第一篇:《数学分析》学习心得体会
《数学分析》课程学习心得
这次很有幸参加了陈纪修老师主讲的:《数学分析》课程。通过对整个课程的学习,我感觉得到了很多收获和启示。这将对我以后的教学有很大的帮助。现把自己学习这门课程的心得总结如下。
一、充分激发学生的学习兴趣
《数学分析》对学生而言是门难度很大的课程,因为它很抽象逻辑性又强,学生要把它学懂学好并不容易。因此,在学生的学习过程中,往往学不懂后就变得越来越被动。怎样才能让学生学懂学好这门课程一直是我思考的问题。通过这次对陈老师主讲的课程的学习,我得到很多启发,其中最主要的是:激发学生的学习兴趣,充分调动学生的主观能动性。陈老师有几点做法值得我学习:第一,通过介绍微积分思想的产生与发展和数学家们对近代数学所做出的巨大贡献让学生了解微积分的整个历史;第二,通过对具体直接地来源于生产和生活的实际问题所建立的数学模型的求解,让学生体会到微积分的强大能量和作用;第三,通过精心挑选和补充一些适当的例题和数学中很有趣的问题的讲解(例如:Peano曲线和等周问题等),让学生体会到微积分的魅力。这些具体的措施都会让学生体会到学好《数学分析》这门课程的心要性和乐趣,从而能积极主动地学习这门课程。
二、注重前后知识点的连贯性和系统性 作为一名教师,在对一门课程的讲授时,一定要注重前后知识点的连贯性和系统性,但要做好这一点却不是那么容易的事。在《数学分析》这门课程的教学过程中,我也一直在思考这个问题。陈老师在讲解的过程中提到了几个我以前没有想到和注意到问题很值得我深思和学习。首先,在给学生讲解积分时,定积分、重积分、曲线积分和曲面积分的思想是一致的,这个我们都知道。但陈老师在讲积分换元公式的证明时换个角度讲解的定积分与重积分的一致性是我以前没有注意到的,很值得我学习;其次,无穷限广义积分和级数是相通的,这个我们也都知道。陈老师通过对几个阿贝尔定理的讲解和证明,让我更清楚地看到了它们的一致性,帮助我对这些知识点的理解更深刻一些。
三、做到深入浅出地讲授
陈老师有句话我印象深刻,那就是:把复杂的东西通过简单易懂的方式让学生理解和掌握,那才是真正了不起的!承担《数学分析》这门课程教学的老师都会有这样的体会:这门课程不太好讲解,要想让学生听得懂,确实是件不太容易的事!如何能做好这一点也是我一直以来思考的问题。从陈老师讲课的整个过程中,通过他对例题的剖析,我能体会到陈老师真正做到了这一点。我也要向陈老师学习,不断地去探索和积累,不断提高自己的授课能力和水平。
四、适当介绍这门课程与其它课程的相关性
由于《数学分析》这门课程的知识点多,课时相对来说比较紧张,因此在介绍这门课程与其它课程联系的时候我往往是一两句话就过去了。通过这次学习,受陈老师启发,我觉得有必要相对具体一点向学生介绍这些内容,这将对学生学好这门课程起到重要的作用。
五、教改的几点思考
1、针对性
每个班级的学生都有不同的特点,如何做到有针对性地教学,是我一直在探索的问题。
2、学以致用,培养和提高学生的创造性
学生总是提出这样的问题:这门课程这么难这么抽象,我们学习它到底有什么用?这个问题的回答主要还是靠老师在教学的过程中通过实例告诉学生他们学的东西是用来解决实际问题的强大武器。但如何培养和提高学生的创造性,仁者见仁智者见智,还需要我们为之不断地去探索。
总之,这次学习让我收获颇丰。我将把这次学到的东西用到我的教学中去,不断提高自己的教学能力和水平。
第二篇:20数学分析学习心得体会
数学分析学习心得体会
数学分析是数学中最重要的一门基础课,是几乎所有后继课程的基础,在培养具有良好素养的数学及其应用方面起着特别重要的作用。从近代微积分思想的产生、发展到形成比较系统、成熟的“数学分析”课程大约用了 300 年的时间,经过几代杰出数学家的不懈努力,已经形成了严格的理论基础和逻辑体系。回顾数学分析的历史,有以下几个过程。从资料上得知,过去该课程一般分两步:初等微积分与高等微积分。初等微积分主要讲授初等微积分的运算与应用,高等微积分才开始涉及到严格的数学理论,如实数理论、极限、连续等。上世纪 50 年代以来学习苏联教材,从而出现了所谓的“大头分析”体系,即用较大的篇幅讲述极限理论,然后把微积分、级数等看成不同类型的极限。这说明了只要真正掌握了极限理论,整个数学分析学起来就快了,而且理论水平比较高。在我国,人们改造“大头分析”的试验不断,大体上都是把极限分成几步完成。我们的做法是:期望在“初高等微积分”和“大头分析”之间,走出一条循序渐进的道路,而整个体系在逻辑上又是完整的。这样我们既能掌握严格的分析理论,又能比较容易、快速的接受理论。
我们都知道,数学对于理学,工学研究是相当重要。在中国科技大学计算机应用硕士培养方案中,必修课:组合数学、算法设计与分析,高级计算机网络、高级数据库系统,人工智能高级教程 现代计算机控制理论与技术。山西大学通信与信息系统硕士培养方案中,专业基础课:(1)矩阵理论(2)随机过程(3)信息论与编码(4)现代数字信号处理(5)通信网络管理:其中有运筹学内容,属于数学。(6)模糊逻辑与神经网络是研究非线性的数学。大连理工大学微电子和固体电子硕士培养方案中,必修课:工程数学,专业基础课: 物理、半导体发光材料、半导体激光器件物理 西北大学经管学院金融硕士培养方案中,学位课: 中级微观经济学(数学)中级宏观经济学 中国市场经济研究 经济分析方法(数学)经济理论与实践前沿 金融理论与实践 必须使用数学的研究专业有:理工科几乎所有专业,分子生物学,统计专业,(理论、微观)经济学,逻辑学而这些数学的基础课就有一门叫做数学分析的课程!数学是所有学科的基础,可以说自然学科中的所有的重大发现和成就都离不开数学的贡献,而数学分析是数学中的基础!基础中的基础!
正因为如此,我深刻地认识到基础的重要性。经过本学期,我已学习了极限理论,单变量微积分等知识,其中极限续论是理论要求最高的,积分学是计算要求最高的部分。两者均是我学习中的困难。在本书中,以有界数集的确界定理作为出发点,不加证明地承认该定理,利用它证明了单调有界数列的极限存在定理,然后逐步展开证明了其他几个基本定理。定理虽易记诵,但对于理解的要求甚高,举例来说,在课后习题中有这样一题,证明单调有界函数存在左右极限。这题着实将我难住许久许久,尽管该题在数学分析中只是初级的难度,但初学者的我起初甚是无解。写到这里,我又发现我的一个问题,当然这个问题也是共性的。许多同学在学习数学分析的过程存在着这样的问题:上课能听懂,课后解题却不知所措。这一问题的产生由于一方面对基本概念、基本定理理解得不够深入,对定理的条件、结论理解得不够贴切,对各部分知识之间的联系区别不甚清楚。在极限续论中,由于内容相当抽象,在老师一次次的详细讲解下,上课基本能听懂,但这就可能是大学与高中最大的区别,特别是我的专业要求——理论要求,自己
不反思,不更深刻去想,去悟,想学好很难,所以另一方面,做题太少,类型太少,并且对做过学过的题目缺少归纳总结,因而不清楚常见的题目都有哪些类型,也不明了各类型题目常常采用什么方法,用什么知识去解释这些理论问题,总之,是心中无数。著名数学家、教育家乔治·波利亚说过:“解题可以是人的最富有特征性的活动······假如你想要从解题中得到最大的收获,你就应该在所做的题目中去找出它的特征,那些特征在你以后求解其他问题时,能起到指导的作用。”特征,的确每位老师在讲课时都会将同类题一起讲解,这对我们的帮助是相当大的,在寒假,我重温了一下我的数学分析书和相关资料,从中,我发现在特征中显现出我曾经并未发现的,并未熟知的,甚至将我某些一学期都未曾搞清的问题驾驭自如,触类旁通!
尽管我们要把理论学好学扎实,但我自己也要培养实际操作能力,在本书与高等数学中都有积分计算,某些积分计算往往是难到要做好几小时的,在王老师的推荐下买了吉米多维奇数学分析习题集题解,很有用,这书就好比是字典,题典,有不会,我就向它寻求适当的解法,有时,闲暇之余还会与同寝室同学共同研究方法的优劣,我发现我的解法往往麻烦繁琐。蒋科伟,吕孙权的做法有时可作为我修改的借鉴,其实,作为一名数学专业的学生来说,应该具有团队配合的意识,加强对实际应用知识的学习,更多关注学科的变化,培养对问题的思考。在研究积分题的过程中,我巩固了所学的积分概念,有效地提高我的运算能力,特别是有些难题还迫使我学会综合分析的思维方法。写到这我想起高中老师曾讲过在不等式证明中的综合法,原来在高中我已接触了大学知识,忽然又发现高中老师讲过许多上海高考都不考的知识,都是对我大学学习的良好铺垫,受益匪浅。实践出真知,至理啊!在自学高等数学期间也有过困难,有时感到学的太多,杂了。遇到困难,幸好有数学分析这门课给与理论支持!在统计班同学考试资料的支持下,我还是多少学到点东西与解题技巧的。这很是让我感到欣慰啊。
现在是科技的时代,在掌握好基本运算后我们接触了数学软件——Mathematica。该软件是应用广泛的数学软件,它不仅可以进行各种数值运算,而且可以进行符号运算、函数作图等。此软件使我理解导数、微分概念,理解泰勒公式,函数的N次近似多项式及余项概念,了解N次近似多项式随N增大一般是逐步逼近原函数的结果。熟悉了Mathematica数学软件的求导数和求微分命令,以及求n阶泰勒公式命令和求函数的n次近似多项式命令。不仅如此,我还通过它理解了不定积分、变上限函数和定积分概念,了解定积分的简单近似计算方法。这些正如诺基亚的广告词:科技以人为本。有了这些,对于我们来说,计算不再是困难,在高等数学的计算部分的自学中也可操作自如,再加上我的英语基础较好,在寒假下载了MATHEMATICA6操作软件,初试时还是有难度的,但在王老师下发的操作资料中还是有很强的辅助作用的。现在数学给了我自信,让我寻找其中的乐趣!
在这第一学期,任老师对我的帮助太大了!原来的我虽然数学基础较好,但初学分析我是真的一筹莫展,这时,王老师对我学习中的的问题耐心又仔细地回答,让我在一次次郁闷中寻找到真知!正因为老师的不辞辛劳的帮助,让我取得现有的成绩,这还仅仅是一部分,老师对我思想与在带班级上也给出过帮助,让我各方面都在原有的基础上得到巨大的提高,使我更能看清自己的能力与潜力,老师谢谢你对我在一学期的帮助,我会继续努力的,尽管我离班级学习最好的同学差距甚远,但我不会放弃努力与奋斗的目标,我会达到更高的数学领地,更好的为教学服务.
第三篇:数学分析
360《数学分析》考试大纲
一. 考试要求:掌握函数,极限,微分,积分与级数等内容。
二. 考试内容:
第一篇 函数
一元与多元函数的概念,性质,若干特殊函数,连续性。第二篇 极限
数列极限,一元与多元函数极限的概念及其性质,实数的连续性(确界原理,单调有界原理,区间套定理,聚点定理,有限覆盖定理等)。
第三篇 微分
一元与多元函数导数(偏导数)与微分的概念,性质,公式,法则及应用;函数的单调性与凸性,极值与拐点,渐进线,函数作图;隐函数。
第三篇 积分
不定积分的概念,性质,公式,法则;定积分的概念,性质,公式,法则及应用;反常积分与含参积分;重积分与曲线曲面积分。第四篇 级数
数项级数,函数项级数,幂级数与傅立叶级数的概念,性质,公式,法则及应用。
参考书目:华东师范大学数学系,数学分析(上,下,第三版),高等教育出版社,2001年。
第四篇:数学分析
《数学分析》考试大纲
一、本大纲适用于报考苏州科技学院基础数学专业的硕士研究生入学考试。主要考核数学分析课程的基本概念、基本理论、基本方法。
二、考试内容与要求
(一)实数集与函数
1、实数:实数的概念,实数的性质,绝对值与不等式;
2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;
3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;
4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
要求:了解数学的发展史与实数的概念,理解绝对值不等式的性质,会解绝对值不等式;弄清区间和邻域的概念, 理解确界概念、确界原理,会利用定义证明一些简单数集的确界;掌握函数的定义及函数的表示法,了解函数的运算;理解和掌握一些特殊类型的函数。
(二)数列极限
1、极限概念;
2、收敛数列的性质:唯一性,有界性,保号性,单调性;
3、数列极限存在的条件:单调有界准则,迫敛性法则,柯西准则。
要求:逐步透彻理解和掌握数列极限的概念;掌握并能运用-N语言处理极限问题;掌握收敛数列的基本性质和数列极限的存在条件(单调有界函数和迫敛性定理),并能运用;了解数列极限柯西准则,了解子列的概念及其与数列极限的关系;了解无穷小数列的概念及其与数列极限的关系.(三)函数极限
1、函数极限的概念,单侧极限的概念;
2、函数极限的性质:唯一性,局部有界性,局部保号性,不等式性,迫敛性;
3、函数极限存在的条件:归结原则(Heine定理),柯西准则;
4、两个重要极限;
5、无穷小量与无穷大量,阶的比较。
要求:理解和掌握函数极限的概念;掌握并能应用-, -X语言处理极限问题;了解函数的单侧极限,函数极限的柯西准则;掌握函数极限的性质和归结原则;熟练掌握两个重要极
限来处理极限问题。
(四)函数连续
1、函数连续的概念:一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类;
2、连续函数的性质:局部性质及运算,闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性;
3、初等函数的连续性。
要求:理解与掌握一元函数连续性、一致连续性的定义及其证明,理解与掌握函数间断点及其分类,连续函数的局部性质;理解单侧连续的概念;能正确叙述和简单应用闭区间上连续函数的性质;了解反函数的连续性,理解复合函数的连续性,初等函数的连续性。
(五)导数与微分
1、导数概念:导数的定义、单侧导数、导函数、导数的几何意义;
2、求导法则:导数公式、导数的运算(四则运算)、求导法则(反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程的求导法则);
3、微分:微分的定义,微分的运算法则,微分的应用;
4、高阶导数与高阶微分。
要求:理解和掌握导数与微分概念,了解它的几何意义;能熟练地运用导数的运算性质和求导法则求函数的导数;理解单侧导数、可导性与连续性的关系,高阶导数的求法;了解导数的几何应用,微分在近似计算中的应用。
(六)微分学基本定理
1、中值定理:罗尔中值定理、拉格朗日中值定理、柯西中值定理;
2、几种特殊类型的不定式极限与罗比塔法则;
3、泰勒公式。
要求:掌握中值定理的内容、证明及其应用;了解泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开;能熟练地运用罗必达法则求不定式的极限
(七)导数的应用
1、函数的单调性与极值;
2、函数凹凸性与拐点.要求:了解和掌握函数的某些特性(单调性、极值与最值、凹凸性、拐点)及其判断方法,能利用函数的特性解决相关的实际问题。
(八)实数完备性定理及应用
1、实数完备性六个等价定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理;
2、闭区间上连续函数整体性质的证明:有界性定理的证明,最大小值性定理的证明,介值性定理的证明,一致连续性定理的证明;
3、上、下极限。
要求:了解实数连续性的几个定理和闭区间上连续函数的性质的证明;理解聚点的概念,上、下极限的概念。
(九)不定积分
1、不定积分概念;
2、换元积分法与分部积分法;
3、几类可化为有理函数的积分;
要求:理解原函数和不定积分概念;熟练掌握换元积分法、分部积分法、有理式积分法、简单无理式和三角有理式积分法。
(十)定积分
1、定积分的概念:概念的引入、黎曼积分定义,函数可积的必要条件;
2、可积性条件:可积的必要条件和充要条件,达布上和与达布下和,可积函数类(连续函数,只有有限个间断点的有界函数,单调函数);
3、微积分学基本定理:可变上限积分,牛顿-莱布尼兹公式;
4、非正常积分:无穷积分收敛与发散的概念,审敛法(柯西准则,比较法,狄利克雷与阿贝尔判别法);瑕积分的收敛与发散的概念,收敛判别法。
要求:理解定积分概念及函数可积的条件;熟悉一些可积分函数类,会一些较简单的可积性证明;掌握定积分与可变上限积分的性质;能较好地运用牛顿-莱布尼兹公式,换元积分法,分部积分法计算一些定积分。掌握广义积分的收敛、发散、绝对收敛与条件收敛等概念;能用收敛性判别法判断某些广义积分的收敛性。
(十一)定积分的应用
1、定积分的几何应用:平面图形的面积,微元法,已知截面面积函数的立体体积,旋转体的体积平面曲线的弧长与微分,曲率;
2、定积分在物理上的应用:功、液体压力、引力。
要求:重点掌握定积分的几何应用;掌握定积分在物理上的应用;在理解并掌握“微元法”。
(十二)数项级数
1、级数的敛散性:无穷级数收敛,发散等概念,柯西准则,收敛级数的基本性质;
2、正项级数:比较原理,达朗贝尔判别法,柯西判别法,积分判别法;
3、一般项级数:交错级数与莱布尼兹判别法,绝对收敛级数与条件收敛级数及其性质,阿贝尔判别法与狄利克雷判别法。
要求:理解无穷级数的收敛、发散、绝对收敛与条件收敛等概念;掌握收敛级数的性质;能够应用正项级数与任意项级数的敛散性判别法判断级数的敛散性;熟悉几何级数调和级数与p级数。
(十三)函数项级数
1、一致收敛性及一致收敛判别法(柯西准则,优级数判别法,狄利克雷与阿贝尔判别法);
2、一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性)。
要求:掌握收敛域、极限函数与和函数一致敛等概念;掌握极限函数与和函数的分析性质(会证明);能够比较熟练地判断一些函数项级数与函数列的一致收敛。
(十四)幂级数
1、幂级数:阿贝尔定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质;
2、几种常见初等函数的幂级数展开与泰勒定理。
要求:了解幂级数,函数的幂级数及函数的可展成幂级数等概念;掌握幂级数的性质;会求幂级数的收敛半径与一些幂级数的收敛域;会把一些函数展开成幂级数,包括会用间接展开法求函数的泰勒展开式
(十五)付里叶级数
1、付里叶级数:三角函数与正交函数系, 付里叶级数与傅里叶系数, 以2 为周期函数的付里叶级数, 收敛定理;
2、以2L为周期的付里叶级数;
3、收敛定理的证明。
要求:理解三角函数系的正交性与函数的傅里叶级数的概念;掌握傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数;了解收敛定理的证明。
(十六)多元函数极限与连续
1、平面点集与多元函数的概念;
2、二元函数的极限、累次极限;
3、二元函数的连续性:二元函数的连续性概念、连续函数的局部性质及初等函数连续性。要求:理解平面点集、多元函数的基本概念;理解二元函数的极限、累次极限、连续性概念,会计算一些简单的二元函数极限;了解闭区间套定理,有限覆盖定理,多元连续函数的性质。(十七)多元函数的微分学
1、可微性:偏导数的概念,偏导数的几何意义,偏导数与连续性;全微分概念;连续性与可微性,偏导数与可微性;
2、多元复合函数微分法及求导公式;
3、方向导数与梯度;
4、泰勒定理与极值。
要求:理解并掌握偏导数、全微分、方向导数、高阶偏导数及极值等概念及其计算;弄清全微分、偏导数、连续之间的关系;了解泰勒公式;会求函数的极值、最值。
(十八)隐函数定理及其应用
1、隐函数:隐函数的概念,隐函数的定理,隐函数求导举例;
2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式;
3、几何应用:平面曲线的切线与法线,空间曲线的切线与法平面,曲面的切平面和法线;条件极值:条件极值的概念,条件极值的必要条件。
要求:了解隐函数的概念及隐函数的存在定理,会求隐函数的导数;了解隐函数组的概念及隐函数组定理,会求隐函数组的偏导数;会求曲线的切线方程,法平面方程,曲面的切平面方程和法线方程;了解条件极值概念及求法。
(十九)重积分
1、二重积分概念:二重积分的概念,可积条件,可积函数,二重积分的性质;
2、二重积分的计算:化二重积分为累次积分,换元法(极坐标变换,一般变换);
3、含参变量的积分;
4、三重积分计算:化三重积分为累次积分, 换元法(一般变换,柱面坐标变换,球坐标变换);
5、重积分应用:立体体积,曲面的面积,物体的重心,转动惯量;
6、含参量非正常积分概念及其一致敛性:含参变量非正常积分及其一致收敛性概念,一致收敛的判别法(柯西准则,与函数项级数一致收敛性的关系,一致收敛的M判别法),含参变量非正常积分的分析性质;
7、欧拉积分:格马函数及其性质,贝塔函数及其性质。
要求:了解含参变量定积分的概念与性质;熟练掌握二重、三重积分的概念、性质、计算及基本应用;了解含参变量非正常积分的收敛与一致收敛的概念;理解含参变量非正常积分一致收敛的判别定理,并掌握它们的应用;了解欧拉积分。
(二十)曲线积分与曲面积分
1、第一型曲线积分的概念、性质与计算,第一型曲面积分的的概念、性质与计算;
2、第二型曲线积分的概念、性质与计算,变力作功,两类曲线积分的联系;
3、格林公式,曲线积分与路线的无关性, 全函数;
4、曲面的侧,第二型曲面积分概念及性质与计算,两类曲面积分的关系;
5、高斯公式,斯托克斯公式,空间曲线积分与路径无关性;
6、场论初步:场的概念,梯度,散度和旋度。
要求:掌握两类曲线积分与曲面积分的概念、性质及计算;了解两类曲线积分的关系和两类曲面积分的关系;熟练掌握格林公式的证明及其应用,会利用高斯公式、斯托克斯公式计算一些曲面积分与曲线积分;了解场论的初步知识。
三、主要参考书
《数学分析》(第三版),华东师范大学数学系编,高等教育出版社,2004年。《数学分析中的典型问题与方法》,裴礼文,高等教育出版社,1993年。
四、主要题型:
填空题,选择题,计算题,解答题,证明题,应用题。
第五篇:数学分析学习方法与心得体会
数学分析学习方法
数学分析是基础课、基础课学不好,不可能学好其他专业课。工欲善其事,必先利其器。这门课就是器。学好它对计算科学专业的学生都是极为重要的。这里,就学好这门课的学习方法提一点建议供同学们参考。
1.提高学习数学的兴趣
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必须的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。用兴趣推动学习,而不是用任务观点强迫自己被动地学习数学。
2.知难而进,迂回式学习
首先要培养学习数学分析的兴趣和积极性,还要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学分析时尤为重要。
中学数学和大学数学,由于理论体系的截然不同,使得同学们会在学习该课程开始阶段遇到不小的麻烦,这时就一定得坚持住,能够知难而进,继续跟随老师学习。
学习数学分析时要注意数学分析和高等数学要求不同的地方,否则你学习数学分析就与高等数学没有什么区别了;而且高等数学强调的是计算能力,数学分析强调的是分析的能力,分析的能力没有学到,就谈不上学好了数学分析。学好数学分析课程还有一个重要的原因是新生们体会不到的,数学分析的知识结构系统性和连续性很强,这些知识学得不扎实,肯定要影响后面知识的学习。同时将来考硕士,还是要考这门课程。如果大学第一年不把这门课程学好,将来可就难了。刚开始学习数学分析,会感觉很晕。对于老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,课后习题都没几个会做的。其实感觉晕是很正常的,而且还得要晕上几个月才可能就会好的。所以要硬着头皮跟着老师学了下来。虽然感觉还是不太懂,虽然做作业仍然感觉很费劲,但始终不要放弃,这种状态是学习数学分析的一个必经之路,因此必须克服这个困难才能学好数学分析理论知识。
除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为数学分析理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。比如说,在“数学分析”一开始学习实数系的确界存在基本定理时,由于当时根本没什么基础,所以对于“引入这个定理的目的是什么?”这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。但到后来学到了多元部分的数学分析,以及专业课“实变函数”时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在的性质,即相当于有一种连续的性质,目的就是为了后面的极限和连续做铺垫的,因为只有在自变量能够连续变化的时候,考虑因变量的相应变化才有意义,进而才能研究函数的性质。但是如果没有学到后面,只了解区间而不知其它一些怪异的点集时是很难想通这个问题的。
所以,在开始学习数学分析时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。
但是,也并不是说在初学时就不去思考任何问题。相反,勤于思考是学好数学必备的好习惯,“数学是思维的体操”,只有坚持思考才能掌握它的理论体系和逻辑关系。因此,应该在学习时掌握尺度,既要保证有充分的思考,但同时又不能过于钻牛角尖。
3.了解背景,理论式学习数学分析与中学数学明显的一个差异就在于数学分析强调数学的基础理论体系,而中学数学则是注重计算与解题。针对这个特点,学习数学分析就应该注重建立自己的数学理论知识框架。
要学习理论体系,首先就应该知道为什么要建立这种理论,它的作用是什么,这就要了解数学的历史背景知识。比如“数学分析”在一开始就强调对-N语言的掌握,而它的产生则是由于数学史上的“第二次数学危机”引起的。众所周知,Newton创立的微积分,虽然在其应用方面取得了巨大的成就,但微积分在那时的理论基础是相当混乱的。Newton在求导数时先将无穷小量看成非零数作为分母,后来又将其视做零而舍去,因此这就导致了逻辑上的错误。为了给微积分奠定正确而坚实的基础,大数学家威尔斯特拉森在Cauchy的基础上提出了用-N语言的方法来推出极限和导数的概念。借助-N语言,可以十分清晰地展示出函数取极限的过程,而且在逻辑上也非常清楚严谨。这样,当了解了这些历史背景知识之后,就觉得学习-N语言是很必要的,学起来也就自然得多了。除了了解背景帮助我们学习理论知识外,还要下苦功夫去学习。在接触了这些陌生的数学理论一段时间后,可能觉得看起来已经懂了,但其实自己不一定能真正掌握,尤其是那些证明中内含的逻辑关系最容易出错。所以在学习时,应该适当地记忆理论知识,有时还应该默写定理,只有通过默写才能发现自己在理论上的漏洞,才能培养出自己严密的理论、逻辑能力,这对以后的学习都是很有帮助的。
4.把握三个环节,提高学习效率(1)课前预习
适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果时间不多,你可以浏览一下教师将要讲的主要内容,获得一个大概的印象,这可以在一定程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一下自己的理解与教师讲解的有什么区别,有哪些问题需要与教师讨论。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。
(2)认真上课
注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入——听、记、思相结合的过程。教师在有限的课堂教学时间中,只能讲思路,讲重点,讲难点。不要指望教师对所有知识都讲透,要学会自学,在自学中培养学习能力和创造能力。所以要努力摆脱对于教师和对于课堂的完全依赖心理。当然也不是完全不要老师,不上课。老师能在课堂教学把主要思路,重点与难点交代清楚,从而使你自学起来条理清楚,有的放矢。对于教师在课堂上讲的知识,最重要的是获得整体的认识,而不拘泥于每个细节是否清楚。学生在课堂上听课时,也应当把主要精力集中在教师的证明思路和对于难点的分析上。如果有某些细节没有听明白,不要影响你继续听其它内容。只要掌握了主要思路,即使某些细节没有听清楚,也没有关系。你自己完全能够在这个思路的引导下将全部细节补足,最后推出结论。应当在学习的各个环节培养自己的主动精神和自学能力,摆脱对教师与课堂的过分依赖。这不仅是今天学习的需要,而且是培养创造能力的需要。
(3)课后复习
复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。另外,复习时的思路不应当教师讲课或者教科书的翻版,一个可供参考的方法是采用倒叙式。从定理的结论倒推,为了得到定理的结论,是怎样进行推理的,定理的条件用在何处。这样倒置思维方式,更加接近这个定理的发现的思路,是一种创造性的思维活动。
5.掌握方法,全面式学习
(1)概念的学习方法是:① 阅读概念,记住名称或符号;②背诵定义,掌握特性;③举出正反实例,体会概念反映的范围;④进行练习,准确地判断;⑤与其它概念进行比较,弄清概念间的关系。
(2)公式的学习方法是:①书写公式,记住公式中字母问的关系;② 懂得公式的来龙去脉,了解推导过程;③验算公式,在公式具体化过程中体会公式中反映的规律;④将公式进行各种变换,了解其不同的变化形式。
(3)定理的学习方法是:①背诵定理;②分清定理的条件和结论;③ 了解定理的证明过程;④ 应用定理证明有关问题;⑤ 体会定理与逆否定理、逆命题的联系。有的定理包含公式,如中值定理、定理,它们的学习还应该同公式的学习方法结合起来进行。6.数学分析解题方法
在学习数学分析过程中,更多的困难来自于习题。
首先,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。上面已经提及,提高解题能力重要途径之一是掌握好基本概念和基本方法。另一方面,因为数学分析题型变化多样,解题技巧丰富多彩,许多类型的题目并不是只要掌握好基本概念和基本方法就会作的。需要看一些例题,或者需要教师的指点。不要因为某些题目一时找不到思路而失去信心。
至于如何解题,很难总结出几个适用于所有题目的通用的方法。怎样提高自己的解题能力?除了天生的智力因素之外,解题能力首先取决于基本概念和基本原理的理解与掌握程度。所以,多下功夫掌握基本概念和基本原理,尽可能地多做题目,在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架,是提高解题能力的重要途径。另外,做题要善于总结,特别是从不同的题目中提炼出一些有代表性的思想方法。
下面是数学分析课程中部分内容的一些解题方法。(1)数列的极限
重点:了解定义,即证明方法。特别是Cauchy收敛准则。学会反证法的表述法。
解法:
a.利用压缩映像或者数学归纳法及放缩法的到极限存在。然后,假设极限等于c,解出c的具体的值。
b.有时可以直接解出数列的通项公式,然后带入求得极限。c.Stolz公式。(2)求函数的极限 重点:同1)的重点 解法:
a.对于一元的情况比较简单,注意应用极限性质时的条件要求。
b.对于多元的时候,先处理一个未知数,再处理第二个。不断利用放缩法。或者换元。
c.具体要了解上下极限、上下确界的含义。注意,极限存在也是一个条件,且这个条件是很强的。
(3)函数的连续性
重点:了解定义,和基本证明的方法。了解什么是一致连续性.解法:
a.证明f(x)和g(x)有交点的题目,如果是连续的,可以用介值定理,否则可以用实数系的定理来证明。
b.有些题目证明f(x)符合某些性质,可以先证明整数、再证明有理数。最后利用连续性来证明所有的实数满足条件.c.了解什么是一致连续,能举得出连续但不是一致连续的各种函数图像的例子,对于解题时很有帮助的
(4)导数和微分
重点:会求导的各种技巧,并了解定义求导数的方法。了解可导和连续的关系。
解法:
a.一元微分是十分简单的。二元以上的微分,要用链式求导,可能会很繁琐,但要做到滴水不漏。另外,学会换元的方法。
b.对于求最值的题目,首先试试初等方法,不行就用Lagrange乘子法。c.熟练掌握三种中值定理。遇到证明不等式,就想办法往这三个中值定理靠,构造辅助函数。实在不行,就构造f(x)=左边,g(x)=右边。证明f(x)-g(x)递增或者递减,然后再取边界的情况讨论一下。
d.熟练掌握L’Hospital法则,注意它和Cauchy中值定理的联系。注意它的条件必须要导函数连续。c.有些题目可以不用L’Hospital,直接用Taylor级数代余项的展开。可能更为简洁。
(5)积分
重点:熟练不定积分。和多元微积分的各种方法。了解积分中值定理.解法:
a.一元微积分比较简单。多元微积分,强调技巧。熟练掌握包括换元、Green(Stokes)定理、Gauss公式。并且注意,使用他们要求有闭曲线,或者封闭曲面。如果没有封闭的面记得要补上那部分.b.含参变量的积分,掌握莱布尼兹求导公式,剩下的就是求导的各种技巧了。<1>I(a)=f(a);<2>I’(a)=f(a)I(a)<3>题目里面没有要求求出函数解析式,只要求一些特殊的值。找到I(x0),I’(x0)的关系,同<2> 具体参见试题。
c.积分不等式:积分中值定理或者利用求导的方法证明,基本同前面的导数的情况。
d.学会利用级数展开的方法求积分,并了解一些特殊的定积分的值。e.了解绝对收敛和相对收敛的区别。(6)一致连续和一致收敛
重点:充分了解一致收敛的含义。解法:
a.大部分题目会和积分或者求和联系起来,首先证明(内闭)一致收敛,然后用定义证明,将积分区间分成两部分,分别趋近于不同的极限.b.证明函数组一致收敛:AD判别法(注意还有关于积分的AD判别法,参见陈传璋的版本,归根到底就是Abel求和公式和分部积分法),或者按照定义作。可能要分成几个区间,注意这一点,此时是证明对于任意的e,在这几个区间中寻找最小的d,使得差小于e。而不是证明分别在这几个区间中,一致收敛。
c.证明函数组不是一致收敛的。得到一个数列{xn},如果fn(xn)不趋近于f(x)的话就不是一致收敛的。
d.逐项求导和逐项积分要求一致收敛(内闭一致收敛也可以)。由于积分和求导都是极限的运算,这就是所谓的极限互相穿越的意思。
掌握一定量的题型,对于一些题目,直接知道用什么方法做。有些题目没有头绪的时候,可先尝试找反例,然后想想为什么反例不成功,从中可以的得到不少的启发。还有要充分了解函数的各种性质。做题的时候脑子里要有函数图像。另外,充分了解定义,特别是一致收敛。了解为什么有时候一致收敛才有题目的结论,如果条件收敛,是不是也有这样的条件。多想几次就有了深刻的了解。遇到不清楚的地方赶快看书,多看几遍书对于理解题目是非常有用的。再有,尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。每个人有不同的风格。不同的切入角度,会使你有时候读一些问题豁然开朗。
7.学会利用参考书 尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。每个作者有不同的风格,不同的切入角度,学会利用参考书会使你对一些问题豁然开朗。
看参考书有两种方式,其一是通读某一本书,不过大家往往没有太多的时间去通读教材之外的书。所以我建议大家采用第二种方法:以问题为中心,有选择地读参考书,具体地说就是:如果你对数学分析中的某一部分,或者某个问题有兴趣,希望多了解一些,作比较深入的研究,那么可以查阅几本书,看一看其他书上对这个问题是怎样论述的,在学习的基础上,自己可以做一个小结,在是自学的重要方式。好的辅导书对于帮助自己学习数学分析也是有用的,但是使用辅导书要注意方法,不要仅仅停留于逐个地看例题,看得懂不等于会做,想到思路不等于做得完全正确。如果你想扎扎实实地提高解题能力,就要认真地、独立地解题,通过自己动脑动手体会解题的思路、方法和技巧。
最后,就是平时没有事的时候多想想,想想一些定理,自己想不同的方法证明。想想如果没有其中的某些条件,定理是否仍然成立。
总之,掌握了一定方法,再加上自己的努力,必能学好数学分析这门课,为后继课程的学习打下扎实的基础。
数学分析学习心得
一、数学分析内容简介
数学分析内容有实数集与函数、数列极限函数极限、函数连续性、导数、微分等。书中内容大都以证明为主,计算部分较少。
二、课前预习
课本中每节的内容构架都是相似的,大都为引言、定理、定理的证明、例题、课后习题。了解了构架。那么我们就应该预习重点部分,在时间充足的的情况下,再看其他未看内容。
引言,不重要,可以浏览一下,也可以不看;定理,是核心的内容,不仅看而且要详细的记住它,所谓详细的记住是指:把定理的条件不要记错,这个对证明很有用;接下来是证明,证明影响你对定理的理解程度和运用的熟练程度。可先了解证明思路证明中的计算可以忽略,这样在老师的讲解下就可以明白;最后是例题和习题,例题是对定理最简单最贴切的应用,所以课前掌握最好,习题可看可不看。
三、记录笔记
在紧张的课堂学习中,要记好自己的笔记让它清晰工整是不容易的。因为你还在用心听老师讲课,所以要有方法。
首先,学会省略。减轻课堂负担,在课后补充。比如:定理,你可以把定理的内容在课本上画下来,在笔记中留出空白。用这段时间理解并记忆定理。计算也可以省略,留到课下自己计算。
其次,学会缩写。在数学分析中,有很多符号语言,比如:∑(加和)∞(无穷大)∵(因为)th(定理)等。
最后,抓住重点记录。重点可以分为两部分:一部分是老师上课所说的重点部分,那一定是精华,所以不要错过;另一部分是自己不懂或难懂的部分,记录下来,课下反复思考,复习。
四、课后复习
课后复习要从两方面出发:
一方面是老师要求掌握的内容,这些内容是考试内容,对期末复习打下良好的基础。
另一方面是自己难以掌握的内容,这些内容是最容易忘记的也是应用熟练程度最差的。所以也要作为重点复习。
复习要有一定的周期性,不能本周看了,之后就让它冬眠,这样大脑会一片空白的。可以根据自己的记忆能力,一星期或两星期看一次。
五、读书方法
读书要有侧重点,数学分析中的定理,有的要着重看它的证明方法,他的方法是独特的,可以给自己以借鉴;有的要着重看定理的内容,它的定理应用,推广会更多一些;有的当做了解内容,因为它可能是为其它定理作铺垫的。
其中的例题一定要看,这个会是定理的浅显应用,对于初学者来说,能够为以后做难题提供思路和方法。
六、数学分析中的创新与应用
在创新方面,一般是定理推广,它的推广会被现实生活中应用的更加广泛。在应用方面,这个很多,一般是竞赛中的应用,比如数学建模。在计算机程序中也有很多应用。
学好数学分析,其天赋是一方面,另一方面就是自己的不断努力下所积累的做题经验和逻辑性思维。只有努力才有收获!