第一篇:物理学发展史课程心得
物理学发展史课程心得
在物理学发展史的课堂上,我了解到的是一个精简的物理学发展过程,就如视频《Into the Universe With Stephen Hawking》中所展示的地球发展历程,物理学也是从人类蒙昧无知的开始,一步步实践,一点点总结出来的理论,最终才有现今物理学的辉煌。
物理学的先驱们,以他们的绝伦而又严谨的思想,为我们奠基下了好的开始。西方的先哲认为宇宙万物由几个简单的基本元素构成;千姿百态的各种运动也只是这些元素的量和质的变化。这些先进思想和他们的严谨的思辨方式,为后世的自然科学所继承和发扬。但由于他们的观察比较粗糙,又缺乏严格的数学论证,不免带有不少的空想和臆测的成分。例如亚里士多德在所著的《物理学》中就认为大地或月下区域内的物体是由土、水、气、火四元素构成;月球以上的天体则由截然不同的第五元素即由纯净的以太构成的,它们的天然运动是圆周运动。在中国,以物理为书名的,见之于三国、西晋时代会稽郡处士杨泉的《物理论》,他认为气是“自然之体”,天是回旋运转的“元气”,万物是阴阳二气的“陶化、播流、气积”而成。不少中国的先哲认为气或元气是构成万物的原始物质,阴阳二气的消长是事物运动变化的原因。也有将“道”视为宇宙的本原及其普遍规律。这些和西方的观点颇多相似之处。也都认为天、地遵循不同的运动规律,如《淮南子•天文训》就说:“道始于虚霩,虚霩生宇宙,宇宙生气,气有涯垠,清阳者薄靡而为天,重浊者凝滞而为地。”清者上浮,浊者下沉,形成天地之别。
人类对物理学的认知在经历了如混沌初开的空测和臆想之后,进入了经典物 理学的发展高潮时期。从古希腊时代的阿基米德在流体静力学和固体的平衡方面取得辉煌成就,到伽利略、牛顿、法拉第,等等诸多伟大的科学家的努力下,建立了完善的物理学体系,创造了人类的文明,就像是远古时代的人类学会了钻木取火,熊熊的火种带来的必然是物理学的一片辉煌。
20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。
爱因斯坦于1905年创建了狭义相对论,又于1915年,创建广义相对论,1905年爱因斯坦发表光量子假设,以光的波粒二象性,解释了光电效应;1913年玻尔发表玻尔氢原子理论,用量子概念准确地地计算出氢原子光谱的巴耳末公式,并预言氢原子存在其他线光谱,后获证实。1918年玻尔又提出对应原理,建立了经典理论通向量子理论的桥梁;1924年德布罗意提出微观粒子具有波粒二象性的假设,预言电子束的衍射作用;1927年海森伯发表不确定性关系;1928年发表相对论电子波动方程,奠定了相对论性量子理论的基础。由于一切微观粒子的运动都遵循量子力学规律,因此它成了研究粒子物理学、原子核物理学、原子物理学、分子物理学和固体物理学的理论基础,也是研究分子结构的重要手段,从而发展了量子化学这个化学新分支。
物理学的新发现都必须经历繁复而艰辛的实验而得到验证。物理学是实验科学,“实践是真理的唯一标准”,物理学也同样遵循这一标准。一切假说都必须以实验为基础,必须经受住实验的验证。但物理学也是思辨性很强的科学,从诞生之日起就和哲学建立了不解之缘。无论是伽利略的相对性原理、牛顿运动定律、动量和能量守恒定律、麦克斯韦方程乃至相对论、量子力学,无不带有强烈的、科学的思辨性。
作为一名通信专业的学生,必须在努力学好基本理论知识的情况下,还要加强实验技能的锻炼,在实验中体会知识的真谛。同时,永远不要忘记学以致用。物理学应该在人们日常生活中得到广泛应用,所学应该为提高人们的生活水平服务。物理学发展史也是物理学在人类社会的应用史,也是人类文明发展史的一部分,所学一定不能脱离生活。
第二篇:物理学概论心得
物理学概论心得
物电系 物理学 物理(2)班
2011级 11110226杨蔚
通过一个学期的对物理学概论的学习,使我对物理学有了一个初步的认识,了解了物理学的发展历史。
物理学是研究自然界物质结构,以及物质运动的最基本、最普遍的规律的一门自然科学。物理学的研究方法是观察、试验、假设和理论。
物理学可以分为经典物理(19世纪末以前)与近代物理(19世纪末至今)。物理学的发展经历了3次大的飞跃。第一次是在17、18世纪,主要是牛顿力学预热力学的建立与发展;第二次出现在19世纪,主要是建立了经典电磁理论,开始了工业电气化进程;第三次是19世纪末至20世纪初,相论与量子力学的建立。
物理学的五次理论大综合:
1、牛顿把物体运动规律概括为三条运动基本定律和万有引力定律,建立了一个完整的力学理论体系,完成了物理科学的第一次理论大综合。
2、19世纪30到40年代,英国物理学家焦耳、德国医生迈尔等发现了能量守恒与转化定律,实现了物理学的第二次理论大综合。
3、1864年英国物理学家麦克斯韦建立电磁论,实现了物理科学的第三次理论大综合。
4、爱因斯坦分别于1905年和1916年创立的狭义相对论和广义相对论是第五次理论大综合。
5、1923—1926年德国的海森伯、奥地利的薛定锷等建立了量子学体系,完成了第五次大综合。
一、相对论
相对论是现代物理学的理论基础之一,它主要是关于物质运动与时间、空间关系的理论。
1、狭义相对论的基本假设
第一,狭义相对性原理:所有的物理规律在不同的惯性参照系中是一样的。第二,光速不变原理:光在真空中的传播速度在所有参照系中均相同。
2、广义相对论两条基本原理
第一,广义相对论原理:自然规律对于任何参照系而言都应具有相同的数学 形式。
第二,等效原理:匀加速参照系与均匀引力场中静止的参照系等效。
二、量子力学
量子力学是研究微观粒子运动的理论科学。量子力学给出了微观粒子的运动 规律,是所有试图从微观水平了解物质的一切性质和现象的必要基础。
三、物质结构
汤姆孙发现第一个基本粒子:电子;对原子的研究,说明了原子具有带正电的 原子核并具有线性光谱;正电子的发现及对粒子内部的研究。
第三篇:物理学实习心得
物理师范生实习心得体会
x年x月x日至x月x日,我在海拉尔七中进行了为一个半月的实习。在指导老师的帮助下,我较好地完成了教育实习任务,实习工作得到了较为圆满的成功。在此期间,我看到了一片未曾接触的新天地,触及了未曾涉及的新领域;在此期间,做好每一件事都是我的信念,完成每一项任务都是我的执着;在此期间,竭尽我的心智,细细思考,认真品味,找寻着我的每一份感想,每一份领悟,思索着我的得与失,进行着成长自我的每一步。回味这短暂而充实快乐的日子,我只是觉得日子真如白驹过隙一般,匆匆滑过指尖,不容我挽留,而我唯一可以做的,唯一可以挽留的是这段日子以来,我心灵的感悟,思想上迈出的几大步。
一、教学工作方面
1、听课 怎样上好每一节课,是整个实习过程的重点。刚开始的一个礼拜的任务是听课和自己进行试讲工作。在这期间我听了3个课任老师共8节课。在听课前,认真阅读了教材中的相关章节,如果是习题课,则事前认真做完题目,把做题的思路简单记下,并内心盘算自己讲的话会怎样讲。听课时,认真记好笔记,重点注意老师的上课方式,上课思想及与自己思路不同的部分,同时注意学生的反应,吸收老师的优点。同时简单记下自己的疑惑,想老师为什么这样讲。
2、备课与上课 一周时间转眼即逝,在科任指导老师的安排下,我们开始进行备课。备课不是简单地看教材,而是认真地梳理教材的内容和想方设法地用自己的语言表述出来。单是这个重新复述的过程就已经很考验我们的能力。要用严谨但通俗易懂的语言来来描述枯燥的物理知识,颇让我觉得头痛。现在普遍实行了新课标,教学有所改变。对于老师而言,最大的疑惑应该是“教师要教到什么程度”。以前作为学生听课,目的是学习知识;现在作为教师上课,是为了学生学习。目的不一样,我们的注意点就不一样。刚看教材的时候,觉得40分钟怎么就说一页书;后来备课,发现要讲解的问题很多,一节课能说完几页书就已经很不错了。
或许是知之越多,越是觉得难以着手。由于缺乏经验,在华南师大的时候也缺乏必要的训练,我们对教材的处理、对讲授内容的把握做得并不到位。对于科任指导老师陈文华老师的提示,我像是如获至宝,尽量根据陈老师的安排来备课。陈老师对教案进行反复修改,我也经常与另一位数学实习老师互相提问题,大家都期待真正上课那一刻的到来。带给我最初、最大的感受是,讲台下坐着的不再是与我们一起在微格教室训练的同学,而是真正的学生。他们不会像自己的同学那样随意附和、快捷地回答我们提出的问题,而是真正地思考和等待着我们的解答。他们在听不明白的时候会突然提问,或者干脆就趴在桌子上看书和睡觉。课堂上若学生对我的提问有所反应的话,就是对我最大的回报。因此,在课堂上必须注意学生的反应。我认为,要随时掌握学生的学习情况,分析原因,从而改进自己的教学方法和确立教学内容。教师既要讲授知识,又要管理课堂纪律,并且与学生进行个别交流。刚开始时因为心情特别紧张,经验不足和应变能力不强,课堂出现了“讲课重点不突出,教学思路不流畅,师生配合不够默契”等问题。针对出现的问题,陈老师老师会细心讲解哪些是重点,怎样突破难点,怎样自然过度,并提议要多向经验丰富的教师学习,多研究教材和其他教学资料,并且面对面地指出教案的不足以及上课时存在的缺点。
他态度温和,经常面带笑容,即使是批评,我也能欣然接受。过几次实战的磨练,现在的我已经基本能够驾驭课堂,胜任教师的角色了。虽然我还有很多做的不是很好的地方,但这次实习真的让深深的体会到教师工作的辛劳,也深刻理解了教学相长的内涵,使我的教学理论变为教学实践,使虚拟教学变成真正的面对面的教学。要想成为一位优秀的教师,不仅要学识渊博,其它各方面如语言、表达方式、心理状态以及动作神态等等都是很重要的,站在教育的最前线,真正做到“传道、授业、解惑”,是一件任重道远的事情,我更加需要不断努力提高自身的综合素质和教学水平。
二、班主任工作方面
在班主任日常管理工作中,积极负责,认真到位,事事留心。从早晨的卫生监督,仪表检查,作业上交,早读到课间纪律,课间操,课堂纪律,午休管理,眼保健操,自习课等等,每样事物都负责到底,细致监督。当然,在监督他们的同时不忘结合他们的个性特点进行思想道德教育,以培养他们正确的学习目标,积极向上的乐观人生态度和正确的人生价值观。班主任是班级工作的组织者、管理者和策划者,也是学校管理的中间力量和骨干分子,对良好班风和校风的形成起到举足轻重的作用。作为一个班主任又怎样使自已的工作上台阶、上水平、上档次呢?实习期间担任班主任工作,我有这样一个认识,班主任对学生的思想教育工作,实质上是一个与学生实行心理沟通的过程,只有真正了解了学生的内心世界,做到有的放矢,方法得当,才能达到教师对学生的成长提供帮助指导、学生对教师的工作给予配合支持的目的,从而收到好的教育效果。下面谈谈自己切合学生心理实际进行思想教育工作的一些尝试下面谈谈本人在实习班级工作中的一点体会。
1、奖罚适当。我知道一个优秀的班主任,时刻应该用“爱”去开启学生的心灵,很多时候我们的一个笑容,一个课余诚恳的交谈,有时是一个眼神,一句鼓励的话,都会对学生产生长久的影响,你爱的奉献会得到爱的回报,但我们细想一下,这样的学生有多少,真正能感悟到你老师的爱的学生,绝对孺子可教也。常有的是你对他的宽容增加了他的放纵,淡薄了纪律的约束,这在实习中我也是有所体会的。今天我们面对的不是几个学生,而是65人的班级,没有严明的纪律,如何有良好的班风?在我们的教育工作中,惩罚也是教育的一种手段。当然,惩罚特别要慎重,我认为当我们惩罚学生时,应该注意以下几个方面:①首先一定要注意尊重学生的独立人格,保护好学生的自信心、自尊心,好的就是好的,错的就是错的,不要一错百错,全盘否定;②惩罚的目的是警示学生什么不可以做,做了会有什么后果,不是为惩罚而惩罚学生,而是为教育学生而惩罚学生,换句话说,惩罚是手段,教育才是目的。
2、组织开展活动的魅力。良好班集体的建设必须依靠活动来实现,活动可以产生凝聚力,密切师生关系,使每个学生发挥主体的积极性,这时进行集体主义教育、健康的竞争心理教育是行之有效的;在我班,凡是学校组织的活动,班主任和我都给予高度的重视,小记者的报名与舞蹈班训练与我都亲身参与当中,开动员大会,一起与学生训练。告诉他们不用把名次的好坏,放在第一位,只要我们尽力了就行了。心理学等理论告诉我们:在竞赛活动中,一个人的目标期望水平不能过高,也不能过低,只有中等水平的期望值才能使参赛者保持最佳的竞技状态,对于我们每个同学来讲,活动的目的不是拿名次,而是看我们如何对待竞争,是否有参与意识,是否全身心投入了,是否能做到问心无愧。在活动中进行教育,同学们易于接受也能很快转化为行动。抓住“活动”这个最佳的教育时机,精心设计教育内容,就能收到意想不到的教育效果。
3、主题班会 在实习期间,我一共开了两次主题班会。经过一天的准备,我主持了我实习的第一次班会,这也是我第一次主持的班会。这次班会的主题是“学习态度”。在班会上,同学们积极发言,让我深深的体会现在的中学生已经有了很丰富的安全常识。例如,上体育课的注意事项,交通安全,地震、台风来袭需要注意哪些等等,他们都回答的头头是道。这不仅让学生自己找出自己的不足以便改正,更让学生在学期初就定下新学期的大体计划,更有目的地进行学习。这也培养了学生上讲台的心态。虽然没有每一个学生在班会上都发言,但是我坚信每一个学生都有了自己的新的计划、新的打算。每一个学生都对上台发言的同学都深有感受。
4、师生间的关系 当看见那些十六、七岁青春活泼的学生时,我们都感觉自己似乎时光倒流回到四年前的高中时代。高中的学生还不失去童真,善于思考问题,但是在道德、情感方面还有待发展。也许我们的年龄与之相近,他们既把我们当作老师,还当作朋友,许多心里的问题都愿意与我们交流。
三,几点思考
面对着真实的教学场景,个人有如下几点思考:(1)师范院校培养师范生主要关注学科知识的教育和一般教育学、心理学知识的教育,但是却没有明确告诉我们应该怎样把学到的学科知识和教育知识进行整合。国外的教师本体知识研究提出,教师在学科知识和教育(课程)知识的基础上,会逐步形成一种特有的学科教学知识。学科教学知识包括对教学主题的理解、教学顺序的设计、各种教学策略的使用、多重表征的呈现以及学生认知结构的了解。学科教学知识的形成和深化对教师发展有不可低估的重要意义。而它的获得,也就是说,教师专长的获得至少要有五年教学经验,或10000小时的课堂教学时间。对于这个目标,我们实习生无疑有一段很长的路要走(2)对于教学的过程,我们都以尽可能有效的逻辑思路来设计,进行的教学也是以这些线索来联系的。队员们组织课堂教学大多以完成教学目标为首要任务,而不是像有教师专长的教师那样合理性地、随机性地根据与学生的互动来调整教学内容。换而言之,队员们遵循预设主义的线性思路,忽视突发的提问和意外;有教师专长的教师更多地遵循生成主义的非线性思路,充分利用各种教学资源。教师的高明之处,似乎不在于他的教学设计是如何地完美,而是他对教学过程的有效控制。这真的是值得我们实习生细致观察和揣摩的地方。(3)奥苏贝尔认为有意义学习的建立要满足三个条件,除了学习内容是有逻辑意义的,还要求学习者能够联系新旧知识和对学习具有有意义学习的心向和强烈动机。有些队员在做个别辅导时发现,个别学生对学习存在认知困难;这既有原理性的认知困难,也有符号性的认知困难。习以为常的有价值的知识是高度形式化和价值无涉的,而且可能远离学生的生活。我们存在着疑问,学科教育原本应是学生对知识的享有,但是现在却无可奈何地沦为对知识的占有,而且还是粗浅的占有。教育应该要怎么样做才能让学生明白知识的价值,思考和敬畏自己的生命,乃至于满含诗意地发展?这应该是我们教育工作者一直思考的问题。现在,实习结束了。
通过这次实习,让我了解了教师的伟大,教师工作的神在,实习结束了。通过这次实习,让我了解了教师的伟大,教师工作的神圣,他真的是人类灵魂的工程师,教师的工作不仅仅是“传道、授业、解惑”,而是要发自内心的关心爱护学生,帮助他们成长。在教授他们知识的同时,更重要的是教他们如何做人,这才是教师工作最伟大的意义所在!
第四篇:固体物理学课程教学大纲
《固体物理学》课程教学大纲
一、课程说明
(一)课程名称、所属专业、课程性质、学分;
《固体物理学》是物理学院的主干基础课之一,是针对微电子专业的本科生开设于二年级的第二学期的专业基础课,4个学分,课堂讲授72学时。
(二)课程简介、目标与任务;
固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科,同时也是微电子专业本科生学习《半导体物理学》、《半导体材料》和《固体电子器件》等后续课程的基础。
本课程以点阵及晶体对称性为主线,以周期结构中的波动问题贯穿固体物理的整个教学内容。掌握包括对点阵及晶体对称性的定义、表征和检测,以及在晶体中物质的运动规律。在掌握知识架构的同时,对固体物理中处理多体问题的方法及其局限性有所了解,并了解一些重要概念的实验探测。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程要求:《力学》《量子物理》《热学》《热力学统计物理》 先修课与后续相关课程之间的逻辑关系和内容衔接:
《力学》中的处理物体运动的基本规律,尤其是振动与波动内容,是本课程第四章结合周期性晶体结构推演格波性质的基础。
《量子力学》或《量子物理》中的升降算符与谐振子的能量量子化,是提出声子(晶格振动的能量量子)的理论基础。
《量子力学》或《量子物理》中关于散射态的处理,如直角势垒和直角势阱的散射态,是学习电子声子散射和电子杂质散射的理论基础,也是学习电子在周期性势场下行为的基础。
《量子力学》或《量子物理》中关于束缚态的处理,是本课程第八章学习非本征半导体的理论基础。
《原子物理学》或《量子物理》中类氢原子的量子理论基础,原子的壳层结构,电子的自旋,是本课程第三章学习晶体结合的理论基础。
《热力学统计物理》和《热学》的基本原理,气体分子动理论,能量均分定理,内能和热容,平衡态的统计规律,是学习本课程第五章声子热学性质的基础。
《热力学统计物理》和《热学》中近独立粒子的最概然分布,是学习第六章自由电子费米气体的理论基础。
(四)教材与主要参考书。
本课程的教材采用国际上知名的基特尔的《固体物理学导论(第八版)》,此教材已在全球100多个国家和地区的高等院校中采用。本科阶段主要讲授该书的前九章,这部 分内容已涵盖了教育部关于本课程的基本要求。课程讲授过程中,每章结束后要为学生上一次习题课,以加深学生对基本物理概论的理解。同时每章都为学生留适量习题供学生选作。主要参考书:
刘友之 《固体物理习题指导书》 黄昆 《固体物理学》
Ashcroft/Mermin 《Solide state physics》英文教材
二、课程内容与安排
绪论
第一章 晶体结构
第一节 原子的周期性阵列 第二节 晶格的基本类型 第三节 晶面指数系统 第四节 简单晶体结构 第二章 晶体衍射和倒格子
第一节 晶体衍射 第二节 散射波振幅 第三节 布里渊区
第四节 结构基元的傅里叶分析 第三章 晶体结合与弹性常量
第一节 晶体结合的基本形式
第二节 惰性元素晶体(分子晶体)第三节 离子晶体 第四节 共价晶体 第四章 声子(I):晶格振动
第一节 单原子结构基元情况下的晶格振动 第二节 基元中含有两个原子的情况 第三节 弹性波的量子化 第四节 声子动量
第五节 声子引起的非弹性散射 第五章 声子(II):热学性质
第一节 声子比热容
第二节 非谐晶体相互作用 第三节 导热性 第六章 自由电子费米气
第一节 自由电子费米气的物理模型 第二节 能级和轨道 第三节 电子气的比热容 第四节 电导率和欧姆定律
第五节 电子在外加磁场中的运动 第六节 金属热导率 第七章 能带
第一节近自由电子模型 第二节 布洛赫定理
第三节 克勒尼希-彭尼模型
第四节 电子在周期性势场中的波动方程 第五节 能带图示法 第六节 金属与绝缘体 第八章 半导体晶体
第一节 运动方程 第二节 有效质量 第三节 回旋共振
第四节 本征载流子浓度 第五节 杂质导电性 第九章 费米面和金属
第一节 费米面构图法
第二节 电子在恒定磁场下的运动轨道 第三节 等能面与轨道密度 第四节 紧束缚近似
第五节 费米面研究中的实验方法
(一)教学方法与学时分配
采用以课堂讲授为主、结合习题讨论和随堂提问的方法,促进学生认真听讲及课后复习整理。学时分配如下:
绪论(2学时)第一章(6学时)第二章(6学时)第三章(6学时)第四章(8学时)第五章(8学时)第六章(10学时)第七章(10学时)第八章(8学时)第九章(8学时)
(二)内容及基本要求 主要内容:
绪论: 固体物理的发展,在微电子与固体电子学科基础理论中的重要地位,参考书目
第一章:晶体空间对称性的描述方法,基本的晶体结构,晶面指数,布喇菲点阵类型,对称操作
第二章:倒格子与倒格子矢量,倒格子矢量与晶面指数的关系,布拉格定理与劳 埃衍射条件,布里渊区,X射线实验方法,基元的集合结构因子。
第三章:晶体结合的基本形式,内聚能,范德瓦尔斯相互作用,离子晶体的吗德隆能,晶体平衡最近邻距离。
第四章:格波与声子,晶体振动的色散关系,第一布里渊区,声学支与光学支。第五章:模式密度,描述晶体热容的两种模型:爱因斯坦模型与德拜模型,非简谐效应,热膨胀
第六章:自由电子理论的物理模型,费米狄拉克统计规律,自由电子的状态密度,自由电子在基态下的性质,自由电子气体的热学性质,金属电导率与热导率。第七章:布洛赫定理,周期性势场中的电子波动方程,弱周期性势场中电子的行为,能隙的产生,能带的构图方法,从能带理论理解金属与绝缘体
第八章: 准经典近似,布洛赫电子在外加电磁场中的运动规律,空穴,电子和空穴在恒定电场下的准经典运动,有效质量,回旋共振,本征载流子浓度。
第九章:费米面,费米面构图法,紧束缚近似,磁场中的轨道量子化,德哈斯-范阿尔芬效应。
【重点掌握】:晶体空间对称性的描述方法,基本的晶体结构,倒格子与倒格子矢量,布拉格定理与劳埃衍射条件,布里渊区,晶体结合的基本形式,格波与声子,描述晶体热容的两种模型:爱因斯坦模型与德拜模型,自由电子理论的物理模型,布洛赫定理,周期性势场中的电子波动方程,有效质量,紧束缚近似。
【掌握】:晶面指数,布喇菲点阵类型,对称操作,内聚能,范德瓦尔斯相互作用,离子晶体的吗德隆能,第一布里渊区,声学支与光学支,费米面,费米面构图法,紧束缚近似,磁场中的轨道量子化,德哈斯-范阿尔芬效应,准经典近似,布洛赫电子在外加电磁场中的运动规律,空穴,电子和空穴在恒定电场下的准经典运动。
【了解】: 非简谐效应,热膨胀,回旋共振,电子和空穴在恒定电场下的准经典运动,本征载流子浓度,磁场中的轨道量子化,德哈斯-范阿尔芬效应。
【难点】:倒格子与倒格子矢量,格波与声子,自由电子理论的物理模型,布洛赫定理,紧束缚近似,制定人:范小龙
审定人: 批准人:
日 期:2016年6月27日
第五篇:《半导体物理学》课程教学大纲
《半导体物理学》课程教学大纲
一、课程说明
(一)课程名称:《半导体物理学》
所属专业:物理学(电子材料和器件工程方向)
课程性质:专业课
学 分:4学分
(二)课程简介、目标与任务:
《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。
本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:
本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。
(四)教材与主要参考书:
[1]刘恩科,朱秉升,罗晋生.半导体物理学(第7版)[M].北京:电子工业出版社.2011.[2]黄昆,谢希德.半导体物理学[M].北京:科学出版社.2012.[3]叶良修.半导体物理学(第2版)[M].上册.北京:高等教育出版社.2007.[4]S.M.Sze, Physics of Semiconductor Devices(2nd ed.), Wiley, New York, 2006.二、课程内容与安排
第一章 半导体中的电子状态
第一节 第二节 第三节 第四节 第五节 第六节
半导体的晶格结构和结合性质 半导体中的电子状态和能带
半导体中电子的运动 有效质量 本征半导体的导电机构 空穴 回旋共振
硅和锗的能带结构 第七节 第八节 第九节 第十节 III-V族化合物半导体的能带结构 II-VI族化合物半导体的能带结构 Si1-xGex合金的能带 宽禁带半导体材料
(一)教学方法与学时分配
课堂讲授,大约8-10学时。限于学时,第8-10节可不讲授,学生可自学。
(二)内容及基本要求
本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。
本章的重点包括单电子近似,半导体的导带、价带、禁带及其宽度,有效质量,空穴,硅、砷化镓的能带结构。难点为能带论,硅、砷化镓能带结构,有效质量。第二章 半导体中杂质和缺陷能级
第一节 第二节 第三节 第四节 硅、锗晶体中的杂质能级 III-V族化合物中的杂质能级
氮化镓、氮化铝、氮化硅中的杂质能级 缺陷、位错能级
(一)教学方法与学时分配
课堂讲授,大约3-4学时。限于学时,第3节可不讲授,学生可自学。
(二)内容及基本要求
本章主要介绍在常见半导体的禁带中引入杂质和缺陷能级的实验观测结果。要求学生根据所引入的杂质能级情况,理解杂质的性质和作用,分清浅能级杂质和深能级杂质;重点掌握施主杂质和n型半导体、受主杂质和p型半导体的概念;掌握杂质电离、电离能、杂质补偿、杂质浓度的概念,了解缺陷、位错能级的特点和作用。
本章的重点包括施主杂质和施主能级,受主杂质和受主能级,浅能级杂质和深能级杂质,n型半导体和p型半导体,杂质补偿作用等。难点为杂质能级,杂质电离过程。第三章 半导体中载流子的统计分布
第一节 第二节 第三节 第四节 第五节 第六节 第七节 状态密度
费米能级和载流子的统计分布 本征半导体的载流子浓度 杂质半导体的载流子浓度 一般情况下的载流子统计分布 简并半导体
电子占据杂质能级的概率
(一)教学方法与学时分配 课堂讲授,大约8-10学时。限于学时,第7节可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论半导体中载流子浓度随温度的变化规律,解决如何计算一定温度下半导体中热平衡载流子浓度的问题。通过本章的学习,要求掌握状态密度、费米分布和玻尔兹曼分布、费米能级、导带和价带有效状态密度的概念;重点掌握应用电中性条件和电中性方程,推导本征半导体的载流子浓度,计算在各种不同杂质浓度和温度下杂质半导体的的费米能级位置和载流子浓度;掌握非简并半导体和简并半导体的概念以及简并化条件。
本章重点包括波矢空间的量子态分布、半导体导带底、价带顶附近的状态密度计算,费米分布函数和玻耳兹曼分布函数及其物理意义,本征半导体、杂质半导体载流子浓度的计算。难点为半导体导带底、价带顶附近的状态密度计算,费米能级和载流子的统计分布,杂质半导体载流子浓度的计算。第四章 半导体的导电性
第一节 第二节 第三节 第四节 第五节 第六节 第七节 载流子的漂移运动和迁移率 载流子的散射
迁移率与杂质浓度和温度的关系 电阻率及其与杂质浓度和温度的关系 玻耳兹曼方程、电导率的统计理论 强电场下的效应、热载流子 多能谷散射、耿氏效应
(一)教学方法与学时分配
课堂讲授,大约7-8学时。限于学时,第5节可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论载流子在外加电场作用下的漂移运动,讨论半导体的迁移率、电导率随温度和杂质浓度的变化规律。要求重点掌握迁移率的概念;掌握电离杂质散射、晶格振动散射的机理、散射几率与杂质浓度及温度的关系;掌握迁移率、电导率(电阻率)与杂质浓度及温度的关系;了解强电场效应以及砷化镓的负微分电导、耿氏效应。
本章重点包括电导率、迁移率概念及相互关系,迁移率、电阻率随温度和杂质浓度的变化规律,强电场效应。难点为载流子的散射机构,电导率与迁移率的关系,强电场效应。
第五章 非平衡载流子
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 第九节
非平衡载流子的注入与复合 非平衡载流子的寿命 准费米能级 复合理论 陷阱效应
载流子的扩散运动
载流子的漂移运动,爱因斯坦关系式 连续性方程式
硅的少数载流子寿命与扩散长度
(一)教学方法与学时分配
课堂讲授,大约10学时。限于学时,第9节可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论非平衡载流子的产生、复合及其运动规律。通过学习,要求掌握非平衡载流子的产生、寿命、复合及其复合机构,准费米能级,陷阱效应,载流子的漂移和扩散等概念;掌握非平衡载流子的复合理论;了解爱因斯坦关系;理解并灵活应用电流密度方程和连续性方程。
本章重点包括非平衡载流子的产生、复合,非平衡载流子寿命,载流子的扩散和漂移运动,连续性方程运用等。难点为复合理论,爱因斯坦关系,连续性方程的应用。第六章 pn结
第一节 第二节 第三节 第四节 第五节 pn结及其能带图 pn结电流电压特性 pn结电容 pn结击穿 pn结隧道效应
(一)教学方法与学时分配
课堂讲授,大约6-7学时。
(二)内容及基本要求
本章主要讨论pn结的性质。通过学习要求掌握pn结的物理特性、能带结构以及接触电势差的计算;掌握I-V特性、结电容的推导;了解pn结的击穿机制和隧道效应。
本章重点包括空间电荷区,pn结接触电势差,载流子分布,I-V特性,结电容,击穿机制,隧道效应等。难点为I-V特性,结电容。第七章 金属和半导体的接触
第一节 金属半导体接触及其能级图 第二节 金属半导体接触整流理论 第三节 少数载流子的注入和欧姆接触
(一)教学方法与学时分配
课堂讲授,大约3-4学时。
(二)内容及基本要求
本章主要讨论金属半导体接触。通过本章学习,要求掌握理想和实际的金-半接触的能带图;对其电流传输理论的几种模型的建立、表达式的推导和应用有所了解;掌握实现良好欧姆接触和整流接触的原理和方法。
本章的重点包括金属和半导体接触的能带弯曲过程分析及简图画法。难点为金属和半导体接触的能带弯曲过程分析,热电子发射理论。第八章 半导体表面与MIS结构 第一节 第二节 第三节 第四节 第五节 第六节 表面态
表面电场效应
MIS结构的C-V特性 硅-二氧化硅系统的性质 表面电导及迁移率
表面电场对pn结特性的影响
(一)教学方法与学时分配
课堂讲授,大约4学时。限于学时,第5、6节可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论半导体的表面现象及其相关的理论,侧重于实际的半导体表面。通过学习,要求学生了解表面状态;掌握理想MIS结构的表面电场效应、电容电压特性;学会对实际MIS结构中出现的各种情况进行分析;掌握如何用C-V法来研究半导体的表面状况;了解Si-SiO2系统的性质。
本章的重点包括半导体表面电场效应,MIS结构的C-V特性。难点为Si-SiO2系统的性质。
第九章 半导体异质结构
第一节 第二节 第三节 第四节 第五节 第六节 半导体异质结及其能带图
半导体异质pn结的电流电压特性及注入特性 半导体异质结量子阱结构及其电子能态与特性 半导体应变异质结构 GaN基半导体异质结构 半导体超晶格
(一)教学方法与学时分配
课堂讲授,大约5-6学时。限于学时,第4-5节可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论半导体异质结的能带结构、异质pn结的I-V特性与注入特性及各种半导体量子阱结构及其电子能态等。通过学习要求学生重点掌握各种理想异质结能带结构及其画法;了解异质pn结的I-V特性和注入特性;了解异质结几种电流传输模型和重要应用;了解异质结的调制掺杂、高迁移率特性、二维电子气、应变异质结、半导体量子阱和超晶格在现代半导体器件中的应用。
本章的重点是理想异质结能带结构及其画法,半导体量子阱和超晶格结构的特性及其在现代半导体器件中的应用。难点为异质结能带图的画法。第十章 半导体的光学性质和光电与发光现象
第一节 第二节 第三节 第四节 第五节 第六节 第七节
半导体的光学常数 半导体的光吸收 半导体的光电导
半导体的光生伏特效应 半导体发光 半导体激光
半导体异质结在光电子器件中的应用
(一)教学方法与学时分配
课堂讲授,大约7-8学时。限于学时,第6、7节可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论光和半导体相互作用的一般规律,重点讨论光的吸收、光电导和发光等效应。通过学习,要求学生重点掌握半导体的光吸收和光电导特性;掌握光生伏特效应和太阳电池、半导体发光和LED的机理及其应用;了解各种光敏器件和半导体激光器等。
本章的重点包括半导体的光吸收及发光现象,半导体光电导,光生伏特效应,半导体激光等。难点为光电导效应,电致发光机构。
第十一章 半导体的热电性质
第一节 热电效应的一般描述 第二节 半导体的温差电动势率 第三节 半导体的珀尔帖效应 第四节 半导体的汤姆逊效应 第五节 半导体的热导率 第六节 半导体热电效应的应用
(一)教学方法与学时分配
限于学时,本章可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论由温度梯度及电流同时存在时引起的现象,介绍产生这些现象的物理机理。通过学习,要求了解半导体的热电效应的种类、应用和物理机制;掌握半导体温差电动势率的计算和影响因素。
本章的重点包括塞贝克效应,珀尔帖效应,汤姆逊效应,开耳芬关系,温差电动势率和热导率。难点为温差电动势率。第十二章 半导体磁和压阻效应
第一节 霍耳效应 第二节 磁阻效应 第三节 磁光效应 第四节 量子化霍耳效应 第五节 热磁效应 第六节 光磁电效应 第七节 压阻效应
(一)教学方法与学时分配
课堂讲授,大约3学时。限于学时,第3-7节可不讲授,学生可自学。
(二)内容及基本要求
本章扼要讲述半导体在磁场中发生的各种效应以及对半导体施加压力时产生的压阻效应。通过学习,要求掌握半导体霍耳效应物理机制和应用;了解磁阻效应、磁光效应、量子化霍耳效应、热磁效应、光磁电效应、压阻效应等。
本章重点包括霍耳效应,磁阻效应,热磁效应,光磁电效应,压阻效应。难点为量子化霍耳效应。
第十三章 非晶态半导体
第一节 非晶态半导体的结构 第二节 非晶态半导体中的电子态
第三节 非晶态半导体中的缺陷、隙态与掺杂效应 第四节 非晶态半导体中的电学性质 第五节 非晶态半导体中的光学性质 第六节 a-Si:H的pn结与金-半接触特性
(一)教学方法与学时分配
限于学时,本章可不讲授,学生可自学。
(二)内容及基本要求
本章主要讨论非晶态半导体的基本特性。通过学习要求了解非晶态半导体的结构、电子态的特征,理解迁移率边、带隙态与掺杂效应的物理意义;掌握非晶态半导体光学、电学性质的特点以及应用。
本章的重点包括非晶态半导体的能带结构,迁移率边,带隙态与掺杂效应,非晶态半导体的导电机制和光电导,SW效应等。难点为非晶态半导体的迁移率边,带隙态与掺杂效应。
制定人:贺德衍
审定人: 批准人: 日 期: