高考冲刺物质的结构与性质一(选修三)

2021-05-12 17:40:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高考冲刺物质的结构与性质一(选修三)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考冲刺物质的结构与性质一(选修三)》。

2020-2021学年度高考冲刺物质的结构与性质一(选修三)

1.分析下图信息,结合所学内容解答问题。

回答下列问题:

(1)①第三周期某元素的前5个电子的电离能如图1所示。该元素是_______填元素符号,判断依据是_______。

②第二周期元素的第一电离能随原子序数的变化情况如图6,I1随Z的递增而呈增大趋势,导致在a点出现齿峰的原因是

_______。

③铝镁合金是优质储钠材料,原子位于面心和顶点,其晶胞如图2所示。1个铝原子周围有_______个镁原子最近且等距离。

(2)配合物的熔点,沸点,可用于制备纯铁。的结构如图3所示。下列关于说法不正确的是_______。

A.是非极性分子,含有δ键和π键

B.中Fe原子的配体与互为等电子体

C.含有键

D.反应中没有新化学键生成(3)独立的分子中,键键角为如图4所示是的部分结构以及其中键键角。请解释离子中键角变为的原因是_______。根据VSEPR模型判断,下列微粒中所有原子都在同一平面上的一组是_______。

A.和

B.和

C.和ClO3-

D.和

(4)已知立方BN晶体硬度很大,其原因是_______;其晶胞结构如图5所示,设晶胞中最近的B、N原子之间的距离为anm,阿伏加德罗常数的值为,则晶体的密度为_______列式即可,用含a、的代数式表示

(5)在某种含镁、镍、碳3种元素的超导材料晶体中,镁原子和镍原子一起以立方最密堆积方式形成有序结构.结构中的两种八面体空隙,一种完全由镍原子构成,另一种由镍原子和镁原子共同构成,碳原子只填充在由镍原子构成的八面体空隙中,晶胞如图7所示。

①组成该晶体的化学式为

_______。

②完全由镍原子构成的八面体空隙与由镍原子和镁原子共同构成的八面体空隙的数量比为

_______。

③若取碳原子为晶胞顶点,则镍原子位于晶胞的_______

位置。

2.元素周期表中第四周期某些过渡元素(如Ti、Mn、Zn等)在生产生活中有着广泛的应用。回答下列问题:

(1)钛的应用越来越受到人们的关注。

①第四周期元素中,基态原子的未成对电子数与钛相同的有___________(填元素符号)。

②钛比钢轻、比铝硬,是一种新兴的结构材料。钛硬度比铝大的原因是___________。

(2)锰及其化合物的应用研究是前沿科学之一

①已知金属锰有多种晶型,γ型锰的面心立方晶胞俯视图符合下列___________(选填字母编号)。

②三醋酸锰[(CH3COO)3Mn]是一种很好的有机反应氧化剂。三醋酸锰[(CH3COO)3Mn]中阳离子的价层电子排布式中电子的自旋状态___________(填“相同”或“相反”)。

③Mn2+能形成配离子为八面体的配合物MnClm·nNH3,在该配合物的配离子中,Mn2+位于八面体的中心。若含1

mol该配合物的溶液与足量AgNO3溶液作用可生成l

mol

AgCl沉淀,则该配离子化学式为___________。

(3)比较Fe和Mn的第三电离能,I3(Fe)___________I3(Mn)(填“大于”或“小于”),原因是___________。

(4)某钙钛型复合氧化物如图,以A原子为晶胞的顶点,A位可以是Ca、Sr、Ba或Pb,当B位是V、Cr、Mn、Fe时,这种化合物具有巨磁电阻效应。

已知La为+3价,当被钙等+2价元素A替代时,可形成复合钙钛矿化合物LaxA1-xMnO3,(x>0.9),此时一部分+3价锰转变为+4价,导致材料在某一温度附近有反铁磁-铁磁、铁磁-顺磁转变及金属-半导体的转变,则复合钙钛矿化合物中+3价锰与+4价锰的物质的量之比为___________(用含x的代数式表示)。

(5)具有较高催化活性的材料金红石的晶胞结构如图所示。已知该晶体的密度为d

g·cm-3,Ti、O原子半径分别为a

pm和b

pm,阿伏加德罗常数的值为NA,则金红石晶体的空间利用率为___________(列出计算式)。

3.金属陶瓷是一种复合材料,兼有金属和陶瓷的优点,应用非常广泛,金属基体可为,,陶瓷基体为碳化硅等.回答下列问题:

(1)位于元素周期表中第四周期_______族,与的基态原子核外未成对电子数之比为_______。

(2)与C相比,原子之间难以形成双键的原因是_______。

(3)已知的一种晶体结构与、相似,则该晶体的熔点比晶体的_______(填“高”、“低“),原因是_______。

(4)钴献菁可显著提升二次电池的充放电效率,为增强水溶性将其改性为四氨基钴酞菁,其结构如图所示:

四氨基钴酞菁中与钴离子通过配位键结合的氮原子的编号是_______;水溶性得到有效改善的原因是_______。

(5)的晶胞结构如图所示.晶胞参数为,阿伏加德罗常数的值为,晶体的密度为_______.以晶胞参数为单位长度建立的坐标系,可以表示晶胞中各原子的位置,称作原子的分数坐标,若图中原子1的分数坐标为,则原于2的分数坐标为_______。

4.中国古代文献中记载了大量古代化学的研究成果,《本草纲目》中记载:“(火药)乃焰消(KNO3)、硫磺、杉木炭所合,以为烽燧铳机诸药者”,反应原理为S+2KNO3+3C=K2S+N2↑+3CO2↑。

(1)氮原子的价层电子排布图为___________,烟花燃放过程中,钾元素中的电子跃迁的方式是___________,K、S、N、O四种元素第一电离能由大到小的顺序为___________。上述反应涉及的元素中电负性最大的是___________(填元素符号)。

(2)碳元素除可形成常见的氧化物CO、CO2外,还可形成C2O3(其结构如图)。C2O3与水反应可生成草酸(HOOC—COOH)。

①C2O3中碳原子的杂化轨道类型为___________,CO2分子的立体构型为___________。

②草酸与正丁酸(CH3CH2CH2COOH)的相对分子质量相差2,二者的熔点分别为101℃、-7.9℃,导致这种差异的最主要原因可能是___________。

③CO分子中π键与σ键个数比为___________。

(3)磷化硼是一种超硬耐磨涂层材料,晶胞如右图所示,其密度为ρg·cm-3,设NA是阿伏加德罗常数的值,则磷原子的配位数为___________,晶胞参数为___________pm。

5.W、R、X、Y、Z是原子序数依次增大的前四周期元素,其元素性质或原子结构如下:

元素

元素性质或原子结构

W

基态原子L能层所有能级上电子数相同

R

第二周期元素基态原子中未成对电子最多

X

基态原子核外s能级上电子总数与p能级上电子总数相等,且第一电离能低于同周期相邻元素

Y

次外层电子数是最外层电子数的2倍

Z

最外层只有1个电子,其它所有轨道电子均成对

请按要求填空:

(1)Y的基态原子有___________种不同的运动状态的电子,Z的价电子轨道表示式为___________

(2)W、R、X的简单氢化物中,键角由大到小排列是___________(用对应的分子式表示),原因___________

(3)已知:羧酸的酸性可用pKa(pKa=-lgKa)的大小来衡量,pKa越小,酸性越强;

羧酸

三氯乙酸()

0.65

三氟乙酸()

0.23

由表可见,酸性:三氯乙酸___________三氟乙酸(填“大于”、“小于”或“等于”),从键的极性角度解释原因___________

(4)W和Y两种元素可形成一种熔点为2700、摩氏硬度为9.5的化合物,该化合物的晶胞结构如图所示,Y原子紧邻的Y原子有___________个;若晶胞参数为a

nm,晶体密度为,则阿伏伽德罗常数为___________(列出计算式即可)。

6.过渡金属硫族化合物为具有良好可控性的半导体材料,可用于太阳能电池制备、激光技术、光催化水的裂解等领域。的其中一种制备方法是以CuS、ZnS、和Cu为原料高能球磨后,在气氛中退火。回答下列问题:

(1)所给电子排布图中,能表示基态S原子3p轨道电子状态的是_______(填标号)。

A.B.

C.

D.

(2)基态的价层电子排布式是_______。

(3)CuS由与反应制备。根据价层电子对互斥模型,中心原子价层电子对数为_______。的空间构型为_______。

(4)的晶体类型与CuS相同,除上述用途外,也用于制作火柴头。火柴燃烧时,转化为和,这三种物质熔点由高到低的顺序是_______。

(5)的四方晶胞如图所示。

①Sb位于晶胞的顶点和体心,则图中A代表的原子是_______。

②原子A的坐标为,原子B的坐标为,则原子C的坐标为_______。

③设阿伏加德罗常数的值为,则的密度为_______(列出计算表达式)。

7.锂离子电池让电动汽车飞速发展,有利于实现节能减排。LiCoO2、LiFePO4、Li4TisO12常用作电池的电极材料,LiPF6、LiAsF6常用作锂离子聚合物电池的载体材料。

回答下列问题:

(1)LiCoO2中基态Co原子的电子排布式为___________,其核外电子的空间运动状态有___________种。

(2)LiFePO4与LiPF6中所含的非金属元素电负性由大到小的顺序为___________,PF的空间构型为___________。

(3)含氧酸的通式可写为(HO)mROn,根据含氧酸的结构规律,下列酸中酸性与H3PO4相近的有___________。

a.HClO

b.H2SO4

c.HNO2

d.HNO3

(4)电池工作时,Li+可在电解质LiPF6或LiAsF6的中发生迁移,相同条件下,Li+在___________(选填“LiPF6”或“LiAsF6”)中迁移较快,原因是___________。

(5)Li4Ti5O12中Ti元素的化合物TiO2是一种重要的瓷器釉料。研究表明,在TiO2中通过氮掺杂反应可生成TiO2-aNb,能使TiO2对可见光具有活性,掺杂过程如图所示。

则TiO2-aNb晶体中a=___________,b=___________。

8.镍是一种硬而有延展性并具有铁磁性的金属,且抗腐蚀,是重要的合金材料和催化剂。回答下列问题:

(1)基态镍原子的价电子排布式为___________。

(2)可以形成多种配离子,如[Ni(NH3)4]2+、[Ni(CN)4]2-、丁二酮肟镍分子(见下图)等。

①CN-中碳原子的杂化方式为___________,1

mol[Ni(CN)4]2-中含有___________molσ键。

②[Ni(NH3)4]2+中H-N-H键角比NH3分子中H-N-H键角___________(填“大”或“小”),NH3极易溶于水的原因是___________。

③丁二酮肟镍分子内含有的作用力有___________(填字母)。

a.配位键

b.离子键

c.氢键

d.范德华力

(3)NiO的晶胞结构如图所示,其密度是d

g/cm3,距离最近的两个O2-之间的距离为___________(用含d、NA的代数式表示,设NA表示阿伏加德罗常数的值)。

9.元素的金属性、非金属性及有关单质和化合物的性质与其原子结构、分子结构等有着密切的联系。回答。下列问题:

(1)下列基态原子的核外电子排布式正确的是__(填序号)。

A.

B.

C.

D.

(2)第IA、IIA族部分元素氯化物的熔点如下表,从NaCl到CsCl熔点依次降低,但BeCl2的熔点比MgCl2的低,其原因是__。

氯化物

NaCl

KCl

RbCl

CsCl

熔点/℃

801

776

715

645

405

714

(3)下列物质的变化破坏了极性共价键的是__(填序号)。乙酸中碳原子的杂化方式为__,1

mol乙酸分子中含有的σ键和π键的个数比为__;乙酸易溶于水的原因是相似相溶,以及___。

A.二氧化硅晶体熔化

B.乙酸溶于水

C.干冰升华

D.冰融化

(4)某晶体的晶胞如图所示,则该晶体的化学式为__;已知该晶体的晶胞边长为540 pm,阿伏加德罗常数的值为,则体积为10

cm3晶体的质量为__g(列出计算式即可)。

10.、在电化学和催化领域均有重要地位.回答下列问题:

(1)基态原子核外占据最高能层电子的电子云轮廓图的形状为_______;、两种基态原子的价层电子数目之比为_______;、、的第一电离能由大到小的顺序为_______。

(2)碳有多种同素异形体,其中等质量的石墨与金刚石中共价键的数目之比为_______。

(3)、、的沸点由高到低的顺序为_______,原因为_______。

(4)的酸性弱于的原因为_______;中的杂化方式为_______。

(5)的晶胞结构如图所示。

①晶体中,C周围距离最近且相等的的数目为_______。

②若阿伏加德罗常数的值为,则晶体密度_______。

11.碳(C)、铜(Cu)、锡(Sn)及其化合物有许多用途。回答下列问题。

(1)在元素周期表里,锡和碳同族,锡位于第五周期。基态锡原子的最外层电子排布式为_______。

(2)磷化铜(Cu3P2)用于制造磷青铜,磷青铜是含少量锡、磷的铜合金。磷化铜与水反应产生有毒的磷化氢(PH3)气体,P、S的第二电离能(I2)的大小关系为I2(P)___I2(S)(填“>”、“<”或“=”),原因是_。PH3分子的热稳定性比NH3______(填“强”或“弱”)。

(3)1mol苯中含键的数目为______。CH3CH2COOH中C的杂化方式有______;

(4)磷青铜晶体的晶胞结构如图所示,该晶体中P原子与最近的Cu原子的核间距为anm,该晶体中P原子位于由铜原子形成的正八面体的空隙中,则该正八面体的边长为__________nm,该晶体密度为______gcm-3(用含NA的代数式表示)。

12.由Mg、C和Ni组成的三元合金系统具有超导电性。回答下列问题:

(1)基态Ni原子核外电子排布式为_______。

(2)对羟基苯甲酸()具有防腐、防霉和X菌等作用,其中C原子的杂化轨道类型为_______,1

mol对羟基苯甲酸中键数目为_______(NA表示阿伏加德罗常数的值)。

(3)对羟基苯甲酸()沸点比邻羟基苯甲酸()____(填“高”“低”或“相等”),原因是_______。

(4)新型超导材料晶体的晶胞结构中镁原子和镍原子位于顶点和面心,它们构成两种八面体空隙,一种由镍原子构成,另一种由镍原子和镁原子一起构成,两种八面体空隙的数量是1:3,碳原子只填充在镍原子构成的八面体空隙中,沿晶胞立方格子对角线取得的截图如图所示。

①该新型超导材料的化学式为_______。

②已知晶胞参数,阿伏加德罗常数的值为NA,Mg的C配位数为_______,该晶胞密度为_______(列出计算式即可)。

13.宋代《开宝本草》记载“取钢煅作叶如笏或团,平面磨错令光净,以盐水洒之,于醋瓮中阴处埋之一百日,铁上衣生,铁华成矣。”“铁华”是醋酸亚铁,其熔点约为195℃。回答:

(1)基态Fe原子价层电子的电子排布图为___________,铁所在的周期第一电离能由大到小的前三种元素是___________(用元素符号表示)。

(2)醋酸亚铁中碳原子的杂化轨道类型有___________,该微粒中是否存在四面体结构___________(填“存在”或“不存在”),其晶体类型最可能是___________。

(3)盐水若洒在煤火上会产生黄色火焰,此过程中相应原子中电子跃迁方式为___________。

(4)Fe(CO)5可用作催化剂、汽油抗爆剂等。其分子中键和键的数目之比为___________。CO的沸点高于N2的原因是___________。

(5)铁氮化合物在磁记录材料领域有着广泛的应用前景,其中一种晶胞结构如下图所示,则一个该晶胞的质量为___________g.若晶胞参数为d

pm,N、Fe的原子半径分为、,则该晶胞中原子的空间利用率是___________。(用表示阿伏加德罗常数的值,表示圆周率)

14.下表中A、B、C、D、E、F为短周期主族元素,G为第四周期元素,它们的原子序数依次增大。

A.元素周期表中原子半径最小的元素

B.原子最外层电子数是内层电子数的2倍

C.元素原子的核外p电子总数比s电子总数少1

D.元素价电子排布式为nsnnp2n

E.同D主族元素,且原子序数为D的2倍

F.元素的主族序数与周期数的差为4

G.基态原子最外层电子排布为4s1,内层处于全充满状态

(1)C基态原子电子排布式为___________,CA3中心原子的杂化方式为___________,分子空间构型为___________。

(2)E的最高价氧化物的VSEPR模型名称为___________,其属于___________(填“极性”或“非极性”)分子。

(3)A2D的沸点比A2E的沸点高,其主要原因是___________。

(4)下列关于B2A2的说法中正确的是___________(填序号)。

A.B2A2中的所有原子都满足8电子结构

B.B2A2分子中σ键和π键数目比为1:1

C.B2A2是由极性键和非极性键形成的非极性分子

D.B2A2分子发生加成反应σ键断裂

(5)下列图象可表示两个F原子间成键后的电子云的图像是___________。

(6)向G2+的硫酸盐溶液中滴加氨水直至过量,首先观察到生成蓝色沉淀,离子方程式为___________,继续滴加氨水,沉淀溶解,得到深蓝色的透明溶液,加入乙醇后有深蓝色晶体析出,其溶质的化学式为___________(不用写结晶水)。

15.芦笋中的天冬酰胺(结构如图)和微量元素硒、铬、锰等,具有提高身体免疫力的功效。

(1)天冬酰胺中_______(名称)元素基态原子核外未成对电子数最多。

(2)天冬酰胺中碳原子的杂化轨道类型有_______种。

(3)画出基态O原子的价电子排布图_______。

(4)写出BH的等电子体_______(分子、离子各写一种)。

(5)某锰氧化物的晶胞结构如图所示,该氧化物的化学式为_______。

参考答案

1.Mg

是的5倍多,说明最外层有2个电子

基态N原子的2p能级半充满

C、D

氨分子与形成配合物后,孤对电子与形成配位键,原孤对电子与成键电子对之间的排斥作用减弱,所以键键角变大

B

立方BN晶体是原子晶体,键键能大,所以质地坚硬

1:3

棱心

【详解】

(1)①由图1可知电离能I3是I2的5倍多,说明最外层有2个电子,结合该元素是第三周期元素,则该元素为第三周期第ⅡA族元素,此元素为镁元素,元素符号为Mg;

②第二周期元素的第一电离能随原子序数的变化情况如图6,同一周期元素中,元素的第一电离能随着原子序数的增大而呈增大的趋势,但第ⅡA元素第一电离能大于第ⅢA元素,第ⅤA族的第一电离能大于第ⅥA族元素,即I1随Z的递增而呈增大趋势,而导致在a点出现齿峰的原因是基态N原子的2p能级半充满;

③根据图示,1个铝原子周围有8个镁原子最近且等距离;

(2)

A.根据配合物的结构图,是三角双锥结构,正负电荷分布均匀,是非极性分子,分子中含有δ键和π键,选项A正确;

B.中Fe原子的配体是CO,价电子数是10,与互为等电子体,选项B正确;

C.含有键,选项C不正确;

D.是化学变化,有化学键的断裂和生成,断裂配位键、生成金属键,选项D不正确;

答案选CD;

(3)分子与Zn2+形成配合物后,孤对电子与Zn2+成键,原孤对电子与成键电子对之间的排斥作用变为成键电子对之间的排斥作用,排斥作用减弱,所以键键角变大;

A.中S原子价电子对个数=,含有一个孤电子对,所以为三角锥形结构,中N原子价电子对个数=,含有一个孤电子对,所以为V形结构,选项A不符合;

B.中N原子价电子对个数=,没有孤电子对,所以为平面结构,中S原子价电子对个数=,没有孤电子对,所以为平面结构,选项B符合;

C.中O原子价电子对个数=,含有一个孤电子对,所以为三角锥形结构,ClO3-中Cl原子价电子对个数=,含有一个孤电子对,所以为三角锥形结构,选项不C符合;

D.中P原子价电子对个数=,没有孤电子对,所以为四面体结构,中S原子价电子对个数=,含有一个孤电子对,所以为三角锥形结构,选项D不符合;

答案选B;

(4)立方BN晶体是原子晶体,键键能大,所以质地坚硬;

根据均摊原则,1个晶胞中含有N原子数是4、含有B原子数是,晶胞中最近的B、N原子之间的距离为anm,则晶胞体对角线为4anm,晶胞边长是nm,阿伏加德罗常数的值为NA,则晶体的密度为=;

(5)①根据均摊法,C原子位于晶胞内部,个数为1,Mg原子位于顶点,个数为1,Ni原子位于面心,个数为3,所以化学式为MgNi3C;

②据图可知镍原子构成的八面体空隙数目为1,每条棱上的两个镁原子与相邻面心的镍原子构成正八面体空隙的,所以镍原子和镁原子共同构成的八面体空隙为3,则完全由镍原子构成的八面体空隙与由镍原子和镁原子共同构成的八面体空隙的数量比为1:3;

③若取碳原子为晶胞顶点,镍原子和镁原子共同构成的八面体空隙中有2个镁原子、4个镍原子,则镍原子位于晶胞的棱心位置。

2.Ni、Ge、Se

Ti原子的价电子数比Al多,金属键更强

D

相同

小于

Mn2+的3d能级是半充满的相对稳定结构,较难失去电子

【详解】

(1)①Ti是22号元素,价电子排布是,Ti的基态未成对电子数为2个,同周期中未成对电子数为2个的价电子排布还有Ni()、Ge()、Se()共3种;

②Ti原子的价电子数比Al多,金属键更强;

(2)①金属锰的晶胞构型和氯化钠的相同,都属于面心立方构型,晶胞俯视图符合D;

②Mn是25号元素,根据构造原理知,Mn的基态原子核外电子排布式[Ar]3d54s2,失电子时,从最外层失去,即失去4s上2个电子和3d上一个电子,Mn3+核外价电子排布为3d4,则电子的自旋状态相同;

③配离子是八面体,即中心离子的配体共6个,含1

mol该配合物的溶液与足量AgNO3溶液作用可生成l

mol

AgCl沉淀,说明外界有1个Cl-,其余Cl-和氨都在内界,作为配体,外界是一个单位负电荷,则整个内界应带一个单位正电荷,锰离子有两个单位正电荷,氨不带电荷,只需要一个带负电荷的氯离子即可,故配离子的化学式为;

(3)Fe的电子排布是[Ar]3d64s2,Mn的电子排布为[Ar]3d54s2,则Fe2+的电子排布为[Ar]3d6,Mn2+的电子排布为[Ar]3d5,Mn2+的3d能级是半充满相对稳定结构,较难失去电子,故第三电离能I3(Fe)较小;

(4)设中三价锰与四价锰的物质的量分别是m和n,则有3x+2(1-x)+3m+4n=6,m+n=1,解得m=x,n=1-x,则中三价锰和四价锰的物质的量之比为;

(5)晶胞中Ti原子数目=,O原子数目=,因此该物质的化学式为TiO2,则晶胞中原子总体积为,晶胞的质量=,则晶胞体积=,故晶胞的空间利用率是

3.Ⅷ

3:1

Si的原子半径大于C的原子半径,原子间难以形成π键

碳氧键的键长比硅氧键短、键能比硅氧键大,碳氧键的共价键比硅氧键强

1,3

氨基中氮原子能与水分子形成氢键

【详解】

(1)钴元素的原子序数为27,位于元素周期表第四周期Ⅷ族;铬元素的原子序数为24,价电子排布式为3d54s1,核外有6个不成对电子,镍元素的原子序数为28,价电子排布式为3d84s2,核外有2个不成对电子,则铬与镍的基态原子核外未成对电子数之比为3:1,故答案为:Ⅷ;3:1;

(2)

C原子的原子半径较小,C原子中p轨道能形成肩并肩的π键,与C原子相比,Si原子的原子半径较大,Si原子中p轨道难以形成肩并肩的π键,则Si原子之间难以形成双键,故答案为:Si的原子半径大于C的原子半径,原子间难以形成π键;

(3)由题意可知,二氧化碳晶体和二氧化硅晶体都为原子晶体,原子晶体的熔点取决于共价键的强弱,由于碳原子的原子半径比硅原子小,非金属性比硅原子强,二氧化碳晶体中碳氧键的键长比二氧化硅晶体中硅氧键短、键能比硅氧键大,则二氧化碳晶体中碳氧键的共价键二氧化硅晶体中比硅氧键强,熔点比二氧化硅晶体大,故答案为:大;碳氧键的键长比硅氧键短、键能比硅氧键大,碳氧键的共价键比硅氧键强;

(4)

含有孤对电子的氮原子与钴离子通过配位键结合,形成配位键后氮原子能形成4个共价键,由钻酞菁的结构可知,1、3号氮原子形成4个共价键,2、4号氮原子形成3个共价键,则四氨基钴酞菁中与钴离子通过配位键结合的氮原子为1、3号;四氨基钴酞菁中含有4个氨基,氨基中氮原子能与水分子形成氢键,增大在水中的溶解性,故答案为:1、3;氨基中氮原子能与水分子形成氢键;

(5)由晶胞结构可知,晶胞中位于顶点和面心的碳原子的个数为8×+6×=4,位于体内的硅原子个数为4,设晶体的密度为dg/cm3,由质量公式可得:=(c×10—10)3,解得d=;由位于体对角线四分之一处上部原子1的分数坐标为可知,晶胞的边长为1,则位于体对角线四分之一处下部原子2的分数坐标为,故答案为:。

4.由高能量状态跃迁到低能量状态

N>O>S>K

O

sp2

直线型

草酸分子间能形成更多氢键

2∶1

【详解】

(1)基态N原子价电子排布式为2s2p3,结合泡利原理、洪特规则,价电子排布图为;烟花燃放过程中,钾元素中的电子由高能量状态跃迁到低能量状态,以光的形式释放能量;金属的第一电离能小于非金属元素的,N原子元素2p能级为半充满稳定状态,N元素的第一电离能高于O元素的,同主族自上而下第一电离能减小,故第一电离能:N>O>S>K;同周期自左而右电负性增大、同主族自上而下电负性减小,故O的电负性最大,故答案为:,由高能量状态跃迁到低能量状态,N>O>S>K,O。

(2)①C2O3中碳原子没有孤对电子、形成3个σ键,杂化轨道数目为3,C原子采取sp2杂化;CO2分子中碳原子没有孤对电子,价层电子对数为2,其立体构型为直线形,故答案为:sp2,直线形。

②草酸分子含有2个“O—H”键,正丁酸分子含有1个“O—H”键,草酸分子之间形成更多的氢键,故草酸的沸点比正丁酸高的多,故答案为:草酸分子之间形成更多的氢键。

③CO分子与N2互为等电子体,结构相似,故CO的结构式为C≡O,三键含有1个σ键、2个π键,故CO分子中π键与σ键个数比为2:1,故答案为:2:1。

(3)根据晶体结构可知每个B原子被四个距离相等且最近的P原子包围,每个P原子被四个距离相等且最近的B原子包围,所以P原子的配位数是4;在一个晶胞中含有的P原子数目:8×+6×=4,在一个晶胞中含有的B原子数目:4×1=4,即1个晶胞中含有4个BP,晶胞的质量是m==g,由于晶胞密度为ρg·cm-3,所以晶胞的体积为==cm3,所以晶胞参数为cm=×1010pm,故答案为:4,×1010。

5.14

CH4>NH3>H2O

NH3中心原子有一对孤电子对H2O中心原子有两对孤电子对,CH4中心原子没有孤电子对,而孤电子对排斥力比键合电子对排斥力大,所以孤电子对越多,键角减小

小于

F的电负性比Cl大,F-C极性大于Cl-C的极性,使F3C-C极性大于Cl3C-C的极性,导致三氟乙酸的羧基中的羟基的极性更大,更易电离出氢离子

【分析】

W基态原子L能层所有能级上电子数相同,W的电子排布式为1s22s22p2,为C元素;R第二周期元素基态原子中未成对电子最多,故R为N元素;X基态原子核外s能级上电子总数与p能级上电子总数相等,且第一电离能低于同周期相邻元素,X为O元素;Y次外层电子数是最外层电子数的2倍,K、L、M层电子数分别为2、8、4,故Y为Si元素;Z最外层只有1个电子,其它所有轨道电子均成对,电子排布式为1s22s22p63s23p63d104s1,为Cu元素。

【详解】

(1)根据分析,Y是Si元素,核外所有电子的运动状态均不同,因此有14种不同的运动状态的电子;Z为Cu,价电子为3d104s1,价电子排布图为;

(2)

W、R、X的简单氢化物分别为CH4、NH3、H2O,三个分子的中心原子均为sp3杂化,孤电子对排斥力比键合电子对排斥力大,所以孤电子对越多,键角减小,CH4、NH3、H2O中中心原子的孤电子对分别为0、1、2,故键角CH4>NH3>H2O;

(3)由于pKa越小,酸性越强,由表可以看出,三氯乙酸的pKa大于三氟乙酸的,故酸性三氯乙酸小于三氟乙酸;同主族元素电负性从上到下依次减弱,F的电负性比Cl大,所以F与C形成的共价键极性较大,CF3COOH中F3C-C极性大于CCl3COOH中Cl3C-C的极性,导致三氟乙酸的负电性偏向-CF3,致使羧基中的羟基的极性更大,更易电离出氢离子,酸性更强;

(4)由均摊法可知,晶胞中W的个数为8×+6×=4,Y的个数为4,故该物质的化学式为SiC,由图可以看出,C在8个顶点和6个面心,与C紧邻的C有12个,由于化学式为SiC,故Si原子紧邻的Si原子也有12个;晶胞密度,故NA=。

6.AC

正三角形

Cu

(1,)

【详解】

(1)硫元素的原子序数为16,基态硫原子的价电子排布式为3s23p4;

A.符合核外电子排布规律,故正确;

B.由洪特规则可知,电子在能量相同的轨道上排布时,总是尽可能分占不同的轨道且自旋方向相同,则违背洪特规则,故错误;

C.

符合核外电子排布规律,故正确;

D.由泡利不相容原理可知,一个原子轨道里最多只能容纳2个电子,而且自旋相反,则违背泡利不相容原理,故错误;

AC正确,故答案为:AC;

(2)铜元素的原子序数为29,价层电子排布式为3d104s1,则基态亚铜离子的价层电子排布式为3d10,故答案为:3d10;

(3)硫化氢分子中硫原子的价层电子对数为4;硝酸根离子中氮原子的价层电子对数为3,孤孤对电子对数为0,则离子的空间构型为平面正三角形,故答案为:4;正三角形;

(4)分子晶体的熔点小于离子晶体,二氧化硫为分子晶体,三氧化二锑和三硫化二锑都为离子化合物,则二氧化硫的熔点最低;离子晶体中,离子键越强,晶体的熔点越高,由于氧离子的离子半径小于硫离子,锑离子和氧离子形成的离子键强于锑离子和硫离子形成的离子键,三氧化二锑的熔点高于三硫化二锑,则三种物质熔点由高到低的顺序为,故答案为:;

(5)

①由晶胞结构可知,晶胞中位于顶点和体心的锑原子个数为8×+1=2,位于面上的小黑球的个数为8×=4,位于面心和棱上的小灰球的个数为2×+4×=2,位于体内的大白球的个数为8,由晶体的化学式为可知,小黑球A、B、C均为铜原子,小灰球为锌原子,大白球为硫原子,故答案为:Cu;

②由位于yz面上的原子A的坐标为和位于xz面上的原子B的坐标为可知,位于xyz面上的原子C的坐标为(1,),故答案为:(1,);

③设晶胞的密度为dg/cm3,由晶胞的质量公式可得:=[

(a×10—10)

×2a×10—10]×d,解得d=,故答案为:。

7.1s22s22p63s23p63d74s2或[Ar]3d74s2

F>O>P

正八面体形

C

LiAsF6

PF的半径比AsF的小,PF与Li+的作用比AsF的强,迁移速度就慢

【详解】

(1)基态Co原子核外有27个电子,根据能量最低原理书写电子排布式为1s22s22p63s23p63d74s2或[Ar]3d74s2;s轨道有一种空间运动状态,p轨道有三种空间运动状态,d轨道有五种空间运动状态,因此基态Co厦于的核外电于的空间运动状态有15种,故答案为:1s22s22p63s23p63d74s2或[Ar]3d74s2;15;

(2)LiFePO4与LiPF6中所含的非金属元素为P、O、F,电负性由大到小的顺序为F>O>P;PF的价层电子对数为6+(5+1-6)=6,没有孤电子对,空间构型为正八面体形,故答案为:F>O>P;正八面体形;

(3)H3PO4的通式可写为(HO)3PO,HClO的通式可写为HOCl,H2SO4的通式可写为(HO)2PO2,HNO2的通式可写为HONO,HNO3的通式可写为(HO)3N,HNO2和H3PO4的非羟基氧原子数n相同,酸性相近,故答案为:C;

(4)PF的半径比AsF的小,PF与Li+的作用比AsF的强,迁移速度就慢,故答案为:LiAsF6;PF的半径比AsF的小,PF与Li+的作用比AsF的强,迁移速度就慢;

(5)由图可知,在TiO2

晶胞中,Ti

原子位于顶点、面上和体心处,O

原子位于面上、棱边以及晶胞内部,因此

个晶胞中含有的Ti

原子个数为:8×+4×+1=4,O

原子个数为:8×+8×+2=8,进行

N

掺杂后,棱边上和晶胞内部分别有

O

原子形成氧空穴,面上有

O

原子被

N

原子替代,则掺杂后晶体中

N

原子个数为:12,O

原子个数为:8−1−−=,晶胞内各原子数为:Ti4ON,将

Ti

原子数定为

1,可得:TiON,即2-a=,a=,b=,故答案为:。

8.3d84s2

sp

氨气和水都是极性分子,且它们之间能形成氢键

ac

【详解】

(1)Ni是28号元素,根据构造原理,可知基态Ni原子核外电子排布是1s22s22p63s23p63d84s2,则基态镍原子的价电子排布式为3d84s2;

(2)①在CN-中C、N原子之间以共价三键结合,C原子的价层电子对数为1+=1,所以C原子杂化方式是sp杂化;

在[Ni(CN)4]2-中,中心Ni2+与4个配位体CN-之间以配位键结合,配位键属于σ键;在CN-中含有1个C≡N键,其中1个为σ键,2个为π键,因此1个[Ni(CN)4]2-中含有σ键含有4+1×4=8个σ键,则在1

mol

[Ni(CN)4]2-中含有8

mol

σ键;

②NH3中N原子上有1对孤电子对,在[Ni(NH3)4]2+中NH3的孤电子对形成配位键后,使N-H成键电子对所受斥力减小,键角增大,则[Ni(NH3)4]2+中H-N-H键角大于NH3分子中的H-N-H键角;氨气和水都是极性分子,根据相似相溶原理可知NH3易溶于水;且NH3、H2O分子之间能形成氢键,增加了分子之间的吸引作用,也增大了氨在水中溶解度;

③在丁二酮肟镍分子内,配位体的N原子与中心Ni原子之间以配位键结合;N=O键的O原子与O-H键的H原子之间以氢键结合,故丁二酮肟镍分子内含有的作用力有配位键、氢键,合理选项是ac;

(3)在NiO晶胞中含有Ni原子数为:,含有的O原子数为;晶胞质量m=,晶胞体积边长L=,O原子在晶胞边长L的一半,则晶胞中距离最近的两个O2-之间的距离为a=。

9.C

从NaCl到CsCl均为离子晶体,阳离子半径逐渐增大,离子键逐渐减弱,熔点降低;但BeCl2是分子晶体,MgCl2是离子晶体,分子晶体的熔点低于离子晶体

AB

sp3、sp2

7∶1

乙酸分子与水分子间能形成氢键

ZnS

【详解】

(1)A.根据构造原理可知原子的核外电子排布式应该为,A错误;

B.根据构造原理可知原子的核外电子排布式应该为是;

C.原子核外电子排布遵循构造原理,C正确;

D.原子核外3d轨道全满时原子处于稳定状态,则其电子排布式应该是,D错误;

故合理选项是C;

(2)NaCl、KCl、RbCl、CsCl均为离子晶体,由于金属阳离子半径按Na+、K+、Rb+、Cs+顺序逐渐增大,离子半径越大,离子键越弱,断裂离子键消耗的能量就越低,物质的熔点就越低,所以从NaCl到KCl、RbCl、CsCl逐渐降低;而BeCl2在固态时属于分子晶体,分子之间通过分子间作用力结合,分子间作用力比化学键弱,因此其熔沸点比较低;而MgCl2属于离子晶体,Mg2+与Cl-通过离子键结合,离子键是一种强烈的相互作用力,断裂消耗能量较高,所以BeCl2的熔点比MgCl2低;

(3)A.SiO2为共价晶体,熔化时将破坏Si-O共价键,Si-O属于极性共价键,A符合题意;

B.乙酸溶于水时电离产生H+和CH3COO-,破坏的是H-O共价键,H-O共价键属于极性共价键,B符合题意;

C.干冰是固体CO2,由分子通过分子间作用力结合而成。干冰气化破坏的是分子间作用力,与分子内的共价键无关,C不符合题意;

D.冰是固体H2O,由分子通过分子间作用力结合而成。冰熔化破坏的是分子间作用力,与分子内的共价键无关,D不符合题意;

故合理选项是AB;

乙酸是由分子构成的物质,结构简式是CH3COOH,其中甲基(-CH3)中的碳原子形成4个单键,杂化轨道数目为4,采用的是sp3杂化;羧基(-COOH)中的碳原子形成3个σ键,杂化轨道数目为3,采用的是sp2杂化,因此乙酸分子中C原子杂化类型为sp3、sp2杂化;

在1个CH3COOH分子中含有7个σ键和一个π键,因此在一个CH3COOH分子中含有的σ键和π键的个数比为其个数比为7∶1;

乙酸分子、水分子都是极性分子,且乙酸分子与水分子间会形成氢键,增加了分子间的作用力,因此乙酸易溶于水;

(4)晶胞中Zn在8个顶角和6个面心上,所以每个晶胞中含有Zn原子个数为,在每个晶胞内部含有4个S原子,晶体中Zn、S原子个数比为4:4=1:1,所以该晶体的化学式为ZnS;每个晶胞的质量为m=,晶胞体积为V=(540×10-10cm)3,则晶胞密度ρ=,故体积为10

cm3的晶体的质量m(晶体)=。

10.球形

2∶3

3∶4

分子间能形成氢键,的相对分子质量大于,分子间作用力大于

中非羟基氧原子数小于中非羟基氧原子数,中的正电性弱于中的正电性,更难电离出氢离子

【详解】

(1)为28号元素,基态原子价层电子排布式为,的电子云轮廓图的形状为球形;基态原子的价层电子排布式为、基态原子的价层电子排布式为,二者的价层电子数目之比为2∶3;同周期元素的原子半径越小,第一电离能往往越大,故、、的第一电离能由大到小的顺序为;

(2)石墨与金刚石的质量相等,物质的量相等,石墨中含有共价键,金刚石中含有共价键,二者数目之比为3∶4;

(3)三种物质中,分子间能形成氢键,沸点最高,的相对分子质量大于,分子间作用力更大,沸点高于,则三种物质沸点由高到低的顺序为;

(4)同种元素形成的含氧酸中,非羟基氧原子数越多,酸性越强;中的价层电子对数目为4,杂化方式为杂化;

(5)①由的组成和晶胞结构知,晶胞顶角处为C,与之距离最近且相等的的数目为6;

②由晶胞结构知,每个晶胞中含有1个C和2个,则晶体密度。

11.5s25p2

P失去的是3P2上的电子,S失去的是3P3上的电子,3P3为半充满结构、较稳定、难失去电子

12NA

sp3、sp2

【详解】

(1)锡和碳同族,碳属于ⅣA族元素,价电子排布式为2s22p2,则基态锡原子的最外层电子排布式为5s25p2。答案为:5s25p2;

(2)P失去1个电子后,其价电子排布式为3s23p2,S失去1个电子后,其价电子排布式为3s23p3,从价电子排布式可以看出,失去1

个电子后的S最外层处于半满状态,所以P、S的第二电离能(I2)的大小关系为I2(P)<I2(S),原因是P失去的是3P2上的电子,S失去的是3P3上的电子,3P3为半充满结构、较稳定、难失去电子;元素的非金属性越弱,其氢化物的稳定性越差,P、N属于同主族元素,P在N的下方,P的非金属性比N弱,所以PH3分子的热稳定性比NH3弱。答案为:<;P失去的是3P2上的电子,S失去的是3P3上的电子,3P3为半充满结构、较稳定、难失去电子;弱;

(3)苯的结构式为,但苯不是单双键交替,而是形成大π键,所以1mol苯中含有6

NA个碳碳键和6

NA个碳氢键,键的数目为12NA。CH3CH2COOH中,-CH3、-CH2-中C原子的价层电子对数都为4,-COOH中C的价层电子对数为3,所以C的杂化方式有sp3、sp2。答案为:sp3、sp2;

(4)该正八面体的边长为晶体中P原子与最近的两个Cu原子构成的直角三角形的斜边,所以该正八面体的边长为nm;在晶胞中,含有1个P原子、Sn原子个数为、Cu原子个数为,则该晶体密度为=gcm-3。答案为:。

【点睛】

当原子或离子的价电子轨道处于全满、半满或全空时,电子的能量低,原子或离子稳定,再失去1个电子时的电离能大。

12.sp2

16NA

高两个化合物都可以形成氢键,但前者因取代基在对位,易形成分子间氢键,沸点较高;后者因取代基在邻位,易形成分子内氢键,故沸点较低

MgCNi3

【详解】

(1)Ni为第四周期VIII族的28号元素,基态原子核外电子排布式为或。

(2)对羟基苯甲酸()苯环中C原子和羧基中C原子的杂化轨道类型均为sp2;单键是一根σ键,双键含一根σ键,苯环中6个碳原子间形成6根σ键,则1

mol对羟基苯甲酸中σ键数目为16NA。

(3)对羟基苯甲酸()沸点比邻羟基苯甲酸()高,原因是两个化合物都可以形成氢键,但前者因取代基在对位,易形成分子间氢键,沸点较高;后者因取代基在邻位,易形成分子内氢键,故沸点较低。

(4)①在如图晶胞中,八面体空隙位于体心位置和所有棱心位置,它们的比例是1:3,体心位置的八面体由镍原子构成,可填入碳原子,而棱心位置的八面体由2个镁原子和4个镍原子一起构成,不填碳原子,所以C处于体心位置,则Mg处于顶点位置,Ni处于面心位置,该超导材料晶体的结构如图所示:,含Mg的个数为=1,含Ni的个数为=3,含C的个数为1,该新型超导材料的化学式为MgCNi3。

②由图可知,与Mg距离最近的C的个数为8,该晶胞密度。

13.Kr>Br>As

sp3、sp2

存在分子晶体

由激发态跃迁到基态(或由较高能量的轨道跃迁到较低能量的轨道)

1:1

二者相对分子质量相同,CO为极性分子,N2为非极性分子,CO的分子间作用力大于N2的(即相对分子质量相同,组成和结构相似,极性越强,分子间作用力越大,沸点越高。)

【详解】

(1)Fe是26号元素,根据构造原理可知基态Fe原子核外电子排布式是1s22s22p63s23p63d64s2,则其价层电子的电子排布式是3d64s2,原子核外电子总是尽可能成单排列,而且自旋方向相同,则其基态价电子排布图为;

Fe位于第四周期第VIII族,一般情况下同一周期元素的原子序数越大,其第一电离能就越大,当元素处于第IIA、第VA时,其第一电离能大于同一周期相邻元素,故铁所在的周期第一电离能由大到小的前三种元素是Kr>Br>As;

(2)Fe(CH3COO)2中甲基C形成4个σ键,为sp3杂化;羰基C形成了碳、氧双键,为sp2杂化;故Fe(CH3COO)2中C原子杂化类型为sp3、sp2杂化;

由于其中含有CH3—,与该C原子连接的4个原子构成的是四面体结构,故该微粒中是否存在四面体结构;醋酸亚铁的熔点约为195℃,相对来说比较低,因此其晶体类型可能是分子晶体;

(3)盐水若洒在煤火上会产生黄色火焰,这是由于NaCl中的Na+在灼烧时,电子由能量低基态跃迁到能量高的激发态,电子处于高能量状态不稳定,会再回到能量比较低的基态,多余的能量以光的形式释放出来,即此过程中相应原子中电子跃迁方式为由激发态跃迁到基态(或由较高能量的轨道跃迁到较低能量的轨道);

(4)Fe(CO)5为络合物,Fe与5个CO形成配位键,配位键属于σ键;在配位体CO分子中含有1个键和2个键,则Fe(CO)5分子中键和键的数目之比为(5+5):(2×5)=1:1;

CO、N2为等电子体,CO的沸点高于N2是由于二者相对分子质量相同,CO为极性分子,N2为非极性分子,CO的分子间作用力大于N2的(即相对分子质量相同,组成和结构相似,极性越强,分子间作用力越大,沸点越高);

(5)在一个晶胞含有的Fe原子数目为:;含有的N原子数为:1个,则晶胞质量为m=;

晶胞体积为V(晶胞)=(d×pm)3=

d3pm3;在一个晶胞中含有的4个Fe原子和1个N原子的体积为V(Fe)总+V(N)=(),故该晶胞中原子空间利用率是。

14.1s22s22p3

sp3

三角锥

平面三角形

非极性

水分子之间存在氢键

C

B

Cu2++2NH3•H2O=Cu(OH)2↓+2

NH

[Cu(NH3)4]SO4

【分析】

A为元素周期表中原子半径最小的元素,则A为H元素,B原子最外层电子数是内层电子数的2倍,则B为C元素,C元素原子的核外p电子总数比s电子总数少1,则C为N元素,D元素价电子排布式为2s22p4,则D为O元素,E与D同主族,且原子序数为D的2倍,则E为S元素,G基态原子最外层电子排布为4s1,内层处于全充满状态,则G为Cu元素,据此分析解题。

【详解】

(1)C为N元素,基态原子电子排布式为:1s22s22p3;CA3为NH3,有三条σ键一个孤电子对,中心原子的杂化方式为sp3杂化,分子空间构型为三角锥形。

(2)E的最高价氧化物为SO3无孤对电子,VSEPR模型名称为平面三角形,SO3是平面三角形分子,键角120度,因此它是非极性分子。

(3)A2D(H2O)的沸点比A2E(H2S)的沸点高,其主要原因是因为水分子之间存在氢键。

(4)下列关于B2A2(C2H2)为乙炔含有三键,A.B2A2中的氢原子不满足8电子结构,故A错误;

B.B2A2分子中σ键和π键数目比为3:2,故B错误;

C.B2A2是由极性键(C-H)和非极性键(CC)形成的非极性分子,故C正确;

D.B2A2分子发生加成反应Π键断裂,故D错误;

故选C。

(5)两个F原子间成键后为F2,图象可表示其电子云的图像是B,因为F原子之间形成p-pσ键。

(6)向Cu2+的硫酸盐溶液中滴加氨水直至过量,首先观察到生成蓝色沉淀,沉淀为氢氧化铜,离子方程式为:Cu2++2NH3•H2O=Cu(OH)2↓+2NH,继续滴加氨水,沉淀溶解,得到深蓝色的透明溶液,生成[Cu(NH3)4]2+,加入乙醇后有深蓝色晶体析出,其溶质的化学式为[Cu(NH3)4]SO4。

15.氮

CH4、NH

MnO2

【详解】

(1)根据天冬酰胺结构可判断所含元素为碳、氢、氧、氮;C、H、N、O的价电子排布式分别为:2s22p2、1s1、2s22p3、2s22p4,未成对电子分别为:2、1、3、2,所以氮元素未成对电子最多,答案为:氮;

(2)根据题干给的天冬酰胺结构可以看出碳原子形成的化学键的类型有单键和双键,碳原子以sp3和sp2杂化,所以碳原子的杂化类型有2种,正确答案:2;

(3)基态O原子的价电子排布式为::2s22p4,则O原子的价电子排布图为:。

(4)原子数和价电子数都相等的为等电子体,所以BH的等电子体的分子有CH4,离子有NH。

(5)在立方晶胞的八个顶点各有一个Mn,立方晶胞体心也有一个Mn,根据均摊法可知一个晶胞中含有8×+1=2个Mn;在立方晶胞上下两个面上共含有4个O,立方晶胞内含有2个O,所有一个晶胞含有4×+2=4个O,Mn的个数与O的个数比为1:2,所以该氧化物的化学式为:MnO2。

下载高考冲刺物质的结构与性质一(选修三)word格式文档
下载高考冲刺物质的结构与性质一(选修三).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐