗透分类的思想方法。
“分类”就是把具有相同属性的事物归纳在一起,它的本质是把一个复杂的问题分解成若干个较为简单的问题。如老师在教学统计与初步这一小节内容时,要学生统计出一小时内经过该路口的各种车辆各有多少时,通过学生们的分类整理,能有效纠正学生的无序性甚至盲目拼凑的毛病,有利于培养学生的逻辑思维能力。
2、渗透集合的思想方法。
集合的数学思想方法是从某一角度看所研究的对象,使之成为合乎一定抽象要求的元素。在小学数学教学中,通常采用直观手段,利用画集合图的办法来渗透集合思想。
例如教学长方体、正方体之后,使学生明确正方体是长、宽、高分别相等的长方体,即正方体是一种特殊的长方体,用圆圈图表示更形象。让他们感知大圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合——长方体集合,小圈内的物体也具有某种共同的属性,可以看作一个小整体,这个小整体就是一个小集合——正方体集合,如长方体集合包含正方体集合。集合的数学思想方法在小学各年级段都有所渗透,如数的整除中就渗透了子集和交集等数学思想。
3、渗透符号化思想。
渗透符号化思想主要是指人们有意识地、普遍地运用符号去表达研究的对象,恰当的符号可以清晰、准确、简洁地数学思想、概念、方法和逻辑关系。符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。
例如:在教学加法结合律时,我首先让学生通过试题计算明确:三个数相加,可以先把前面两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,结果不变。把它变成符号化的语言就是:a+b+c=a+(b+c)在这里,一定要让学生明确每个符号的意义,知道这样表示更一般化、抽象化,也更简洁,更能表示一般规律,进而再引导学生用符号化语言表达两个数的差与一个数相乘的规律,加深理解符号的含义,建立符号化思想。当然像我们所学过的一些计算公式等,无不渗透了数学思想在里面。
三、练习中渗透
练习是数学教学的重要环节,习题的设计和选择不仅要体现基础性、层次性和可选择性,而且要具有实践性、应用性、探索性和开放性,做到基础性练习与发展性练习协调互补,使数学练习适应不同学生发展的需要。教师应精心设计练习,在巩固练习中运用数学思想方法。
例如:在学习了分数、百分数应用题之后,我为学生出示了这样一道练习题:一条路全长1200米,修路队前三天就修了它的30%,照这样计算,修完这条路一共需要多少天?
老师在教学中引导学生可以借助于单位“1”来进行计算。老师可以把“12——00米”这一条件盖起来,让同学们自由解答。
师:这样做,简化了解题思路,同学们想不想找规律?(想)刚才这道题我们运用了“转化”的思想方法:“把已知数量看作单位“1”,有“前三天就完成它的30%,不难算出这个修路队每天修全长的10%,那么修完这条路需要多少天就简单了。再者有”前三天修了它的30%,不难看出没有修的占70%,则还需要7天。师边说边显示这一简化思路的基本方法,并让学生再议一议上述运用“转化”思想方法的解题关键。
上述练习环节中,我在新旧方法的联结点上巧妙设问,激发了学生探索新方法的兴趣和情感,在探索新方法的过程中渗透了转化的思想方法,并在教师小结和学生议一议的过程中巩固了这种思想方法,与此同时,发展了学生的思维能力。
四、复习中渗透
在平时教学复习中,要以思想方法贯穿整个教学过程,将各个知识点,引导学生在解题训练过程中以数学思想为主线,并进行知识点概括与归纳整理,从不同内容、不同角度、不同问题、不同方法中寻找同一思想。把数学思想方法纳入教学计划中,有目的、有步骤地引导学生参与数学思想方法的提练、概括的过程。对于习题的选择不可以条块分割、泾渭分明,应在知识网络的交汇处选题,有意识地设计隐含着数学思想方法的习题、高频率再现,精心安排,恰到好处的点拔。特别是章节复习时,在对知识复习的同时,将统领知识的思想方法概括出来,增加学生对数学思想方法的应用意识,从而有利于学生更透彻地理解所学知识,提高独立分析、解决问题的能力。
第五篇:数学文化读后感
《数学文化》读后感
这本书是一本高等学校素质教育的新型教材,其特点是把数学作为文化来研究。通过对数学文化的学习,培养大学生的抽象思维、形象思维和逻辑思维等方面的能力,特别是大学生的创新能力,提高文化素质,以适应社会需要。这本书共分八章,简要阐述了数学文化的学科体系,以及数学文化的哲学观、社会观、美 学、创新观、方法论等方面的主要内容,并附有专章介绍几千年来的数学思想发展史,给读 者一个整体的数学科学发展的系统体系。本书在写作上坚持理论联系实际,注重介绍思想,介绍方法,重在开拓人们思考问题的 思路,诱导激发人们的创新意识。
爱因斯坦在谈到数学时说: “数学之所以有高声誉,还有另一个理由,那就是数学给予精密自然科学以某种程度的可靠性,没有数学,这些科学是达不到这种可靠性的。”数学是人类科学文化中的基础性学科之一,它具有典型的学科独立性,不受其他学科的制约,它不像物理、化学、天文等受制于数学,缺少一种独立性。数学的创新特点主要有两个方面:一是原创性(发明和发现),二是继承性(亦即创造性地去完善)。数学文化的美学观是构成数学文化的重要内容。古代哲学家、数学家普洛克拉斯断言: “哪里有数,哪里就有美。”开普勒也说,“数学是这个世界之美的原型”。对数学文化的审 美追求已成为数学得以发展的重要原动力。以致法国诗人诺瓦利也曾高唱: “纯数学是一门科学,同时也是一门艺术”“既是科学家同时又是艺术家的数学工作者,是大地上唯一的幸运儿。”古往今来,许多数学家、哲学家都把“美”作为决定选题、选题标准和成功标准的 一种评价尺度,甚至把“美的考虑”放在高于一切的位置。著名数学家冯· 诺伊曼就曾写道: “我认为数学家无论是选择题材还是判断成功的标准,主要都是美学的。”庞加莱则更明确 地说: “数学家们非常重视他们的方法和理论是否优美,这并非华而不实的作风,那么到底是什么使我们感到一个解答、一个证明优美呢?那就是各个部分之间的和谐、对称,恰到 好处的平衡。一句话,那就是井然有序、统一协调,从而使我们对整体以及细节都能有清楚 的认识和理解,这正是产生伟大成果的地方。从文化的角度去看数学,是一个新问题。一旦踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。总之,数学文化是一个比较精彩的文化,是一个未知的文化,慢慢体会,别有一般滋味在里面。