第一篇:数列的教学体会
新教材“数列”部分教学体会
上海市高中二年级第一学期(上海教育出版社出版)的第七章数列,课程内容呈现出生动活泼、新颖靓丽的特色,同时新教材注重数学过程,更新教学内容,拓展了思维空间,是基础教育课程改革成功展示的一个缩影。本文就在该章的教育教学过程中产生的一些教学体会,谈一下浅见。
一、本章内容在高中数学教学体系中的重要性:
(一)数列具有广泛的实际应用,如堆放物品总数的计算,产品规格设计的实际应用问题等,都要用到数列知识。
(二)数列起到承前启后的作用。由于数列这部分知识与以前所学知识具有较强的联系,特别与函数等知识有密切联系,新教材安排数列在函数之后教学,有利于用函数的观点来认识数列本质,也有利于加深巩固对函数概念的理解。同时学习数列又为进一步学习极限等内容作好了准备,是学习高等数学的基础。
(三)数列是培养学生逻辑思维、抽象思维、归纳思维等能力的良好题材,学习数列要经常观察,分析、归纳、猜想,还要综合应用前面知识解决数列中一些问题,有助于学生数学能力的提高。
二、认真研究教材,把握数列的教学特点:
(一)、注意启发学生思维
1、在问题的提出和概念的引入方面
如:在讲等差数列与等比数列的概念时,都是先写出几个数列,让学生先观察它们的共同特点,然后在归纳共同特点的基础上给出相应的定义,可以培养学生从特殊到一般的归纳推理
如:在等差数列前n项和的公式推导时,是先提出问题:“1+2+3+……+100 = ?”,并指出著名数学家高斯10岁时便很快算出它的结果,以激发学生的求解热情,然后让学生在观察高斯算法的基础上,发现等差数列的一个对称性质。从而得到等差数列求和的方法。
如:在等比数列求和一节中将一个有关国际象棋棋盘的古代传说作为引入的例子,制造悬念,引起思考。
2、在复习总结知识点方面
如:在等差中项概念正逆叙述后还特意设问Aab是、A、b成等差数列的充要条件吗?等比中项概念也正2逆叙述。在复习参考题中也有充要条件命题出现。众所周知,充要条件是数学思维基本模式,也是数学逻辑的本质诠释。教学过程中对此予以强化,正是通过数学概念间逻辑联系的方向性,让学生体验和理解概念形成的过程。
(二)、注意数学思想方法的渗透
1、函数思想:数列是函数学习的继续 ;数列作为一种特殊函数,是反映自然规律的基本数学模型;用函数的思想处理数列题,要求学生对等差数列、等比数列与函数的结合题型要做到心中有数,运用好数形结合方法。
2、方程(方程组)的思想:已知数列满足某些条件,求这个数列等。
3、递推思想:使学生明白当数列通项公式不明显时,有时也可以利用递推关系式来描述;有时利用递推关系式是能够推导数列的通项公式的;对于递推公式的表达式还可以用计算机的语言表达成框图,使数学和计算机学科有机的整合起来。
4、观察-归纳-猜想-证明的思想: 比如,等差数列有许多的性质非常重要,这些性质不但要让学生知道记住,还应尽可能让学生会自己独立推导证明这些结论,探究的过程更重于结论。不妨可以从特殊的数列着手,观察发现规律,归纳猜想出一般结论,进而严密论证。在等差等比数列中这些素材是非常多的。
5、注意等差数列与等比数列的对比,突出两类数列的基本特征。
(三)、注重实际应用: 让学生真正感受到数学源自生活,服务于生活的事实,真正体会数学的工具价值,并逐渐培养善于从身边发现问题,并借助所学知识解决问题的探究意识,借此增强学生学习数学的兴趣。
三、数列教学中要注意的一下问题:
(一)把握好本章的教学要求
由于本章联系的知识面广,具有知识交汇点的特点,本章的教学要求很容易拔高,过早地进行针对“高考” 的综合性训练,从而影响了基本内容的学习和加重了学生负担。事实上,学习是一个不断深化的过程 作为在高二(上)学习的这一章,应致力于打好基础并进行初步的综合训练,在后续的学习中通过对本章内容的不断应用来获得巩固和提高,最后在高三数学总复习时,通过知识的系统梳理和进一步的综合训练使对本章内容的掌握上升到一个新的档次 为此,本章教学中应特别注意一些教学内容容易“膨胀”的地方,例如在学习数列的性质、数列的递推公式;求数列的通项公式;一般数列求和等问题,一定要控制难度,不要涉及过多的方法和技巧.(二)适当加强本章内容与函数的联系
适当加强这种联系,不仅有利于知识的融汇贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,也可以使学生对函数的认识深化一步。比如,学生在此之前接触的函数一般是自变量连续变化的函数,而到本章接触到数列这种自变量离散变化的函数之后,就能进一步理解函数的一般定义。本章内容与函数的联系涉及以下几个方面 :(1)数列概念与函数概念的联系
数列是一个特殊的函数,它是一种自变量“等距离”地离散取值的函数,从这个意义上看,它丰富了学生所接触的函数概念的范围。数列也可用图象表示,从而可利用图象的直观性来研究数列的性质。(2)等差数列与一次函数、二次函数的联系
从等差数列的通项公式可以知道,公差不为零的等差数列每一项an是关于项数n的一次函数式,于是可以利用一次函数的性质来认识等差数列。例如,根据一次函数的图象是一条直线和直线由两个点唯一确定的性质,就容易理解为什么两项可以确定一个等差数列。此外,首项为a1、公差为d的等差数列前n项和的公式可以写为:
snna1n(n1)d,即当d0 时,sn是n的二次函数式,于是可以运用二次函数的观点和方法来认识求2等差数列前n项和的问题。如可根据二次函数的图象了解函数的增减变化、最值等情况。(3)等比数列与指数型函数的联系
由于首项为a1、公比为q的等比数列的通项公式可以写成ana1q
n1,它与指数函数有着密切联系,从而可利用指数函数的性质来研究等比数列。
(三)注意等差数列与等比数列的对比,突出两类数列的基本特征
等差数列与等比数列在内容上是完全平行的,包括:定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项,以及具体问题中成等差(等比)数列的三个数的设法等。因此,可以在两者之间架起一座联想类比的桥梁。
(四)注意培养学生初步综合运用观察、归纳、猜想、证明等方法的能力
综合运用观察、归纳、猜想、证明等方法研究数学,是一种非常重要的学习能力。事实上,在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳方法进行试探,提出猜想;最后采用证明方法(或举反例)来检验所提出的猜想。应该指出,能够充分进行上述研究方法训练的素材在高中数学里并非很多,而在本章里却多次提供了这种训练机会,因而在教学中应该充分利用,不要轻易放过。
(五)注意通解通法的使用
本章内容中,涉及多种数学思想方法,如函数思想、方程思想、递归思想、合理猜想等,教学中要突出思想方法在解题中的作用,技巧的熟练掌握应建立在学生体会理解的基础上,不要以特殊的技巧冲淡通性通法的领悟.例如“一个等差数列的第6项是5,第3项与第8项的和也是5,求这个数列的前9项的和.”.由a3a85,根据等差数列的性质可得a4a7a5a65,由a65,得a5=0, 所以a1a90,得S9=0.这一解法,利用了等差数列具有a1ana2an1a3an2的性质.掌握了这一性质,能迅速求解本题.但这仅仅是一种解题的技巧,这些技巧的形成要建立在学生对等差数列深刻认识的基础上,不然随着时间的推移学生就容易淡忘,因此,从让学生掌握通性通法考虑,下列解法就显得更加具有普适性,因而也就更加重要: 设数列的首项为a1,公差为d.由题意得 a15d5,从这个二元一次方程组可解得数列的首项与公差,进而可
2a9d5.1求出前9项的和.这一解法较前一解法复杂些,但它使用了“方程思想”,这是通性通法,更能反映数学问题的本质.而前一解法则带有特殊性,有较强的技巧性.一味让学生死记硬背一些方法技巧不利于学生数学能力的提高.(六)注重课本的运用:要对课本中的典型例题、习题、总复习题进行总结、归纳、使学生熟练掌握等差、等比数列的概念与性质,掌握特殊化与一般化的思想方法,加强运算能力的训练。
四、有待研究的一些问题
(一)本章教学内容及要求与现行高考的要求如何把握?
(二)本章的内容、习题、课时之间的关系如何更好的处理? 以上是个人教学中的体会,由于水平有限,缺点错误在所难免,望批评指正。
北郊高级中学 金振华
2011-6-16 3
第二篇:数列教学设计
§2.1.1 数列的概念与简单表示法
一、学习任务分析
1.教材的结构、内容
本节课选自人教A版必修5第二章第一节《数列的概念与简单表示法》第1课时的内容,它主要研究数列的概念、分类,以及数列的两种表示形式。
2.教材的地位、作用
本节课是在集合、映射、函数等相关知识的基础上的一节课,它将数列与集合区分开来,使学生在对比中更加明确集合的概念性质,将数列与函数联系起来,加深了学生对函数的理解;同时作为数列的起始课,它为后续等差数列、等比数列的学习作了知识储备。
教材从实际问题引入数列的概念,这样就把生活实际与数学有机地联系在一起,充分体现了数学的实用价值,让学生感受到数列产生的背景,培养了学生观察分析、抽象概括的能力。
二、教学目标
1.知识与技能
(1)理解数列及其概念,了解数列和函数之间的关系;
(2)掌握数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的个通项公式。
2.过程与方法
通过对一列数的观察、归纳,写出符合条件的通项公式,培养学生的观察能力和抽象概括能力。
3.情感、态度与价值观
通过例举生活中的实际例子,让学生体会数学来源于生活,提高学生数学学习的兴趣。
三、教学重点和难点
1.教学重点
数列及其有关概念,数列的通项公式及其应用。
2.教学难点
根据一些数列的前几项,抽象、归纳数列的通项公式。
四、教学过程
第一部分——创设情境,导入新课
情境一:传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画
点或用小石子来表示数。比如他们研究过三角形数和正方形数(图示):
情境二:某市在某年内的月平均气温为(单位:°C):
8.0,9.5,9.5,12.8,20.6,25.1,30.0,32.3,29.7,17.2,10.2,8.0。
情境三:在学习英语的过程中,记忆英语单词是很重要的一个环节。小明现在有3000个英
语单词量,他认为自己不需要再记忆了,于是他每天都会忘记10个单词,而小东现在 只有2000个单词量,他认为自己需要不断的重复记忆,保证2000个单词量不变。问题:从以上三个情境中,我们可以得到这样的五组数据:①1,3,6,10,15,...;②1,4,9,16,25,...;③8.0,9.5,9.5,12.8,20.6,25.1,30.0,32.3,29.7,17.2,10.2,8.0;④3000,2990,2980,2970,...;⑤2000,2000,2000,2000,...。观 察这五组数据,看它们有何共同特点?
【师生活动】
学生独立思考,教师点名回答 【教师归纳】
(1)均是一列数;(2)有一定次序 【设计意图】
首先,情境的设计均源于生活,既可以帮助学生直观地理解数列的概念,又能够让学生体会数学概念形成的背景以及数学在实际生活中应用的广泛性,激发学生会的数学学习兴趣。其次,情境中的五组数据,也可作为教学中数列的分类等较为典型的例子。
第二部分——师生合作,形成概念
1.定义
数列:按照一定顺序排列着的一列数 2.定义剖析
(1)数列的数是按一定顺序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;
(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现。问题:回忆集合的相关定义、性质,将以上五个数列中的数用集合表示,观察分析集合与数
列有何区别?
【师生活动】
学生独立思考,教师点名回答 【教师归纳】
(1)集合中的元素是无序的,而数列中的数是按一定顺序排列的;
(2)集合中的元素是互异的,而数列中的数是可以重复出现的;
(3)集合中的元素不一定是数,而数列的对象一定是数。3.相关概念
(1)数列的项:数列中的每一个数都叫做这个数列的项.。各项依次叫做这个数列的第1项(或首项),第2项,„,第n 项,„。(2)数列的一般形式:a1,a2,a3,...,an,...,简记为an,其中an为数列的第n项。(3)数列的分类:
①根据数列项数的多少分:有穷数列、无穷数列。
②根据数列项的大小分:递增数列、递减数列、常数列、摆动数列。结合上述例子,帮助学生理解数列项的定义。例如,数列①中,“1”是这个数列的第1项(或首项),“15”是这个数列中的第5项;数列①②为递增数列,数列④为递减数列,数列⑤为常数列,数列③为摆动数列等等。
第三部分——例题讲解,巩固新知
例:下面的数列,哪些是递增数列、递减数列、常数列、摆动数列?
(1)全体自然数构成数列
0,1,2,3,....(2)1996~2002年某市普通高中生人数(单位:万人)构成数列
82,93,105,119,129,130,132.(3)无穷多个3构成数列
3,3,3,....(4)目前通用的人民币面额按从大到小的顺序构成数列(单位:元)
100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01.(5)-1的1次幂,2次幂,3次幂,4次幂......构成数列
-1,1,-1,1,....(6)2的精确到1,0.1,0.01,0.001,...,的不足近似值与过剩近似值分别构成数列
1,1.4,1.41,1.414,...;
2,1.5,1.42,1.415,....【设计意图】
通过几个典型的例子,加深学生对数列的理解以及数列项与项之间的关系,使学生掌握数列的分类。
第四部分——课堂小结,深化新知 【师生共同总结】
(1)数列的定义
(2)数列的项及一般表示形式(3)数列的分类
第三篇:数列专题
数列专题
朱立军
1、设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).(1)求数列{an}的通项公式an;
(2)设数列
1a 的前n项和为T1
1n,求证:nan+15≤Tn<
42、设数列a
2n1n满足a1+3a2+3a3+…+3an
=n
3,a∈N*.(1)求数列an的通项;(2)设bn
n=
a,求数列bn的前n项和Sn。n3、在数列{a*
n}中,a1=3,an=-an-1-2n+1(n≥2且n∈N).(1)求a2,a3的值;
(2)证明:数列{an+n}是等比数列,并求{an}的通项公式;(3)求数列{an}的前n项和Sn.4、已知数列{a项和S1211*
n}的前nn=2n
2,数列{bn}满足bn+2-2bn+1+bn=0(n∈N),且b3=11,前9
项和为153.(1)求数列{an}、{bn}的通项公式;(2)设cn=
3n
-
n
-,数列{cn}的前n项和为Tn,若对任意正整数n,Tn∈[a,b],求b-a的最小值.
5、已知点(1,2)是函数f(x)=ax
(a>0且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.(1)求数列{an}的通项公式;
(2)若bn=logaan+1,求数列{anbn}的前n项和Tn.6、已知数列{aa*
n }中,1=2,对于任意的p,q∈N,都有apqapaq.(1)求数列{an}的通项公式;
(2)令b*
*
n=ln an(n∈N),是否存在k(k∈N),使得bk、bk+
1、bk+2成等比数列?若存在,求出所
有符合条件的k的值,若不存在,请说明理由;(3)令cn=
1aa,S{c*n
n为数列n}的前n项和,若对任意的n∈N,不等式tSn 1立,求实数t的取值范围. 7、已知数列{a满足:a2n n}和{bn}1=λ,an+1= 3an+n-4,bn=(-1)(an-3n+21),其中λ为实数,n为正整数.(1)对任意实数λ,证明数列{an}不是等比数列; (2)试判断数列{bn}是否为等比数列,并证明你的结论.数列专题答案 1.(1)解 由Sn=nan-2n(n-1)得an+1=Sn+1-Sn=(n+1)an+1-nan-4n,即an+1-an=4.∴数列{an}是以1为首项,4为公差的等差数列,∴an=4n-3.(2)证明 T11111 11n=a+…++1 1a2a2a3anan+11×55×99×13 - + 1-***14n-3-14n+1 =114 1-4n+11<4.又易知T111 n单调递增,故Tn≥T1=5,得5≤Tn 42.解析:(1)a 2an-1 n 1+3a2+33+…+3an=3 ① a+3a+32aan1n-1 11123+…+3n-2 n-1=3 ②, ①-②得3an =3,所以an3 n(n≥2).经过验证当n=1也成立,因此a1 n3 n.(2)bna=n3n,利用错位相减法可以得到S(2n1n= n)3n13.n 443.(1)解:∵a* 1=3,an=-an-1-2n+1(n≥2,n∈N),∴a2=-a1-4+1=-6,a3=-a2-6+1= 1.(2)证明 ∵an+n-an-1-2n++n aa n-1+-n-1+n-1 =-an-1-n+1a=-1,n-1+n-1 ∴数列{a+1=4,公比为-1的等比数列.∴an-1 n+n}是首项为a1n+n=4·(-1),即an=4·(-1)n-1-n,∴{a1)n-1-n(n∈N* n}的通项公式为an=4·(-).n (3)解 ∵{an-1 n}的通项公式为an=4·(-1) -n(n∈N*),所以Sn=∑ak= k=1 n n n n ∑[4·(-1) k-1 -k] =∑[4·(-1) k-1 ]-∑k=4× 1-- - + k=1 k=1 k=1 1--2 =2[1-(-1)n ]- (n2 +n)=-n+n-4n 2(-1).4.解(1)因为S1211 n=2+2 n,当n≥2时,an=Sn-Sn-1=n+5,当n=1时a1=S1=6,满足上式,所以an=n+5,又因为bn+2-2bn-1+bn=0,所以数列{bn}为等差数列,由S+b 79= 153,b3=11,故b7=23,所以公差d=23-11 7-33,所以bn=b3+(n-3)d=3n+2,(2)由(1)知c3 n= 111n - n - - + 212n-12n+1,所以T1n=c1+c2+…+cn=111121-3+35+…+2n-112n+1 =11121-2n+1=n2n+1,又因为Tn+1nn+1-Tn=2n+32n+1=+ + 0,所以{T1n}单调递增,故(Tn)min=T13 而Tn= n2n+1n2n121312n,Ta的最大值为1 nn∈[a,b]时3,b的最小值为12(b-a)=111min236 5.解(1)把点(1,2)代入函数f(x)=ax得a=2,所以数列{an项和为Sn n}的前n=f(n)-1=2-1.当n=1时,ann-1n-1 1=S1=1;当n≥2时,an=Sn-Sn-1=2-2=2,对n=1时也适合.∴an-1 n=2.(2)由a=2,b=log,所以an-1 naan+1得bn=nnbn=n·2.T01+3·22+…+n·2n-1 n=1·2+2·2,① 2T12+3·23+…+(n-1)·2n-1+n·2n n=1·2+2·2② 由①-②得:-T0+21+22+…+2n-1-n·2n,所以T=(n-1)2n n=2n+1.6.解 本题主要考查等差数列、等比数列和利用不等式知识解答恒成立问题等知识,考查运算求解 能力、推理论证能力,以及分类讨论的数学思想.解答存在性问题的基本策略是先假设存在,然后结合已知条件展开证明. (1)令p=1,q=n,则有an+1=an+a1,故an+1-an=a1=2,即数列{an}是以2为首项,2为公差的等 差数列,所以数列{a* n}的通项公式为an=2n(n∈N). (2)假设存在k(k∈N*),使得b 2* k、bk+ 1、bk+2成等比数列,则bkbk+2=bk+1(k∈N). 因为bln a* n=n=ln 2n(n∈N),所以b+ kbk+2=ln 2k·ln 2(k+2)< ln 2k+ 2+ 2 22= 22+<22 = [ln 2(k+1)]2=b 2b2* k+1,这与bkbk+2=k+1矛盾.故不存在k(k∈N),使得bk、bk+ 1、bk+2成等比数列. (3)因为c111n=a==nan+1+41n1n+1 ,所以S=111n111 141-2++…+nn+1= 41-1n+1 =n+n为偶数时,若对任意的n∈N*,不等式tSn n t<++n4n+9n+10,而4n+9n+10≥4n·9n+10=64,当且仅当n=9 n n=3时,等号成立,故t<64; 当n为奇数时,若对任意的n∈N*,不等式tSn -+n =4n-9n8,因为n-99nn的增大而增大,所以当n=1时,n-n取得最小值-8,此时t需满足t<-64.综上知,实数t的取值范围为(-∞,-64)。 7.(1)证明 假设存在一个实数λ,使{a2 n}是等比数列,则有a 2=a1a3,即23-32=λ49-4 ⇔492-4λ+9=42 λ-4λ⇔9=0,矛盾,所以{an}不是等比数列.(2)解 因为b=(-1)n+1[an+1n+1-3(n+1)+21] =(-1)2 n+13an-2n+14 =-2n 23(-1)·(an-3n+21)=-3 n.又b* 1=-(λ+18),所以当λ=-18时,bn=0(n∈N),此时{bn}不是等比数列; 当λ≠-18时,b2bn+12* 1=-(λ+18)≠0,由bn+13n.可知bn≠0,所以b=-(n∈N).故当λ≠ n3-18时,数列{b2 n}是以-(λ+18)为首项,-3为公比的等比数列. 《数列求和》教学设计 一、教学目标: 1、知识与技能 让学生掌握数列求和的几种常用方法,能熟练运用这些方法解决问题。 2、过程与方法 培养学生分析解决问题的能力,归纳总结能力,联想、转化、化归能力,探究创新能力。 3、情感,态度,价值观 通过教学,让学生认识到事物是普遍联系,发展变化的。 二、教学重点: 非等差,等比数列的求和方法的正确选择 三、教学难点: 非等差,等比数列的求和如何化归为等差,等比数列的求和 四、教学过程: 求数列的前n项和Sn基本方法: 1.直接由等差、等比数列的求和公式求和,等比数列求和时注意分q= 1、q≠1的讨论; 2.分组求和法:把数列的每一项分成几项,使转化为几个等差、等比数列,再求和; 3.裂项相消法:把数列的通项拆成几项之差,使在求和时能出现隔项相消(正负相消),剩下(首尾)若干项求和.如: 设计意图: 让学生回顾旧知,由此导入新课。 [教师过渡]:今天我们学习《数列求和》第一课时,课标要求和学习内容如下:(多媒体课件展示)导入新课: [情境创设](课件展示): 例1:求数列 112,214,318,,101210,,n1n,2 的前n项和。 [问题生成]:请同学们观察否是等差数列或等比数列? 设问:既然不是等差数列,也不是等比数列,那么就不能直接用等差,等比数列的求和公 式,请同学们仔细观察一下此数列有何特征 111111,3,5,7,9,的前项和。2481632n 练习1.求数列 22n-1 练习2.求数列1,1+2,1+2+2,···,1+2+2+···+2,···.的前n项和。 例2:求数列1111,…的前n项和。,,......122334n(n1)[教师过渡]:对于通项形如an裂项相消求和方法 练习3.求和 练习4..求和sn1(其中数列bn为等差数列)求和时,我们采取 bbbn11121231nn1 [特别警示] 利用裂项相消求和方法时,抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,才能使裂开的两项差与原通项公式相同。 五、方法总结: 公式求和:对于等差数列和等比数列a的前n项和可直接用求和公式.分组求和:利用转化的思想,将数列拆分、重组转化为等差或等比数列求和.裂项相消:对于通项型如an1(其中数列bn为等差数列)的数列,在求和时 bbbn1将每项分裂成两项之差的形式,一般除首末两项或附近几项外,其余各项先后抵消,可较易求出前n项和。 六、作业布置: 数列求和教学反思 数列求和教学反思1 这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。 我将从以下几个方面进行反思: (一)对课前备课的反思 教学反思不仅仅只是针对课堂教学实际的反思,也应该包括对备课、教案进行反思。在备课过程中,教学设计前后共修改了4次,最后形成完整的一节课的设计。为什么反复修改了4次之多,其中有几个很关键的地方值得一提。 首先,是备学生。我所教的是文科普通班,入班前的数学平均分仅为44分,在第一次测验中平均分还不到60分,学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高。因此在选择教学内容上就考虑到了学生现有的认知水平。 其次,课程内容的选择。内容是数列的求和是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。等到高三复习时再讲还是在高一阶段就慢慢渗透给学生还是值得商榷的。我认为高中数学的学习应该是螺旋上升的,而不是直线型。在高一阶段学生能够掌握的知识是要渗透给学生,学生经历过的,形成一定的经验,到了高三复习阶段就能唤醒这些经验和记忆。关于数列的求和的方法有很多,常见的`如倒序相加法、并项法、拆项法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了并项法和分组求和法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。这样对后继学习裂项相消法、错位相减法做一些铺垫。 第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。 (二)对课中教学的反思 这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。 亮点之处: 学生创新解答 在例1求100?99?98?97?96?95??4?3?2?1的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199+195+191+?+7+3,这样转化是学生最容易想到的。另一种是转化成了100+99+98+?+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。 在接下来的练习中,教师的设想是学生能够想到将相邻两项合并成一项结果是1,这样很容易就能得到结果。但是高元顺同学并没有在我设想的思路上走,而是给出了一个特别的回答,他的回答是:我是这样认为的,如果这个数列是6项的话,那么第5项是-5,第6项是6,用-1+2=1,1+(-3)=-2,-2+4=2,2+(-5)=-3,-3+6=3,因此得到前6项的和就等于项数的一半。这个数列是100项,那就等于50。S200 就等于100,所以S201 就等于-101。 他的回答博得听课的老师的一致赞同。他使用的方法通过找规律提出猜想,实际上就是使用了数学思想方法中一个很重要的方法——递推法。 (2)学生成为课堂的主体,教师要甘当学生的绿叶 由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例2中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。朱馨同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。 在这两个例题教学过程中我体会到了学生获得成功的喜悦,这也说明了给学生以思考的时间和空间,学生的回答是不会让老师感到失望了,而是充满了惊喜。 (3)从容面对课堂中的偶发事件 在教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是高元顺同学的回答出乎我的意料,这种做法在我预想之外,当时我面带微笑鼓励他说下去,对他的陈述及时做出肯定和鼓励,同事我的脑子在快速的反应怎样总结他的解法,等他陈述完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正2222222222 奇数的和只差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。 积极的回答的出来。 (三)课后反思,再设计 一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。 若是再教这部分内容时我应该重新调整一下我的教学顺序,如在复习完公式后,可以先提出1+2+3+?+100=?在此基础上进行变式1-2+3-4?-99+100=?,这样再给出练习1,学生有了经验自然很容易就解决了。在例题2问题中,可以再降低一下难度,因此可以将后面的练习3作为例题。而将原例2作为练习的题目。这样的做更体现了知识的循序渐进和螺旋上升,学生容易理解和接受。 (四)感受 上一届的“凤凰杯”让我印象深刻,同时也期盼着也能参加“成长杯”。当李加莉老师宣布由我来参加这届的“成长杯”我感觉我的压力好大了。经过一段时间的精心选题和反复修改教学设计,我终于站在了“成长杯”的讲台了,心情复杂——激动、兴奋、紧张…… 直到下课的铃声想起我的一颗心才算踏实下来。 东北师范大学的孔凡哲教授曾在给我们讲座时说过:没有精心的预设,就没有精彩的生成。我一直都是深刻记得这句话,也在教学中实践它。但是我仍然感觉自己做不到“精彩”而更多的是“平淡无奇”。是这节课我有了深刻的体会,让我开始审视我前面几个月所走过了路,才发现教学真的是需要智慧,做到用心去体会,用心去设计,用心去聆听学生的声音…… 感谢这次参赛机会,让我在失败中磨练,在挫折中不断完善自己,最终坚强地站在讲台上,让我感受到了“成长”的喜悦。希望在今后的教学中我能总结经验,不断的完善自己,增强专业知识和技能,有效教学和创新教学,让自己尽快“成长 数列求和教学反思2 高三复习课以其庞大的容量让奋战在一线的老师们吃尽苦头,每位老师都有课时拮据的感叹!而资料中涉及的知识和原有内容冲突时,学生无所适从,参与探究获得知识的机会偏少,老师传授总显得相当匆忙,课堂更多成了教师的表演与独白,每当我反省学生究竟学会了那些东西时,总会汗颜;课程是按时完成了,但其有效性有多少?该让学生更主动积极地参与课堂教学,在探究中体验知识的联系,那怕一节课只学会一两种题型的`解决策略,也比满堂灌,最终什么都没学到强多了。而资料中涉及的知识和原有内容冲突时,学生更是无所适从,如何把资料和课本更好结合,则是我们每一位教师必须重视的。 在《数列求和》的内容中我最初设计了两课时,讲分组求和法、倒序相加法、裂项相消法,并引申出求通项公式的迭加(乘)法,乘比错位相减法,并补充求通项公式的待定系数法。当我重新审视教学设计和资料时, 发现资料中的裂项法和拆项法与我前面所讲的有冲突,如何能减小冲突,且多留时间给学生思考 ,取得更好的效果,于是决定改变资料教学内容,裂项法是重要的求和方法,不仅渗透了化归的重要思想,而且也是高考的热点问题,从最简单的题目入手,循序渐进,或者会有不可估计的收获吧… 数列求和教学反思3 在高一(5)班上好“等差数列求和公式”这一堂课后,通过和学生的互动,我对求和公式上课时遇到的几点问题提出了一点思考. 一、对内容的理解及相应的教学设计 1.“数列前n项的和”是针对一般数列而提出的一个概念,教材在这里提出这个概念只是因为本节内容首次研究数列前n项和的问题.因此,教学设计时应注意“从等差数列中跳出来”学习这个概念,以免学生误认为这只是等差数列的一个概念. 2.等差数列求和公式的教学重点是公式的推导过程,从“掌握公式”来解释,应该使学生会推导公式、理解公式和运用公式解决问题.其实还不止这些,让学生体验推导过程中所包含的数学思想方法才是更高境界的教学追求,这一点后面再作展开.本节课在这方面有设计、有突破,但教师组织学生讨论与交流的环节似乎还不够充分,因为这个层面上的学习更侧重于让学生“悟”. 3.用公式解决问题的内容很丰富.本节课只考虑“已知等差数列,求前n项”的问题,使课堂不被大量的变式问题所困扰,而能专心将教学的重点放在公式的推导过程.这样的处理比较恰当. 二、求和公式中的数学思想方法 在推导等差数列求和公式的过程中,有两种极其重要的数学思想方法.一种是从特殊到一般的探究思想方法,另一种是从一般到特殊的化归思想方法. 从特殊到一般的探究思想方法大家都很熟悉,本节课基本按教材的设计,依次解决几个问题。 从一般到特殊的化归思想方法的揭示是本节课的最大成功之处.以往人们常常只注意到“倒序相加”是推导等差数列求和公式的关键,而忽视了对为什么要这样做的思考.同样是求和,与的本质区别是什么?事实上,前者是100个不相同的数求和,后者是50个相同数的求和,求和的本质区别并不在于是100个还是50个,而在于“相同的数”与“不相同的数”.相同的数求和是一个极其简单并且在乘法中早已解决了的问题,将不“相同的数求和”(一般)化归为“相同数的求和”(特殊),这就是推导等差数列求和公式的.思想精髓.不仅如此,将一般的求和问题化归为我们会求(特殊)的求和问题这种思想还将在以后的求和问题中反复体现. 在等差数列求和公式的推导过程中,其实有这样一个问题链: 为什么要对和式分组配对?(因为想转化为相同数求和) 为什么要“倒序相加”?(因为可以避免项数奇偶性讨论) 为什么“倒序相加”能转化为相同数求和?(因为等差数列性质) 由此可见,“倒序相加”只是一种手段和技巧,转化为相同数求和是解决问题的思想,等差数列自身的性质是所采取的手段能达到目的的根本原因. 三、几点看法 1.注意挖掘基础知识的教学内涵 对待概念、公式等内容,如果只停留在知识自身层面,那么教学常常会落入死记硬背境地.其实越是基础的东西其所包含的思想方法往往越深刻,值得大家带领学生去认真体验,当然这样的课不好上. 2.用好教材 现在的教材有不少好的教学设计,需要教师认真对待,反复领会教材的意图.当然,由于教材的客观局限性,还需要教师去处理教材.譬如本节课,课堂所呈现的基本上是教材的内容顺序和教学设计,但面对教材所给的全部内容时,课堂能否在某个环节上停下来,能否合理地选取教材的一部分内容作为这一节课的内容,而将其他的内容留到后面的课,这就体现教师的认识和处理教材的水平. 3.无止境 一堂课所要追求的教学价值当然是尽量能多一些更好,但应分清主次.譬如本节课还用了几个“实际生活问题”,意图是明显的,教师的提问和处理也比较恰当.课没有最好只有更好! 数列求和教学反思4 针对数列问题的考试重点及学生的薄弱环节,《数列求和》的系列专题复习课《数列求和1》的教学重点放在了数列求和的前两种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的'基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清求和的项数上,因而在求和的项数上做了文章,有意设计了求和而非求,并且通过这两道题特别强调了算清项数、如何算清项数等问题,抓住了学生解决这类问题的软肋。 4、教学过程中充分关注到了学生的反应和状态 在解题教学中比较注意启发引导学生,通过自然习得,从而顺理成章达到水到渠成。从题目的设计到解题思路的分析都考虑到了学生的接受能力,从具体到抽象,通常是把问题摆出来、提一句、点一下,尽量不包办代替,努力引发学生的体验和思考,比较注重知识形成过程的教学。同时注意通过多种途径,多种角度,一题多解解决问题,杜绝直接把结果强加给学生,使学生不知所云。 当然这节课的教学也存在着这样那样的不足,比较典型的有以下两点。 1、对于基本公式的掌握仍需加强落实 部分同学公式的记忆仍成问题,本以为课上可以一带而过,不成想主动举手、信心满满、自以为可以完美表现的同学站起来仍然把等比数列的公式说错了,可想而知其他同学的情况了,恐怕也不容乐观,可见连基本公式的强化记忆都是需要老师不厌其烦加以督促的。 2、由于课堂时间容量的限制,学生们的思维活动展现得还不够充分,问题也没有完全暴露出来。 数列求和教学反思5 对于高考班来说,现在的主要任务就是储备足够的知识和经验,迎接高考。而最近几年的高考题中,创新题多数都是数列部分的题目,所以,本节课的主要教学目标就是复习《等差数列》的相关知识点,掌握高考常考题型,并能达到举一反三。 这节课我是这样安排的:首先向同学们总结了近五年的高考题中数列部分的题目所占分值的平均分,意在引起同学们的重视,然后展示本节课的复习目标,让同学们能够了解考试大纲的要求,第三让同学们总结本节的知识要点,并利用一定的时间记忆,主要是记忆公式,因为这部分的题目主要是选择适当的公式解决问题,第四是典型例题,我总结了三种例题,也是高考易考题型。 根据本课学习目标,我把学生的`自主探究与教师的适时引导有机结合,把知识点通过各种方式展现在学生面前,使教学过程零而不散,教学活动多而不乱,学生在轻松愉悦的氛围中学习知识,拓宽视野。本节课的成功之处: 1.在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。 2.教学方式符合教学对象。复习课就是要以总结的方式对学过的知识加以巩固,同学们通过本节课的复习目标,很方便的了解了重难点,通过典型例题直观的了解考试要点。 不足之处: 1.时间安排欠合理。在让同学们背公式的过程中花费时间太长。课后反思,如果当初就把几个公式展示出来,让同学们背,然后通过教师考察或小组成员之间考察,可能会达到事半功倍的效果。 2.“放”的力度不够。在分析典型例题时,总担心个别基础不好的同学不会,本来可以由学生阐述解题方法,也由我来说,所以学生的主动权给的不够多。 在今后的教学中,我会注意给学生足够的时间和空间,搭建学生展示自己的平台,要充分相信学生的实力,合理安排教学时间。 总之,认认真真准备一堂课,课后会有很多感触,及时整理自己教学上的得与失,如果每一节课都这样精心准备,每一节课后都认真反思,确实对自己今后的教学很多的启示。别饿坏了那匹马教学反思标志设计教学反思辨别方向教学反思 数列求和教学反思6 本节课是高三一轮复习课,主要是对特殊数列求和。对于数列的复习,我觉得主要是复习好两个方面,一个是如何求数列的通项公式,另一个是如何求解数列的前n项和。 这里的求和,对学生来说是一个难度很大的内容,因为此前学生一直是使用等差和等比数列的求和公式进行计算的,让他们忽然去理解和掌握错位相减和裂项相消等方法去求和,难度可想而知,所以这堂课不仅仅是复习课,而且也是一堂新课,课题是求和,学生一看就明白,但求和的对象变了,求和的方法变了。我在教学时,尊重学生的理解和掌握能力,循序渐进,不赶进度,学生要是不能掌握,那就再来一遍,特别是错位相减法,学生知道什么样的数列可以用错位相减法,但算不出正确的结果,所以课堂上在学生板演的基础上我再归纳一下做错位相减法的题目时要注意的地方,什么地方容易错,什么地方要注意等,争取在做作业时不要再犯同样的`错误。而且在经后的教学过程中要多培养学生的运算能力以及解题能力,提高他们的动手能力,思维逻辑能力和分析问题的能力,数列求和在整个数列知识中试比较综合的内容,知识点多,方法也多,在做题时首先要思考一下该用什么方法,然后再着手,加上细心才能把题目做对,而现在的学生就是缺乏这点耐心和细心,总想着花最少的时间做较多的事,有时还不检验最后的结果,这是我们教师在教学过程中要渗透的地方,教会学生耐心、细心地做题,确保题目的正确率,在今后的教学中我会在这方面加强培养学生,同时在备课的时候加强培养学生的动手、动脑能力。 数列求和教学反思7 本节课是高三总复习冲刺阶段的复习课,为了更好地将知识点连贯起来,对数列及其求和问题有一个更深的认识,首先展示了20xx年的高考大纲中对数列问题的基本要求,也就是本节课的教学目标,要让学生知道数列问题在高考中考什么,怎么考。它规范了教师的教学行为和学生的学习行为,克服教学中的随意性,教学目标的出示有助于引导学生明确本课时的学习任务和要求。 同时将历年高考中出现的典型问题作为例题进行展示,为的是让学生充分把握好数列问题的难易度,做到心里有底。学生在自主探索和合作交流中理解并掌握本节课的内容。在整个探究学习的过程中充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。例1中运用的分组求和法和例2中的裂项法,从学生课堂反馈来看掌握较好,这也是本节课的重点。例3所涉及到的错位相减法显然难度有点太,学生完成起来有点困难。 梳理归纳环节上,总结反思了每道例题的出题意图,意在培养学生归纳、总结的习惯,让学生自主构建知识体系,清楚高考中每一道题都有它自己的考察方向。激励学生以更大的热情投入到最后的冲刺复习中去。 目标检测部分,意在将本节课的'重点做一个重温,两道练习与例1和例2是相对应的。目的就是要让学生一定要掌握本节课的重点。 本节课的优点: 1、整体的思路比较清晰:展示目标,组内讨论,小组展示并释疑解惑,然后通过练习进行辨析,学生自己归纳求和方法,再接下去是方法的应用和巩固,即目标检测,知识梳理、布置作业。整个流程比较流畅、自然。 2、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;能准确的指出学生在处理问题中的不足并帮助及时改正。 本节课的遗憾: 1、在做时例3这张幻灯片没有设计好,导致字有重叠看不清。 2、还应更注重细节,讲究规范,强调反思; 总体来讲,在教授中始终把以学生为本的教学理念贯穿本课。采用将上课的主动权交给学生,而学生的学习积极性有很大的提高,学习效果好。通过对本节课系统的回顾,梳理,发现部分学生在知识点的运用上还存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。我会吸取教训,更上一层楼。 本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。 数列求和教学反思8 这节课是高二数学第七章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。 (一)对课前备课的反思 首先,是备学生。学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高,因此在选择教学内容上就考虑到了学生现有的认知水平。 其次,课程内容的选择。内容是数列求和,是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。关于数列求和的方法有很多,常见的如倒序相加法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了裂项相消法和错位相减法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。 第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。 (二)对课中教学的反思 这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整并且系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。 (1)学生的创新解答 在例1求1002-992+982-972+962-952L+42-32+22-12的值问题的'解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成 199+195+191+L+7+3,这样转化是学生最容易想到的。另一种是转化成了 100+99+98+L+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。 (2)课堂中的偶发事件 在例2教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是一位同学的回答出乎我的意料,这种做法在我预想之外,当时我对他的陈述及时做出肯定和鼓励,同时我的脑子在快速地反应怎样总结他的解法,等他讲完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和之差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。 (三)课后反思,再设计 一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。第四篇:《数列求和》教学设计
第五篇:数列求和教学反思