第一篇:水泥与混凝土结构与性能 考试总结
一、水泥诱导期研究的意义,C3S诱导期的形成及结束的主要机理。
(C3S)水化分五个阶段:诱导前期(15min)、诱导期、加速期、衰退期、稳定期。诱导前期:加水后立即发生急剧化学反应,但持续时间较短,在15min.内结束。
诱导期:反应速率极其缓慢,持续2~4h(水泥浆体保持塑性)。初凝时间基本相当于诱导期的结束。加速期:反应重新加快,反应速率随时间而增大,出现第二个放热峰。在达到峰顶时本阶段即告结束(4~8h),此时终凝时间已过,水泥石开始硬化。
减速期:水化衰减期,反应速率随时间下降的阶段(12~24h),水化作用逐渐受扩散速率控制。稳定期:反应速率很低,反应过程基本趋于稳定,水化完全受扩散速率控制。1屏蔽水化物理论(保护膜假说)
C3S在水化初期形成的水化物的Ca/Si高,逐渐在未水化的C3S周围形成一个致密的保护膜层,从而阻碍了C3S的进一步水化,使放热速率变慢,Ca2+向液相中溶出的速率降低,并导致诱导期开始(进入诱导期)。当初始水化物由于相变等原因转化为渗透性较好的二次水化物时(C/S为0.8~1.5、呈薄片状),保护层区的渗透率提高,因而水及溶出离子又逐渐通过膜层而使水化速率加快,导致诱导期结束而进入加速期。
2富硅双电层和Zeta电位理论(Skalny&Young)当C3S与水接触后在C3S表面有晶格缺陷的部位即发生水解,使Ca2+和OH-进入溶液,溶液中的Ca2+被该表面吸附而形成双电层,它导致C3S溶解受阻而出现,在C3S粒子表面形成一个缺钙的富硅层。但由于C3S仍在缓慢水化而使溶液中CH浓度继续增高,当达到一定的过饱和度时,CH析晶,双电层作用减弱和消失,因而促进了C3S的溶解,这时诱导期结束,加速期开始。3CH核晶延迟理论
重要理论之一.Young把Ca 2+浓度随时间的变化与C3S的水化放热曲线相联系,Ca 2+浓度最大值出现时诱导期结束,并和CH 最初发生核晶作用时间一致;当溶液中Ca 2+过饱和时CH结晶,此时Ca 2+ 浓度为饱和时的1.5~2倍。诱导期的产生是由于SiO4-对CH结晶的干扰,使CH结晶延迟,只有当高度过饱和下才形成CH核晶,此时诱导期结束. 4晶格缺陷理论
Maycok认为水化速率及诱导期长短取决于晶格缺陷的数目(与C3S的活性有关):即晶格错位,空位等不规则状态,它是活化点并决定了诱导期的长短。5 CSH核晶理论
Fierens认为水在C3S表面进行化学吸附,首先在活化点生成水化核(CSH)并溶解出部分少量C3S,CSH生长并放热,CSH核达到临界尺寸时,诱导期结束.6渗透压理论
Double等认为:C3S加水后生成一半透膜,水可渗入, Ca 2+可渗出,而SiO4-离子不能透过.因此在膜两边形成浓度差即产生渗透压,当渗透压达一定值时,膜胀破,诱导期结束.半透膜胀破的时间决定诱导期的长短。诱导期研究的争议及焦点
C3S及水泥水化诱导期研究的争议及焦点在于一致溶解和非一致溶解。一致溶解认为C3S 表面的CaO和SiO2溶解一样多,而非一致溶解则CaO多,近来研究认为C3S及水泥水化是非一致溶解。
研究诱导期的意义
C3S及水泥水化诱导期的存在对实际应用有十分重要得意义,因为只有保持一定水化诱导期,浆体才具有流动性,砂浆和混凝土才能成型。
二、水泥主要水化产物种类及其对水泥石或混凝土性能的影响。
水化产物:CH、Aft、Afm、C3S、C2S与C3A(自愿背)【第一阶段:从水泥拌水到初凝为止, C3S与水迅速反应生成饱和CH溶液, 并析出晶体, 与此同时石膏也进入溶液与C3A反应生成细小的钙矾石晶体, 这一阶段水泥浆体呈塑性状态。水产物尺寸细小,数量又少。
第二阶段:初凝到24小时,水泥水化加速,生成较多CH、AFt,同时水泥颗粒上长出纤维状CSH凝胶体,将各颗粒初步联接成网,水泥浆凝结。网状结构不断加强,强度相应增长。
第三阶段:24小时以后,石膏耗尽,AFt转化成AFm,还形成C4(A,F)H13。CSH、CH、AFm、C4(A,F)H13数量不断增加,水化产物数量不断增加,结构更致密,强度提高。】 C-S-H凝胶:纤维状体系,是水泥石强度的主要来源。C-S-H凝胶的凝胶孔结构影响对水的吸收,对水泥石干燥收缩产生影响。水化开始时,C-S-H凝胶形成的覆盖层会减缓水泥的水化作用,一定程度上影响凝结时间。
CH晶体:结晶完好、六方板状、层状晶体,水泥石中最易受侵蚀物质.对水泥石的强度贡献很少。其层间较弱的联结,可能是水泥石受力时裂缝的发源地和侵蚀离子的快速通道。
CH的有利作用:是水泥石的主要组成,是维持水泥石碱度的重要组成,是其他水泥水化产物稳定存在的重要前提。
CH的不利影响:属于层状结构,易于产生层状解理,大量存在于集料与水泥石的界面,影响混凝土的强度和耐侵蚀性能(抗钢筋锈蚀性能、抗碳化性能、抗溶蚀性能、体积变形性能等密切相关),被视为混凝土中的“薄弱环节”。水化硫铝酸盐
AFt晶体: 六方棱柱状、针棒状晶体、棱面清晰,主要出现在水化早期。AFm晶体: 六方板状、片状晶体,成簇或呈花朵状生成,水化后期。
AFt的形成常常伴随着明显的体积膨胀,水化期间,控制AFt的形成,由此产生的膨胀是补偿收缩水泥的基本原理
水化速度:C3A>C4AF>C3S>C2S(24h:大约有65%的C3A水化,C3S水化50%左右)放热量:C3A>C3S>C4AF>C2S(特别是早期)抗压强度: C3S>C2S>C3A>C4AF 在水泥混凝土中作用:C3S早期强度来源;C2S后期强度来源。耐化学侵蚀性:C4AF>C2S>C3S>C3A 体积收缩:C3A>C3S>C4AF>C2S
三、描述C-S-H凝胶的主要形态、模型及其结构。
形态
Ⅰ型纤维状凝胶粒子:水化早期,刺状、针状、柱状等,典型粒子长约0.5~2 μ m,宽一般小于0.2μm。
Ⅱ网络状凝胶粒子:与Ⅰ型纤维状凝胶粒子同时出现,截面与Ⅰ型纤维状
凝胶粒子相同的长条形粒子,通过端头交叉而连接成三度空间网络。但这种粒子在纯C3S和C2S水化时很少出现。
Ⅲ型不规则等大粒子状凝胶粒子:粒子尺寸一般不大于0.2 μ m,它在水泥石中常以集合态存在,但由于特征不明显而被忽略。
Ⅳ型内部产物的凝胶粒子:在水泥粒子原来边缘形成的内部水化产物,它与其他水化产物保持紧密接触,外观为紧密集合的约0.1 μ m的等大粒子组成的绉皮状集合体。其他人的观点:
Taylor认为:在短龄的水泥石中Ⅰ型纤维状凝胶粒子占主要地位,Ⅱ型网络状凝胶粒子也常有发现,Ⅲ型不规则等大粒子状凝胶粒子要在水化到一定程度后才出现,占重要地位,Ⅳ型内部产物的凝胶粒子则不易见到。C-S-H凝胶模型
①Powers-Brunauer模型 :C-S-H是粒径大约为14nm的刚性颗粒,形成层状的托勃莫来石凝胶,具有很高的比表面,颗粒间的凝胶空隙率为28%。孔隙口径小于4埃,所以凝胶孔只能容水分子进入。任何没有被凝胶填充的空间称为毛细孔。凝胶粒子由范德华力结合,C-S-H凝胶在水中的膨胀性是由 于单个粒子间存在水分子层而导致粒子的分离。
②Feldman-Sereda模型:微观结构视为硅酸盐不完整层状晶体结构,与Powers-Brunaue模型比较,该模型认为水的作用更加复杂,其中的一部分水在凝胶结构的表面上形成氢键,另一部分则物理吸附于表面上。③Pratt等人采用带湿样池的TEM观察未经干燥的原始试样,建立了早期,中期和后期产物的概念。早期产物又称E型C-S-H,是薄片形态 ;中期产物又称O型C-S-H,是无定型凝胶,它可能发展成Ⅰ型纤维状凝胶粒子,也可在以后发展为Ⅲ型不规则等大粒子状凝胶粒子;后期产物是致密凝胶物质,由于此时粒子周围空间已经填满,主要在粒子原来占据的空间生长(它与Ⅳ型内部产物的凝胶粒子接近)。
④C-S-H结构模型:Jenning提出了C-S-H 纳米结构的凝胶模型,该模型认为C-S-H 凝胶最小结构单元(globue 胶束)近似为直径小于5 nm 的球状体。这些球状体堆积在一起形成2 种不同堆积密度的结构,称作高密度水化硅酸钙凝胶(HD C-S-H)和低密度(LD)水化硅酸钙凝胶(LD C-S-H)。这两种堆积形态大体上与 “内部水化产物”和 “外部水化产物”形貌相对应。在C-S-H 中含水的区域包括层间空间、胶粒内孔(intra globule pores,IG,尺寸≤1nm)、小凝胶孔(small gel pores,SGP,尺寸为1~3 nm)和大凝胶孔(larger gel pores,LGP,尺寸为 3~12 nm)。
四、混凝土中孔的作用,孔与混凝土强度、收缩、抗冻性、渗透性的关系。
1孔的作用
有利作用: 水化通道、水化产物空间;特殊形状的孔对抗渗、抗冻有利;特殊环境需要孔,如保温、吸声、隔热、轻质等;为某些工艺提供条件。
不利作用: 孔隙率提高,强度下降;孔中水运动,产生干缩或湿胀;粗大的孔容易产生碳化、抗渗性下降;大孔中水饱和,抗冻性下降;孔多钢筋易锈蚀;孔中进水,热工性能下降等。—孔是混凝土性能劣化的主要内因之一。
2孔结构与性能的关系
强度:不同孔径的影响略有差别,总的来说,孔结构的存在使混凝土的强度降低。收缩:孔径分布的不同对混凝土收缩影响程度不同,小孔径比例增大,收缩会有相应的增加
抗冻性:孔结构能很好的改善混凝土的抗冻性,引入微小球形气孔是提高混凝土抗冻性的重要技术途径。渗透性:孔的类型决定了不同孔结构的影响不同,对于通孔,会使混凝土的渗透性增加,对于闭孔,孔隙率高低不影响渗透性。
测孔方法:光学显微镜、压汞法、吸附法、SEM,小角度X衍射,氦流法、核磁共振等。引入的气孔作用机理:
a水压很高,可使毛细孔间的水泥石破坏; b引入的气孔可以释放水压,避免高压水的产生; c大量的空气泡减小了水释放的平均距离; d引入的微小球形气孔有利于抗冻害性能的改善。
五、水泥石与集料界面区的特征、形成机理、改善措施。水泥石与集料界面区的特征:1)水泥石-集料界面并不一个“面”,而是一个有一定厚度的层(0~100μm)。2)由于从水泥石向集料表面方向形成水灰比梯度而产生;3)从水泥石本体向集料表面,水灰比逐渐变大,有利于结晶体形成、长大。
过渡区典型特征:1)W/C高;2)孔隙率大;3)CH和钙矾石结晶颗粒大、含量多;4)CH、AFt取向生长。界面区形成机理:
1)集料表面带电使浆体中的水分子强烈定向,并使集料表面附近水膜变厚;
2)只有阳离子Ca2+受电场作用,活动度较大,易迁移到集料表面附近,故此处的Ca(OH)2达到饱和浓度,首先在集料表面上结晶,形成Ca(OH)2结晶——产生取向排列。
3)由于在集料与水泥浆体接触区水灰比局部升高,扩散到这里的Ca 2+浓度较低,因此晶体生长速度大于成核速度,所以晶体粗大。AFt相和Ca(OH)2晶体的富集现象出现—孔隙率增加。改善措施
1)调整配合比:其一是调整用水量,尽可能降低水灰比,减少用水量。其二是调整水泥用量。
2)选择合适的集料:集料与水泥的相容性考虑:相近为好。集料的几何性质对界面性质的影响不容忽视:一是集料的粒径。二是集料的表面形状。
3)水泥裹砂(石)工艺;预热集料工艺;压蒸工艺;掺加聚合物;掺入火山灰质混合材;加晶种;掺入膨胀组份;超塑化剂的影响
一、新拌性能:主要内涵、相关流变概念、影响因素及改善措施; 主要内涵:
混凝土的工作性,也成和易性,是指混凝土混合料易于各工序施工操作,并获得质量均匀、结构密实的混凝土的性能。包括流动性、粘聚性和保水性。
流动性:混合料在自重或机械振捣作用下,能流动并均匀密实地填满模板的功能。它主要反映混凝土混合料的稠度,关系施工振捣的难易和浇筑的质量。
粘聚性:混合料各组分材料之间具有一定的凝聚力,在运输和浇筑过程中不致发生分层离析现象,使混凝土保持整体均匀的性能。
保水性:混凝土混合材具有一定的保持内部水分的能力,在施工过程中不致产生严重的泌水现象。保水性差,混凝土内部易形成泌水通道,降低混凝土的密实度和抗渗性,使硬化混凝土的强度和耐久性受到影响。
综合来看,上述三种性能在某种程度上是相互矛盾的。通常情况下,粘聚性好则混凝土在保水方面表现较好,但如流动性增大,则其保水性和粘聚性往往变差,反之亦然。工作性良好的混凝土指既具有满足施工要求的流动性,又具有良好的粘聚性和保水性。良好的工作性既是施工的要求也是获得质量均匀密实混凝土的基本保证。
1、变形与流动
变形—实际包含三种含义:对弹性体—称为应变;对塑性体—称为永久变形;对液体—称为流动。
流动—在不变剪切应力下,材料随时间产生的连续变形。
流动:塑性流动(塑流)-材料内部的抗剪应力与流速无关的流动。
粘性流动(粘流)-应力随流速增加的流动。
固体“流动”—其产生应变的大小。不决定于作用力大小,而决定于作用时间长短产生的应变。
变形的产生只有在剪切力的作用下才有可能-才会使不同物体产生不同的变形(弹性应变、塑性永久变形或粘性流动)。
2、弹性、塑性与粘性
弹性:当超过物质弹性极限时,物质就失去弹性,产生的若不是断裂,就是塑性变形。
塑性:为非可逆变形。从微观结构分析-是由沿晶体滑移面发生剪切应力而引起的。发生塑性变形的条件是不同时出现断裂现象。
粘性:是包括气体和液体在内的流体,其内部结构阻碍相对流动的一种性能。
在流动的液体中,若在平行于流动方向分成不同流速的若干层,则相邻两层间所产生的与平面平行而与流向相反的阻力即为粘性,或称为摩擦。
粘性对温度敏感。液体升温时粘度减小,而气体升温时粘性增大。
3、强度:在应力作用下,当符合胡克定律的固体物质的应变无限增加时,会出现两种可能:
如该物体具有塑性,则在超过屈服值后呈圣维南体变形,即在应力不变下,塑性变形无限制地发展;
如该物体属于脆性体,则在达到某一应力值时,即出现脆性断裂。
出现以上两种后果时的应力,都称为该物质的强度。常称其力学强度(以区别其他光、声等强度)。
所谓破坏强度-是物体承受变形的极限。它决定于物体吸收弹性势能的能力,即弹性极限。
强度与弹性同样与荷载速度及持续时间存在密切关系。
4、脆性:在外力作用下,直到破碎前不出现塑性变形而仅出现弹性变形,或在出现塑性变形前即告断裂的性能。脆性材料的强度不可能超过弹性极限。
5、延性:是与脆性相反的性能。是材料在破碎前所能承受塑性变形的能力。
6、韧性:在外力作用下,材料在塑性变形的过程中吸收能量的能力。或者说,材料在达到断裂前,单位体积内所需消耗功的总量;韧性实际是强度和延性的综合。水泥混凝土从结构改性来说,主要目的是从脆性改向韧性(既是提高其“断裂功”)。
7、结构粘性:一种悬浮分散系统的粘性液体,静止状态下形成的是比较致密的复杂结构,显示有较大粘度。当加以搅动时,结构随剪切力的增加而变得松弛,阻力减小,粘度降低。但搅动停止后就很快恢复致密结构。这种可变粘度的现象称为结构粘性。
8、触变性:材料经历“在剪切力作用下表面粘性降低,紧接着当剪切力移开时逐渐恢复;其影响是随时间变化的”。真正的触变性流体显示一个完全可逆的过程。
其与结构粘性的主要不同是:可逆转变极慢,而前者是瞬间互变。
水泥浆体结构形成的初期具有触变性,但在一定阶段后即告消失。因此,触变性可作为水泥浆体结构形成和发展的标志之一。
9、弹性后效:某些材料在外力持续作用下会产生发展十分缓慢的变形,当外力移走后,变形消失也十分迟缓,这种现象称为弹性后效(或弹性滞后)。
一般弹性变形在物体中的传递都是按声速发展或消失的,而弹性后效则已非常慢的速度传递。一般高分子材料(如橡胶等)具有极大的弹性后效,故常称其为高弹性材料。
10、徐变(蠕变):从流变学考虑,混凝土的徐变主要是一种弹性后效的表现。
11、应力松弛:在外力持续作用下发生着变形的材料,在总变形值保持不变下,由于徐变渐增,弹性变形相对渐减而引起材料内部应力随时间延续而逐渐减少。从热力学观点分析,材料受外力作用而长期保持着一定的变形,则贮存在材料中的弹性势能必将逐渐转变为热能。这种从势能转变为热能的过程,即能量消散过程,就是应力松弛现象。影响因素:拌合物的水含量、水胶比、集料性质(数量、粗细集料相对比、外形与特征、内部孔隙率等)、时间和温度、水泥的性质、外加剂、混合材料
改善措施:
二、离析与泌水的现象、影响因素及改善措施;
1、离析:新拌混凝土成分的析出-形成不均匀拌合物。通常指砂浆和粗集料产生分离。影响因素:
集料颗粒尺寸,较大的最大颗粒尺寸(大于25mm)和大颗粒比例 粗集料的密度,粗集料的密度比细集料高
粗细集料比例,混凝土中较细集料数量的减少(砂或水泥)
集料形状及表面特征,不是光滑、匀称的颗粒,而是形状不规则,粗糙的颗粒 混合物的湿度,太干或太湿的混合物
改善:掺加引气剂和级配好的混合材料—可降低混凝土的离析
2、泌水:混凝土体积已固定,但还未凝结前,水分的向上运动。泌水是混凝土离析的一种特殊形式。影响因素:同离析。或:http://wenku.baidu.com/link?url=z9_TmAA3zWWzmjXvKPzjt2olcDJrAFdcMbjgkOwWQIlf8OUCp3cG76oVhkO7AIVzwZGzisfYncMAaQuf-6oIAMD9C9UULVTIs3VmvceeJCm
改善措施:
增加水泥细度或使用火山灰和微细矿物外加剂; 增加水泥的水化速度,或是使用含有高碱成分和高C3A成分的水泥(可能会产生其他不好影响)。或使用CaCl2(可能会有不好影响); 使用引气剂(非常有效);
保证满意工作性前提下,减少水含量。
三、正常及反常凝结的表现与影响。
正常凝结:混凝土的凝结是新拌混凝土具有硬度的开端。凝结是真正的流质态到真正的固化态之间的状态过渡期。
反常的凝结行为:
假凝结:混凝土可能会在混合完成后的短时间里快速变硬。重新搅拌又恢复流动性,且混凝土会继续进行正常的凝结。该现象通常是由石膏结晶引起的,也称石膏凝结。是无害的。也可能是混合完成不久形成过量钙矾石引起的。表面电荷反常集中可能引起浆体絮凝和高度的触变性。瞬间凝结(闪凝):若水泥中C3A活性很高-可能发生闪凝(也称快速凝结);是由于单硫型水化硫铝酸钙大量形成和其他的铝酸钙的水化引起的。其是不能被进一步混合所终断的快速凝结,意味着混凝土已产生了一定的强度。因此,闪凝是一种比假凝结更严重的情况。目前,闪凝对硅酸盐水泥来说,已通过使用石膏控制C3A水化而消除了。偶尔使用外加剂可能会增加C3A水化而发生闪凝。C3A和石膏含量高时,钙矾石的形成也可能引起闪凝。
*反常凝结的防止:改用另一种适当的外加剂;不使用外加剂;改变水泥中石膏含量;外加剂加入前少量水泥的预水化(主要是C3A)
四、力学性能:界面过渡区与力学性能的关系;
目前还没有标准试验方法测量ITZ强度及更为重要的集料颗粒与ITZ间的粘结强度。浆体-集料粘结强度增大,混凝土抗压、抗拉、抗折强度也增大,增加幅度约为5%~40%,且抗拉强度的改善程度大于抗压强度。目前改善界面过渡区最有效的方法—加入硅灰(水泥质量的10%~15%)。其他技术包括加化学试剂(表面活性剂或水玻璃)也开始研究。
对于普通混凝土:界面过渡区的改善不一定导致混凝土行为较大的改变。质量较好的浆体-集料粘结使混凝土强度少许的增加在很大程度上会被所获得的材料脆性增大所抵消。
对高性能体系:改善界面过渡区而获得高粘结强度是比较重要的。
五、抗压强度的相关概念、破坏机理、影响因素及改善措施; 抗压强度的相关概念:混凝土
立方体抗压强度标准值:以150mm边长的混凝土立方体试件在20±2℃,相对湿度为95%以上的标准养护室中养护28天,用标准实验方法测得具有在95%保证率的抗压强度,用fcu,k表示。C30表示混凝土立方体抗压强度标准值fcu,k=30N/㎜².破坏机理:混凝土的破坏过程大致认为有5个阶段:Ⅰ-界面裂纹无明显变化;Ⅱ-界面裂纹增长,无明显砂浆裂纹;Ⅲ-出现砂浆裂纹和连续裂纹;Ⅳ-连续裂纹迅速扩展,汇合,贯通; Ⅴ-裂纹缓慢增长;Ⅵ-裂纹迅速增长
影响因素:材料:水泥、集(骨)料、水、外加剂、掺合料等;配合比:水灰比、单位水泥用量、骨料用量、浆骨比等;施工和养护:搅拌、运输、浇灌、捣固等方法,养护温度、湿度、龄期等;试件形状和尺寸、加荷速度、试验方法等
改善措施:采用干硬性混凝土或较小的水灰比;采用高强度等级水泥或快硬早强型水泥;采用级配好、质量高、粒径适宜的骨料 ;采用机械搅拌和机械振动成型;加强养护;掺加外加剂;掺加混凝土掺合料。
六、其它力学性质评定的主要目的;
抗拉强度:因为在拉伸荷载下裂缝容易扩展。在路面、水槽等设计中抗拉强度是重要参数,为减少因主拉应力、干缩和温度变化而发生的裂缝,增大抗拉强度是行之有效的。对于拱坝等产生复合应力的结构物,抗拉强度也是重要参数。
抗弯强度:是道路、飞机跑道等混凝土工程设计中的重要参数。
抗剪强度:工程实践中,混凝土单纯因剪应力使其发生破坏的情形几乎是不存在的,一般是由剪切应力和正应力合成的主应力使其产生裂缝而破坏。
支压强度:桥墩、构件锚固部分的混凝土等,在整个结构断面上,只有一部分支承压力。
组合应力下的强度:但实际结构物中的应力状态是非常复杂的,不单是在一个方向上有应力,而是处于二向应力或三向应力的组合状态。当各种主应力彼此都相当大,对于混凝土强度又有相当大的影响时,应当考虑组合应力状态的强度才比较合理。
疲劳强度:混凝土受到反复应力作用时,即使在较小的应力(低于静力强度)下也会发生破坏。
冲击强度:混凝土的破坏强度受到加荷速度的影响,冲击作用下加荷比静止状态下加荷反应出的强度有所增大。
粘结强度:埋入混凝土中的钢筋,抵抗其拉出滑动量。
七、强度预测的目的及加速测定主要方法。
目的:随建筑技术的改善,混凝土结构的浇筑施工更为迅速,就要求对早期强度和质量进行检测。因此,混凝土强度和质量的早期评估对经济安全的建筑施工是绝对安全必要的。
方法:已有标准用于混凝土加速测定的方法:1)基于高温养护条件下强度加速增长的圆柱体试件的测定:加速养护法:热水法养护,自养护,蒸煮法养护。2)通过成熟度由早期强度预测后强度:成熟度法。
7、混凝土塑性收缩的基本特征机理、影响因素以及预防措施。
在混凝土浇筑数小时后,其表面开始沉降,常出现水平的小裂缝,这种在塑性阶段出现的体积收缩常称为塑性收缩。
机理:塑性收缩只要是由于两个方面的作用:一方面,混凝土浇筑密实后,由于混凝土原材料存在的密度、质量、形状等差异,沉降和泌水同哦你是进行,对于大水灰比或明显泌水的混凝土,上表面的水分蒸发后,混凝土的体积比发生沉降和泌水前的体积有所减少;另一方面,混凝土表面失水速率过快,形成凹液面,产生毛细管负压力,混凝土尚未硬化,弹性模量很低,开始出现塑性收缩。同时若混凝土表面的抗拉强度低于限制收缩导致的拉应力时,开始出现塑性收缩。影响因素:导致塑性收缩的原因很多,包括泌水或沉降、基础或模板或骨料吸水、水分的快速蒸发、水泥浆体积的减小、模板的肿胀或沉陷等。
预防措施:可通过遮挡混凝土表面等措施降低其表面的蒸发量,达到控制塑性收缩的作用。防止塑性收缩的方法就是对混凝土进行养护,覆盖湿布、洒水、包裹塑料薄膜、喷洒养护剂等。
8、干燥收缩(包括自收缩、碳化收缩)
影响收缩的因素:①集料对混凝土收缩的抑制取决于:集料的数量、集料的刚性、粗集料的最大尺寸。
②试件几何形状,由于其决定试件失水速率,因此也将决定干燥收缩的速率和数量。
(1)自收缩及影响因素。
当水灰比w/c(﹤0.3)时,拌合时加的水用于水化,水化放热,温度升高,体积收缩,且由于掺入活性火山灰而收缩增大。该现象称为自干燥并以自收缩的形式出现。
影响因素:
①水泥:水泥水化是混凝土产生自收缩的最根本原因,水泥水化产生化学减缩,而水化反应消耗水分产生自干燥收缩。
②矿物掺和料:一般硅灰掺量越大,自收缩越大;粉煤灰、石灰石粉、憎水石英粉,随其掺量的增大,自收缩减小。
③胶凝材料含量:单位体积水泥用量越多,混凝土各龄期的自收缩就越大。④水胶比:混凝土自收缩随水胶比的减小和水泥石微结构的致密而增加。⑤养护条件:养护温度和湿度。(2)碳化收缩及影响因素。
碳化收缩:已硬化的水泥浆体与二氧化碳发生化学反应。空气中所含CO2的数量(约0.04%)只有在一段很长的时间内才足以与水泥浆体起显著反应,然而,此反应伴有不可逆收缩,故称为碳化收缩。
影响因素:碳化速度取决于混凝土结构的密实度、孔洞溶液pH值和混凝土的含水量,以及周围介质的相对湿度与二氧化碳的浓度。
在高湿度下,由于孔隙大部分被水充满,CO2不能很好地渗透到降体中,所以碳化很少; 在50%RH左右时碳化收缩最大。
在很低湿度下,由于没有水膜,故碳化速度较低; 若干燥以后发生碳化,则碳化收缩最大
9、硬化混凝土在长期荷载作用下的变形特征(徐变)、产生原因、影响因素及主要作用。徐变:恒定荷载作用下与时间有关的非弹性形变。
(1)产生原因:水泥石中凝胶粘性流动向毛细孔移动的结果,以及凝胶体内吸附水在荷载作用下向毛细孔迁移的结果。
(2)影响徐变的因素:
1)施加的应力:加载龄期愈小,水泥的水化愈不充分,混凝土的强度愈低,混凝土的徐变也愈大。2)水灰比:水灰比越大,水泥石含量及毛细孔数量越多,徐变越大。3)养护条件:养护温度提高,基本徐变和干缩徐变都减小。
4)温度:如在荷载作用期间,混凝土保持在较高的温度下,则其徐变量会增加到超过保持在室温下混凝土的徐变。
5)湿度:自由水的存在是发生徐变的必然条件。徐变是混凝土中可蒸发水量的函数,当不存在可蒸发水时,徐变为零。
6)基体成分:水泥用量与成分;化学外加剂;集料。
7)试件几何形状。随构件体表比的增大,混凝土的收缩和徐变较小(3)在混凝土中的作用:
1)有利作用:可消除应力集中,使应力重分布,从而使局部应力集中得到缓解;对大体积混凝土工程,可降低或消除一部分由于温度变形所产生的破坏应力。
2)不利作用:在预应力混凝土中,将会使钢筋预应力值受到损失。
11、与普通混凝土比较,高性能混凝土的变形特点?
1)自收缩大-主要发生在早期;
2)温度收缩大-出现时间提前; 3)化学收缩、干燥收缩相对较小-但其实测值(包括部分自收缩值)并不一定小,即其自收缩与温度收缩较大。
4)高性能混凝土早期收缩大、早期弹性模量增长快、抗拉强度并无显著提高、比徐变变小等因素—导致高性能混凝土(特别是高强混凝土)的早期抗裂性差。
5)高性能混凝上的徐变较普通混凝土要小,因为水胶比低,硬化浆体刚性大。
12、耐久性:主要包括内容及其评价目的
混凝土结构耐久性:混凝土结构及其构件在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而能够长期维持其所需功能的能力。
包括:混凝土抗渗性;混凝土抗冻性;钢筋锈蚀与防护;混凝土碳化;混凝土碱-集料反应 评价目的:
对已有结构物进行耐久性和剩余寿命评定,以选择正确合理的处理维修、加固方法; 对新建结构进行耐久性和使用寿命设计,确保工程结构在设计寿命期内正常工作。
13、碱集料反应的主要类型、条件、破坏特征及预防措施。
主要类型:(1)碱-硅酸反应(2)碱-硅酸盐反应(3)碱-碳酸盐反应
(1)碱— 硅酸反应(ASR):骨料中的活性二氧化硅与碱发生化学反应生成膨胀性碱硅酸凝胶,导致混凝土膨胀性开裂。
(2)碱-硅酸盐反应:反应机理与碱-硅酸反应机理类似,只是反应速度较缓慢。
(3)碱— 碳酸盐反应(ACR):某些骨料中的碳酸盐矿物与碱发生的化学反应引起混凝土的地图状开裂。碱骨料反应的基本条件:1)(碱)活性矿物集料;2)碱性溶液(KOH、NaOH);3)足够的潮湿度(RH>80%)。破坏的主要特征:①时间范围:5~10年;②体积变形:整体膨胀 ;③表面裂缝:网状开裂;④表面析出物:透明或淡黄色凝胶;⑤内部特征:内部凝胶,沿界面开裂,骨料周围反应环 ;⑥外界条件:潮湿环境 预防措施:1)采用低碱水泥 ;2)使用非活性集料;构的施工及使用条件.5)其它方法)使用掺合料降低混凝土的碱性;4)改善混凝土结
第二篇:材料结构与性能
材料结构与性能报告(1)
论文题目:块状非晶合金材料的研究进展
姓名: 学号: 学科专业: 指导教师: 入学日期: 报告日期: 报告地点:
王楚 31605051 材料工程 林莉 2016.11
研究生院制表
材料结构与性能报告(1)1概述
一般认为,凝聚态的物质大致可以分为三类:晶态物质、准晶态物质和非晶态物质。非晶态合金是指固态时其原子的三维空间呈拓扑无序排列,并在一定温度范围保持这种状态相对稳定的合金。最早有关非晶态合金的文献是由融Kamer于1934年首次报道的。而后,1960年,Duwez[1]等首先采用喷枪法在Au.Si合金中获得非晶态合金,从而开创了材料研究的新领域一非晶态合金材料。非晶合金具有优异的物理性能、化学性能和力学性能,特别是优良的软磁性能,在许多领域中己得到应用。一般说来,非晶态合金均需要通过熔体快淬的方法来获得,它需要非常高的冷却速率(10 6 /s 以上)。由于临界冷却速率的限制,非晶态合金的三维尺寸受到很大的限制,只能获得很薄或很细的片、丝和粉末状非晶合金。
大块非晶合金材料是近年来采用现代冶金技术合成的一种具有特殊性能的新型先进金属材料。对大块非晶的研究无论在理论上还是在应用上都有重要意义。首先,大块非晶体系是一些全新的多组元体系,其合金熔体具有极大的热力学过冷度,过冷液体的动力学行为类似于氧化物玻璃,这使得人们重新思考传统的非晶形成理论。另外,大块非晶合金大都具有明显的玻璃转变和宽的过冷液相区,这为深人研究非晶合金的玻璃转变特征和过冷液态的结构和物性提供了理想材料。在应用上,由于具有奇特的物理、力学及化学性能, 适合于用来制造电子器件、磁性器件、精密光学器件、精密机械结构件、电池材料、体育用品、生物医学植人物以及军工先进武器构件(如穿甲武器、飞行器的构件、装甲板等)等。块状非晶合金的发展历程
非晶合金的发展大致经历了两个阶段。第l阶段为1960年(Duwez首次采用快淬方法制得Au70Si30非晶合金薄带)-1989年。这段时期,人们主要通过提高冷却速率(>104列s)来获得非晶合金,因而得到的基本是非晶合金薄膜、薄带或粉末。所研究和制备的主要是二元合金。主要研究体系可分为3大合金系:第l类合金系由过渡族金属或贵金属与类金属组成,如Pd2Si、Fe2B等。;类金属的含量为10%-30%,恰好在低共晶点组分附近。2类合金系是以LTM-ETM为基的体系,其中ETM和LTM分别代表前、后过渡族金属,LTM包括Fe、Co、Ni、Pd和Cu等,ETM包括Ti、Zr、Nb、Ta、Hf等。LTM的含量一般在20%-40%,如Zr70(Ni、Fe、Co、Pd、Rh)30、Nb60Rh40等,该体系可以在非常宽的低共晶组分范围内形成非晶,这类非晶合金发现得比较晚,1977年才首次发现属于这一类的合金,以后又逐步发现了在Ca或Sr中加入AI、Zn等组成的非晶合金[2,3]。第3类为以A族金属元素(Mg、Ca、Sr)为基体,B族金属元素(Al、Zn、Ga)为溶质的
块状非晶合金的研究进展
少冷却过程中的非均匀形核, 因而各种制备方法都有以下两个共同持征:(1)对合金母材反复熔炼, 以提高熔体的纯度, 消除非均匀形核点。(2)采用高纯惰性气体保护,尽量减少氧含量。目前,大块非晶态合金的制备方法主要有以下几类:
(l)悬浮熔炼: 将试样置于特定的线圈中,线圈中的电磁场使试样产生与外界相反的感生电动势,该感生电动势与外磁场间的斥力与重力相抵消,从而使试样悬浮在线圈中。同时, 试样中的涡流使自身加热熔化。再向试样吹人惰性气体,使其冷却、凝固;或利用通电极板间的静电场使试样悬浮,用激光加热熔化,当激光停止照射时,试样于原位冷却。试样温度可用非接触法测量。悬浮熔炼的优点是试样没有在容器中熔炼,避免了容器壁引起的非均质形核,可减小临界冷却速度。其缺点是,试验的悬浮与加热是同时通过试样中的涡流实现的,当试样冷却时也必须处于悬浮状态,即试样在冷却时还必须克服悬浮涡流带来的热量,所以冷却速度不可能很快, 增加了制备难度,制备的块状非晶合金尺寸较小。
(2)深过冷液淬法:此方法是将试样用低熔点氧化物(如B2O3)包裹起来,在石英管中感应加热熔化,最后淬入水中得到非晶态合金试样。低熔点氧化物的作用一是用来吸取合金冶炼中的杂质颗粒,避免这些颗粒成为形核的核心,二是将合金熔液与容器壁隔离开来。由于包裹物始点低于熔体熔点,因而可避免合金母材与容器壁直接接触,最大限度地避免了非均质形核。
(3)高压模铸法:该方法是将母合金放人套筒内,在高频感应线圈中熔化,再用高 压快速将合金液压人铜模内,铜模外通水使试样快速冷却。由于该方法的冷却速率很大,可以获得较大体积的非晶态合金。
此外还有定向凝固、射流成形、压实成型等多种大块非晶合金制备工艺。国内关于大块非晶合金的研究开展不多,主要采用落管、氧化物包裹、磁悬浮、射流成形及水淬 等技术制备大块非晶合金。国内制备的大块非晶合金的最大直径为90mm。由于目前制备的非晶合金的尺寸较小,影响了非晶合金作为结构材料的使用范围。块状非晶合金的微观结构
非晶合金的原子在三维空间呈拓扑无序状排列,不存在长程周期性,但在几个原子间距的范围内,原子的排列仍然有着一定的规律,因此可以认为非晶态合金的原子结构为“长程无序,短程有”。通常定义非晶态合金的短程有序区小于1.5nm,即不超过4-5个原子间距,从而与纳米晶或微晶相区别,短程有序可分为化学短程有序和拓扑短程有序两类。
材料结构与性能报告(1)4.1化学短程有序
非晶态金属至少含有两个组元,除了不同类原子的尺度差别、稳定相结构和原子长程迁移率等因素以外,不同类原子之间的原子作用力在非晶态合金的形成过程中起着重要作用。化学短程有序的影响通常只局限于近邻原子,因此一般用近邻组分与平均值之差作为化学短程有序参数,对于二元A-B体系为:
up=1-ZAB/(ZcB)=1-ZBA/(ZcA)其中ZAu和ZuA分别代表A(或B)原子近邻的B(或A)原子配位数,Z是原子总配位数。cA和cu分别是A与B原子在合金中的平均浓度。当A和B两种原子直径明显不同时,A原子的总本位数ZA与B原子的总配位数Zi3不再相同,ZA≠Ze,这时短程有序另一种定义。
4.2拓扑短程有序
指围绕某一原子的局域结构的短程有序。常用几种不同的结构参数描述非晶态与合金的结构特征,主要有原子分布函数、干涉函数、近邻原子距离与配位数和质量密度。原子分布函数,设非晶态结构是各向同性的均匀结构,其平均原子密度Po为--定体积y中包含的原子数N:
Po=N/V 描述某一原子附近的密度变化可用径向分布函数RDF(r):
RDF(r)=4*3.14xr2p(r)
其中r是距某中心原子的距离,p(r)是距离r处的密度,由上式可知,RDF(r)dr代表以某个原子为中心,在半径r处、厚度为dr的球壳内的原子数,从而RDF(r)=dN/dr表示原子数目(密度)随距离增加的变化。
定义约化径向分布函数G(r)为:
G(r)=4x3.14*r[p(r)-po] 几种过渡金属-类金属非晶态合金的约化径向分布函数如图8-1所示,函数值随着与中心原子的距离增大而呈有规律的起伏。此外,还定义双体分布函数g(r): z(r)=p(r)/p。
当合金中包含几种不同类原子时,引入偏径向密度函数pii(r)、偏双体分布函数gii(r)、偏约化径向分布函数GO(r)等参数描述原子之间的结构关系。例如,pji(r)指与某个第i类踩子的距离为r处,单位体积中第j类原子的数目。上述各个原子分布函数中,原子密度p(r)和原子径向分布函数RDF(r)有明确物理意义,G(r)的物理意义虽然不明确,但它同RDF(r)一样能反映非晶态结构特征,对体系作x射线衍射测量得到结构因数S(Q),块状非晶合金的研究进展
外壳等商业产品由于大块非晶中不存在晶体中的滑移位错,在较低温度下具有很好的粘滞流动性,可以较好地发生超塑应变利用这个特性,可以把大块非晶合金进行各种塑性加工,制成所需的各种形状由于其优异的力学性能和较好的热稳定性,大块非晶合金在军事方面也得到了应用,可以用来制造反坦克的动能穿甲弹。
Zr基大块非晶合金具有很高的弹性实验表明,用其做成的小球与同样大小的钢球在量筒中从相同高度(15m左右)自由落下后做弹性来回运动,前者比后者的弹动时间足足长了大块非晶合金具有很高的强度和强度-密度比,以及很好的弹性能,因而具有很好的应用潜力。基大块非晶合金由于抗拉强度高、延展性好、弹性能高、冲击断裂性能高和抗腐蚀性高,且具有非常好的能量传递性能,已被用来制作高尔夫球杆和其击球部位(球头),使用该材料做成的高尔夫球头能够将99%的能量传递到球上。
在化学方面,由于大块非晶具有抗腐蚀、储存能量(吸氢和析氢)和高催化特性,将有可能在海洋业和能源方面得到应用。块体非晶合金在结构上是原子长程无序而近程有序排列的亚稳材料,每个短程有序的原子团可以视为一个高活性点,而这种高活性、高耐蚀性材料是最理想的电极催化材料。如果使用这种材料制作电极, 其催化活性将提高以上,可大大提高制碱工业的生产效率,降低生产成本,由此所产生的经济效益是十分巨大的。
由于新型基非晶合金具有低饱和磁致伸缩,使得它们的软磁性能可与传统的Fe-Si-B非晶合金相比拟,甚至更优。日本研制的Fe基大块非晶合金软磁材料的磁导率,比硅钢片材料及传统晶体结构的磁性材料15倍,美国洛斯阿拉莫斯国家实验室也已经制备出了直径达到以上的低磁能损耗的大块基软磁产品专家预测,大块非晶合金软磁材料制品将很快应用于电子信息,如计算机、通讯设备和工业自动化等高技术产业和电力等传统产业另外,硬磁性大块非晶合金也将是一种很有潜力的永磁材料。
6结束语
非晶合金,因特殊的结构和优异的性能自产生以来一直是材料学界的热点研究领域之一。近年来对非晶合金进行了广泛的研究,取得了很大的进展,已突破昔日贵金属的限制, 许多日常重要的工程合金系统如Fe、Co、NiCu 等都可制备出块体非晶合金,这为其实际应用创造了条件,如今工程应用也已逐步兴起。但作为一类新型的材料, 非晶合金仍处于研究探索阶段,在基础理论、制备工艺和实际应用中还有许多问题亟待解决,主要体现在以下几个方面。
还没有一套完整的理论或成熟的物理模型用来指导块体非晶的研制,目前对于合金系统组元的选择还只能凭经验规律,但这些规律都不具备普适性。这主要是由于还没有充分理解非晶合金形成的本质, 因此需要加强对非晶合金物理转变过程的研究。
材料结构与性能报告(1)(2)目前所制备的块体非晶尺寸还不够大,只有Zr基、Pd基等少数几种合金体系可达较大尺寸,这在很大程度上限制了这种新型结构材料的广泛应用,因而需要我们在理解非晶合金形成本质的基础上,改进目前块体非晶制备所需的苛刻工艺条件。因机械合金化在制备非晶合金上的独特优势,目前可以优先发展机械合金化工艺。
(3)提高块体非晶的热稳定性。由于块体非晶属亚稳态材料,在热力学上是不稳定的, 只有把这类材料加热到一定温度以上才会使其变为晶态材料。因此,必须设法提高块体非晶的热稳定性,以拓宽其应用范围。
(4)任何材料都有其自身的缺陷,虽然发现了一系列具有大塑性的块体非晶合金,但总体来说其塑性都还有待提高,而且非晶合金的拉伸塑性几乎为零。长期以来,探索同时具有高强度和大塑性的金属合金材料一直是材料领域追求的目标,非晶合金塑性的进一步提高,必将为非晶合金的应用开辟更广阔的空间。
参考文献
[1] Duwez P Willens R.H.Continuous series of metal stable so1id solution in silver.
copper alloys.Applied Physics, 1960;31:1136-1139.
[2]Luborsky F E.Amorphous, metal lie alloys.London: Butter worth, 1983, 30(2): 45-47.[3]Jones H.RaPid,solid i of metal and alloys.London: Institution of Metallurgists.1982 ,10:78-79.[4]Inoue A, Zhang T, Masumoto T, Zr-Al-Ni amorphous alloys with the glass transition temperature and significant super cooled liquid region.Materials Transactions JIM, 1990, 3l(3):177-183.
[5] Shindo T, Waseda Y, Inoue A.Prediction of critical on Positions for bulk glass Formation in La-based, Cu-based and Zr一based tern arryallows.Materials Transactions JIM, 003, 44(3): 351-357.[6] Inoue A.Stabilization of metallic Per cooled liquid and bulk amorphous Alloys.Acta Material , 2000, 48:279-306.[7]Takeuehi A,Inoue A.Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of
the
Main
Alloying
Element.Materials
Transactions JIM,2005,46(12):2817-2829.[8]Inoue A,Shen B L,Chang C T.ULTRA-high strength above 5000MPa and soft magnetic
块状非晶合金的研究进展
properties of Co-Fe-Ta-B bulk glassy alloys [J].Acta Materialia, 2004, 52(14);4092-4099 [9]Lu Z P, Liu C T, Thompso N.Structural amorphous steels[J].Phys Rev Lett, 2004, 92:245503 [10]Chen Q J, Fan H B, Shen J, et al.Critical cooling rate and thermal stability of
Fe-Co-Zr-Y-Cr-Mo-B amorphous alloy[J].J Alloys Comp,2006,407(1/2):25-128 [11]Zhang B, Pan M X,Zhao D Q,et al.Soft bulk metallic glasses based on cerium [J].Appl Phys lett, 2004(85): 61-68 [12]Inoue A, Shen B L, Chang C T.Ultra-high strength above 5000MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys[J].Acta Materialia, 2004, 52(14):4093-4099.[13]Qiu K Q, Wang A M, Zhang H F, et al.Mechanical properties of tungsten fiber reinforced Zr-Al-Ni-Cu-Si metallic
glass
matrix
composite[J].Intermetallics,2001, 10(11/12):1283-1288.[14] Inoue A , Gook J.S.Mater Trans[J] 1995;36: 1180 [15]Inoue A, Takeuchi A, Zhang T.Metall MaterrTans, 1998;29A: 1779 [16]井上明久.素形材[M], 1999;5: 5 [17]Inoue A.Bulk Amorphous Alloys, trans tech publisher[D], 1998 [18]Nishyama N, Inoue A.Mater.Trans[J]1996;31: 1531
第三篇:混凝土与砌体结构(推荐)
1.塑性铰:适筋梁(或柱,当主要是梁)受拉纵筋屈服后,截面可以有较大转角,形成类似于
铰一样的效果。称作塑性铰。
2.塑性铰的特点:1)塑性铰实际上不是集中于一个截面,而是具有一定长度的塑性变形区域,为了简化分析,可认为塑性铰是一个截面。2)塑性铰能承受弯矩,等于截面屈服弯矩,作为理想弹塑性考虑,3)对于单筋受弯构件,塑性铰只能沿弯矩作用方向,绕不断上升的中和轴单向转动,相反方向则不能转动4)塑性铰的转动能力受到配筋率等的限制,与理想铰相比,可
转动的转角值较小。
3.弯矩调幅法进行结构承载能力极限状态计算时,须遵循的规定:1)受力钢筋宜采用HPB235,HRB335,HRB400,RRB400级热轧钢筋;混凝土强度等级宜在C20—C40范围内使用。2)截面的弯矩调幅系数一般不宜超过0.25。3)弯矩调整后的梁端截面受压区高度不应超过0.25,也不宜小于0.10。4)调整后的结构内力必须满足静力平衡条件。5)为了防止内力重分布前发生剪切破坏,在可能产生塑性铰的区段适当增加箍筋数量。6)按弯矩调幅法设计的结构,必须满足正常使用阶段变形及裂缝宽度的要求,在使用阶段不应出现塑性铰。4.厂房整体空间作用的程度主要取决于屋盖的水平刚度,荷载类型,山墙刚度和间距。5.什么情况下设缝,方式有哪些?
变形缝定义
沉降缝、伸缩缝和防震缝统称为变形缝。通常沉降缝、伸缩缝和防震缝被用作将房屋分成若干个独立部分,从而消除沉降差、温度和收缩应力以及体型复杂对结构带来的危害。
沉降缝
沉降缝是将该不同部分的结构从顶到基础整个断开,使各部分自由沉降,以避免由于沉降差引起的附加应力对结构的危害。在下列情况下,宜考虑设置沉降缝:
⑴ 建筑主体结构高度悬殊,重量差别过大;⑵ 地基不均匀;⑶ 同一建筑结构不同的单元采用不同基础形式;⑷ 上部结构采用不同的结构形式或结构体系的交接处。
.伸缩缝 伸缩缝即温度缝,是在建筑物的平面尺寸较大时,为释放结构中由于温度变化和混凝土干缩而产生的内力而设置的。设置伸缩缝的方法,应从基础顶面开始,将两个温度区段的上部结构构件完全分开,并留有一定的宽度,使上部结构在温度变化时,水平方向可以自由的发生变形!
防震缝 为了避免震害,可采用设置防震缝的办法,将平面和体型复杂的高层建筑,分成若干个比较规则、整齐和均匀的独立结构单元。在下列情况下,宜设防震缝:⑴ 当建筑平面突出部分较长,而又未采取有效措施时; ⑵ 房屋有较大错层时;⑶ 房屋各部分结构刚度或荷载相关悬殊时;⑷ 地基不均匀,各部分沉降相差过大时.6.影响墙柱高厚比的因素?
1.)砂浆强度等级2)砌体截面刚度3)砌体类型4)构件重要性和房屋使用情况5)构造柱间距及截面6)横墙间距7)支撑条件 7.水泥砂浆与混合砂浆的区别?
1)混合砂浆的可塑性要比水泥砂浆的可塑性好
2)水泥砂浆的流动性较差所以同一强度等级的混合砂浆砌筑的砌体强度要比想要纯水泥的砌体高
8. 雨蓬的作用和破坏类型
1)作用:支撑雨蓬板和兼作过梁2)破坏类型:雨篷板在支撑处截面的受弯破坏 雨篷梁受弯剪扭作用发生破坏整体倾覆破坏
9.牛腿柱的破坏形态:弯压破坏斜压破坏剪切破坏10.为了避免发生冲切破坏基础应该具有足够的高度,使角椎体冲切面以外由地面土净反力所产生的冲切力不应大于冲切面上混凝土所能够承受的冲切力
11.砂浆的三性:耐久性可塑性保水性 12.结构的可靠度: 安全性 适用性 和耐久性
13.砌体局部受压分几种破坏形态1)因纵裂缝发展而引起的破坏2)劈裂破坏3)与垫板直接接触砌体局部破坏
14.当主梁的负钢筋为单排时h0=h-(50---60)当为双排时取h0=h-(70----80)15.为了防止局部应力产生的主拉应力在梁部产生斜裂缝,应设置附加吊筋和箍筋
16.屋盖结构分为有檩体系和无檩体系17. 活荷载不利的布置情况?
1》求某跨中最大正弯矩时、除必须在该跨布置活荷载外、每个一跨也应布置活荷载、2》求某跨中最小弯矩时(或负弯矩)、该跨不布置活荷载、而在左右跨布置活荷载、然后隔跨布置、3》求某支座截面最大负弯矩时、应在该支座左右两跨布置活荷载、然后隔跨布置、4》求某支座的最大剪力时、应在该支座左右两跨布置活荷载、然后隔跨布置、18.砌体所用砂浆的基本要求
1》砂浆应符合砌体强度及耐久性要求。
2》砂浆的可塑性应保证在砌筑的时候很容易而且较均匀的铺开、提高砌体的砌体的强度及施工效率、3》砂浆具有足够的保水性、19. 砌体的受压应力状态?或者 为什么砌体抗压强度低于砌块?
1》由于砖本身的形状不完全规则、平整,灰缝的厚度和密实性不均匀、使得单块砖在砌体内并不是均匀受压,而是处于受弯和受剪状态、2》砌体横向变形时、砖与砂浆存在交互作用、3》弹性地基梁的作用、4》竖向灰缝的应力集中、20. 影响砌体结构抗压强度的因素
1》砌块和砂浆的强度等级2》砌块的尺寸和形状3》砂浆的流动性、保水性、及弹性模量的影响4》砌筑质量和灰缝的厚度
21.内力组合注意事项:
1每次内力组合时,都必须考虑恒荷载产生的内力。
2每次内力组合时,只能以一种内力(如M
可变荷载的取舍,max或Nmax或N并求得与其相应的其余两种内min)为目标老决定力。
3在吊车竖向荷载中,同一柱的同一侧牛腿上有Dmax或D
min作用,两者只能选择一种参加组合。4吊车横向水平荷载T
内的两个柱子上,向左或向右,组合时只能选取max同时作用在同一跨
其中一个方向。5在同一跨内D
max和D与TD
max不一定同
时发生,故组合时,不一定要组合T
max或Dmin产生的内力
Nmax产生的内力。
6当以为在风荷载及吊车荷载作用下,轴力N为零,虽max
或N为目标进行内力组合时,因
然将其组合并不改变组合目标,但可使弯矩M值增大或减小,故要取相应可能产生的最大正弯矩或最大负弯矩的内力项。
7风荷载有向左,向右吹两种情况,只能选择一种风向参加组合。
8由于多台吊车同事满载的可能性很小,所以那个多台吊车参与组合时,吊车竖向荷载和水平荷载作用下的内力应乘以表3-11规定的荷载折减系数。
22.现浇楼盖形式:单向板肋梁楼盖。双向板肋梁楼盖,无梁楼盖,密肋楼盖,井式楼盖。23.单向板肋梁楼盖平面布置方案:(1)主梁沿横向2)主梁沿纵向3)只布置次梁
24.单向板计算跨度:1)弹性:支座间距离2)塑性:净跨
25.采用折算荷载以考虑。支座的转动约束作用
26.影响塑性铰转动能力的因素:主要为钢筋种类,受拉纵筋配筋率以及混凝土的极限压缩变形
27.楼梯类型:梁式楼梯,板式楼梯,折板悬挑式和螺旋式楼梯
28.整体式楼梯:为了防止板面出现裂缝,应在斜板上部布置适量的附加钢筋伸出支座长度为L/429.单厂的支撑作用n
:1)保证厂房结构构件的稳定和日常工作2)增强厂房的整体稳定和空间刚度3)传递水平荷载给主要承重构件。30.柱间支撑包括:上柱柱间支撑一般设在伸缩区段两端与屋盖横向水平支撑相对应的柱间以及伸缩缝区段中央或邻近中央的柱间。下柱柱间支撑设在伸缩缝区段中部与上柱柱间支撑相应的位置。
31.屋面板采用三点焊接,形成水平刚度较大的屋盖结构
32.等高排架:是指各柱的柱顶标高相等,或虽柱顶标高不等,但柱顶由倾斜的横梁相连的排架。
33.厂房的整体空间作用:排架与排架,排架与山墙之间的相互制约作用。其作用程度主要取决于屋盖的水平刚度,荷载类型,山墙刚度和间距等吊车荷载作用下厂房的内力分析,需考虑其整体空间作用。1.塑性铰:适筋梁(或柱,当主要是梁)受拉纵筋屈服后,截面可以有较大转角,形成类似于
铰一样的效果。称作塑性铰。
2.塑性铰的特点:1)塑性铰实际上不是集中于一个截面,而是具有一定长度的塑性变形区域,为了简化分析,可认为塑性铰是一个截面。2)塑性铰能承受弯矩,等于截面屈服弯矩,作为理想弹塑性考虑,3)对于单筋受弯构件,塑性铰只能沿弯矩作用方向,绕不断上升的中和轴单向转动,相反方向则不能转动4)塑性铰的转动能力受到配筋率等的限制,与理想铰相比,可
转动的转角值较小。
3.弯矩调幅法进行结构承载能力极限状态计算时,须遵循的规定:1)受力钢筋宜采用HPB235,HRB335,HRB400,RRB400级热轧钢筋;混凝土强度等级宜在C20—C40范围内使用。2)截面的弯矩调幅系数一般不宜超过0.25。3)弯矩调整后的梁端截面受压区高度不应超过0.25,也不宜小于0.10。4)调整后的结构内力必须满足静力平衡条件。5)为了防止内力重分布前发生剪切破坏,在可能产生塑性铰的区段适当增加箍筋数量。6)按弯矩调幅法设计的结构,必须满足正常使用阶段变形及裂缝宽度的要求,在使用阶段不应出现塑性铰。4.厂房整体空间作用的程度主要取决于屋盖的水平刚度,荷载类型,山墙刚度和间距。5.什么情况下设缝,方式有哪些?
变形缝定义
沉降缝、伸缩缝和防震缝统称为变形缝。通常沉降缝、伸缩缝和防震缝被用作将房屋分成若干个独立部分,从而消除沉降差、温度和收缩应力以及体型复杂对结构带来的危害。
沉降缝
沉降缝是将该不同部分的结构从顶到基础整个断开,使各部分自由沉降,以避免由于沉降差引起的附加应力对结构的危害。在下列情况下,宜考虑设置沉降缝:
⑴ 建筑主体结构高度悬殊,重量差别过大;⑵ 地基不均匀;⑶ 同一建筑结构不同的单元采用不同基础形式;⑷ 上部结构采用不同的结构形式或结构体系的交接处。
.伸缩缝 伸缩缝即温度缝,是在建筑物的平面尺寸较大时,为释放结构中由于温度变化和混凝土干缩而产生的内力而设置的。设置伸缩缝的方法,应从基础顶面开始,将两个温度区段的上部结构构件完全分开,并留有一定的宽度,使上部结构在温度变化时,水平方向可以自由的发生变形!
防震缝 为了避免震害,可采用设置防震缝的办法,将平面和体型复杂的高层建筑,分成若干个比较规则、整齐和均匀的独立结构单元。在下列情况下,宜设防震缝:⑴ 当建筑平面突出部分较长,而又未采取有效措施时; ⑵ 房屋有较大错层时;⑶ 房屋各部分结构刚度或荷载相关悬殊时;⑷ 地基不均匀,各部分沉降相差过大时.6.影响墙柱高厚比的因素?
1.)砂浆强度等级2)砌体截面刚度3)砌体类型4)构件重要性和房屋使用情况5)构造柱间距及截面6)横墙间距7)支撑条件 7.水泥砂浆与混合砂浆的区别?
1)混合砂浆的可塑性要比水泥砂浆的可塑性好
2)水泥砂浆的流动性较差所以同一强度等级的混合砂浆砌筑的砌体强度要比想要纯水泥的砌体高
8. 雨蓬的作用和破坏类型
1)作用:支撑雨蓬板和兼作过梁2)破坏类型:雨篷板在支撑处截面的受弯破坏 雨篷梁受弯剪扭作用发生破坏整体倾覆破坏
9.牛腿柱的破坏形态:弯压破坏斜压破坏 剪切破坏10.为了避免发生冲切破坏基础应该具有足够的高度,使角椎体冲切面以外由地面土净反力所产生的冲切力不应大于冲切面上混凝土所能够承受的冲切力
11.砂浆的三性:耐久性可塑性保水性 12.结构的可靠度: 安全性 适用性 和耐久性
13.砌体局部受压分几种破坏形态1)因纵裂缝发展而引起的破坏2)劈裂破坏3)与垫板直接接触砌体局部破坏
14.当主梁的负钢筋为单排时h0=h-(50---60)当为双排时取h0=h-(70----80)15.为了防止局部应力产生的主拉应力在梁部产生斜裂缝,应设置附加吊筋和箍筋
16.屋盖结构分为有檩体系和无檩体系17. 活荷载不利的布置情况?
1》求某跨中最大正弯矩时、除必须在该跨布置活荷载外、每个一跨也应布置活荷载、2》求某跨中最小弯矩时(或负弯矩)、该跨不布置活荷载、而在左右跨布置活荷载、然后隔跨布置、3》求某支座截面最大负弯矩时、应在该支座左右两跨布置活荷载、然后隔跨布置、4》求某支座的最大剪力时、应在该支座左右两跨布置活荷载、然后隔跨布置、18.砌体所用砂浆的基本要求
1》砂浆应符合砌体强度及耐久性要求。
2》砂浆的可塑性应保证在砌筑的时候很容易而且较均匀的铺开、提高砌体的砌体的强度及施工效率、3》砂浆具有足够的保水性、19. 砌体的受压应力状态?或者 为什么砌体抗压强度低于砌块?
1》由于砖本身的形状不完全规则、平整,灰缝的厚度和密实性不均匀、使得单块砖在砌体内并不是均匀受压,而是处于受弯和受剪状态、2》砌体横向变形时、砖与砂浆存在交互作用、3》弹性地基梁的作用、4》竖向灰缝的应力集中、20. 影响砌体结构抗压强度的因素
1》砌块和砂浆的强度等级2》砌块的尺寸和形状3》砂浆的流动性、保水性、及弹性模量的影响4》砌筑质量和灰缝的厚度
21.内力组合注意事项:
1每次内力组合时,都必须考虑恒荷载产生的内力。
2每次内力组合时,只能以一种内力(如M
可变荷载的取舍,max或Nmax或N并求得与其相应的其余两种内min)为目标老决定力。
3在吊车竖向荷载中,同一柱的同一侧牛腿上有Dmax或D
min作用,两者只能选择一种参加组合。4吊车横向水平荷载T
内的两个柱子上,向左或向右,组合时只能选取max同时作用在同一跨
其中一个方向。5在同一跨内D
max和D与TD
max不一定同
时发生,故组合时,不一定要组合T
max或Dmin产生的内力
Nmax产生的内力。
6当以为在风荷载及吊车荷载作用下,轴力N为零,虽max
或N为目标进行内力组合时,因
然将其组合并不改变组合目标,但可使弯矩M值增大或减小,故要取相应可能产生的最大正弯矩或最大负弯矩的内力项。
7风荷载有向左,向右吹两种情况,只能选择一种风向参加组合。
8由于多台吊车同事满载的可能性很小,所以那个多台吊车参与组合时,吊车竖向荷载和水平荷载作用下的内力应乘以表3-11规定的荷载折减系数。
22.现浇楼盖形式:单向板肋梁楼盖。双向板肋梁楼盖,无梁楼盖,密肋楼盖,井式楼盖。23.单向板肋梁楼盖平面布置方案:(1)主梁沿横向2)主梁沿纵向3)只布置次梁
24.单向板计算跨度:1)弹性:支座间距离2)塑性:净跨
25.采用折算荷载以考虑。支座的转动约束作用
26.影响塑性铰转动能力的因素:主要为钢筋种类,受拉纵筋配筋率以及混凝土的极限压缩变形
27.楼梯类型:梁式楼梯,板式楼梯,折板悬挑式和螺旋式楼梯
28.整体式楼梯:为了防止板面出现裂缝,应在斜板上部布置适量的附加钢筋伸出支座长度为L/429.单厂的支撑作用n
:1)保证厂房结构构件的稳定和日常工作2)增强厂房的整体稳定和空间刚度3)传递水平荷载给主要承重构件。30.柱间支撑包括:上柱柱间支撑一般设在伸缩区段两端与屋盖横向水平支撑相对应的柱间以及伸缩缝区段中央或邻近中央的柱间。下柱柱间支撑设在伸缩缝区段中部与上柱柱间支撑相应的位置。
31.屋面板采用三点焊接,形成水平刚度较大的屋盖结构
32.等高排架:是指各柱的柱顶标高相等,或虽柱顶标高不等,但柱顶由倾斜的横梁相连的排架。
33.厂房的整体空间作用:排架与排架,排架与山墙之间的相互制约作用。其作用程度主要取决于屋盖的水平刚度,荷载类型,山墙刚度和间距等吊车荷载作用下厂房的内力分析,需考虑其整体空间作用。
第四篇:材料结构与性能试题-答案
材料结构与性能试题
1、高分子结构特点:包括近程结构和远程结构。
近程包括原子种类和排列、结构单元链接方式、支化与交联、序列结构和构型。
原子种类和排列:碳链高分子、杂链高分子、元素有机高分子、梯形和双螺旋形高分子、端基。
结构单元链接方式:是指结构单元在高分子链中的联结方式,如头—尾、头—头、尾—尾等。支化与交联:支化破坏了分子的规整性,故结晶度大大降低。交联是指高分子链之间通过支链连接成一个空间三维网状结构。
序列结构:以A、B两种单体单元所构成的共聚物为例,按连接方式可分为:交替共聚物、无规共聚物、嵌段共聚物、接枝共聚物。
构型:指分子中由化学键所固定的原子在空间的几何排列。
远程结构包括高分子链的大小和形态。
高分子链的大小(质量)包括相对分子质量(分子量)和相对分子质量分布(分子量分布)。高分子链的形态(构象):由于单键内旋转而产生的分子在空间的不同形态。
工程塑料ABS:由丙稀腈,丁二烯和苯乙烯的三元接枝共聚物,因此兼具三种组分的特性:质硬、耐腐蚀、提高制品的拉伸强度和硬度。
SBS嵌段共聚物:由阴离子聚合法制得的苯乙烯与丁二烯的共聚物。聚丁二烯(PB)常温下是橡胶,聚苯乙烯(PS)则是硬性塑料,二者不相容,因此是两相结构。PB相形成连续的橡胶相,PS则形成微区分散于树脂中对PB起交联作用.丁苯橡胶SBR:是由苯乙烯与丁二烯在BPO或氧化还原引发剂作用下,按照自由基聚合机理得到的无规共聚物。
2、答:非晶态聚合物典型的热--机械曲线如下图,存在两个斜率突变区,这两个突变区把热-机械曲线分为三个区域,分别对应于三种不同的力学状态,三种状态的性能与分子运动特征各有不同。
III II 形变I
在区域I,温度低,链段运动被冻结,只有侧基、链节、链长、键角等的局部运动,因此聚合物在外力作用下的形变小,具有胡克弹性行为:形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻 温度 璃相似,称为玻璃态。
随着温度的升高,链段运动逐渐“解冻”,形变逐渐增大,当温度升高到某一程度时,链段运动得以充分发展,形变发生突变,进入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复。这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态。
由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转变的温度称为玻璃化转变温度(glass temperature),以Tg表示。
当温度升到足够高时,在外力作用下,由于链段运动剧烈,导致整个分子链质量中心发生相对位移,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态。高弹态开始向粘流态转变的温度称为粘流温度,以Tf表示,其间的形变突变区域称为粘弹态转变区。分子量越大,Tf越高。交联聚合物由于分子链间有化学键连接,不能发生相对位移,不出现粘流态。
因此玻璃态、高弹态和粘流态称为无定形聚合物的力学三态。
3、答:高弹性的特点:
①弹性模量小,比其它固体物质小得多,如:钢:20000MPa(2×10);(1公斤/m㎡=9.807MPa),PE: 200MPa 结晶物; PS:2500MPa;橡胶: 0.2-8MPa.②形变量大。可达1000%,一般在500%左右,而普通金属材料的形变量<1%。③弹性模量随温度上升而增大,温度升高,链段运动加剧,回缩力增大,抵抗变形的能力升高。
④高弹形变有时间依赖性——力学松弛特性,高弹形变时分子运动需要时间 ⑤形变过程有明显的热效应,橡胶:拉伸——放热;回缩——吸热
高弹性的本质:高弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复卷曲状态,因而形变可逆。
高弹性的热力学分析: ⑴高弹形变的热力学方程
外力下发生高弹形变,除去外力后又可恢复原状,即形变是可逆的,因此可用热力学第一定律和第二定律进行分析。对轻度交联橡胶在等温(dT=0)下拉伸。物理意义:外力作用在橡胶上使橡胶的内能随伸长变化、使橡胶的熵变随伸长变化。
⑵熵弹性的分析。橡胶拉伸时,内能几乎不变,主要引起熵变,因此称高弹性为熵弹性。热力学分析得到的一条重要的结论:弹性力主要来自熵的贡献,故称橡胶弹性——熵弹性。
⑶交联橡胶的统计理论。橡胶不交联,几乎没有使用价值,因此研究交联橡胶的高弹形变具有重要的实际意义。统计理论讨论的是橡胶弹性问题的核心——形变过程中突出的熵效应,而忽略内能的贡献。
4、答:⑴室温下介电常数氯丁橡胶几乎是聚氯乙烯的3倍,因此室温下氯丁橡胶的介电常数大。⑵这些主链含极性基团或极性基团与主链硬链接的聚合物,当温度提高到玻璃化温度Tg以上时,其介电常数将大幅度地升高,聚氯乙烯的介电常数将从3.5增加到15,因此PVC的介电常数会增大。
5、答:⑴小尺寸效应:随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。当粒子的尺度与光波波长、德波罗意波长及超导态的相干长度或透射深度等物理特性尺寸相当或更小时晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等均呈现新的尺寸效应。
对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。①特殊的光学性质②特殊的热学性质③特殊的磁学性质④特殊的力学性质。
⑵表面效应:球状颗粒的表面积与直径的平方成正比,体积与直径的立方成正比,故其比表面积与直径成反比。对半径为r的球状超微颗粒而言,设原子直径为a,则表面原子所占的百分比例大体上为a/r。对于普通物质,a<<r,表面原子所占比例很小,其呈现的性质对整个物质的性质没多大影响。而对于纳米颗粒,不能忽视表面性质。在更一般的情况下,纳米颗粒不可能是理想的球形,表面原子的影响就会更大,这就是人们所称的表面效应。
⑶量子尺寸效应(久保效应):当粒子的尺寸降到一定值时金属费米能级附近的电子能级由准连续变为分立(离散)能级的现象、纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级和能隙变宽现象均称为量子尺寸效应。
⑷宏观量子隧道效应:微观粒子具有粒子性又具有波动性,因此具有贯穿势垒的能力,称之为隧道效应。近年来科学家们发现,一些宏观量如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有隧道效应,它们可以贯穿宏观系统的势垒而产生变化,故称为宏观量子隧道效应。
6、陶瓷材料加工主要分粉体合成、成型和烧结三步。
制备粉体的方法主要有液相法、固相法和气相法三种。液相法的缺点是:存在硬团聚、粒径大小不均匀、纯度低以及性能不稳定。固相法的缺点是:反应只在相界面进行,随后扩散过程困难;难得到纯相体系;反应容器污染容器。
成型方法分干法成型、塑性成型和料浆成型。干法又分为干压和等静压成型。干压的缺点是:各向异性;不适于尺寸大、形状复杂制品的设计;设备、模具费用较高。等静压成型缺点是:工艺效率较低,设备昂贵。先进陶瓷塑性成型方法主要有注射成型和挤出成型两种。注射成型缺点是:生产周期长、金属模具设计困难、费用昂贵等。挤出成型缺点是:物料强度低、容易变形;表面凹坑和起泡;开裂及内部裂纹;模具制造成本高;导致烧结收缩大。料浆成型主要分为注浆成型和流延成型两种。注浆成型缺点是:成型形状粗糙;注浆时间较长,劳动强度大;不易实现自动化;缺陷多,外观尺寸精度低。流延成型缺点是:有机溶剂具有一定的毒性,使生产条件恶化并造成环境污染;生产成本较高。
烧结方法主要有无压烧结、热压烧结、热等静压烧结、微波烧结、SPS和反应烧结。热压烧结缺点是:热压炉非常昂贵,而且难以实现连续化大批量生产。微波烧结的缺点是:设备昂贵,需要专门设计;难于维持某个精确温度;有时会与不希望的杂质反应或与绝热层相污染;微波透明型材料很难被加热,不良热导体内部会形成大的温度梯度导致非均匀加热。SPS和热等静压烧结的缺点都是成本太高。反应烧结的缺点是:工艺过程复杂;成本高;素坯易开裂。
7、答:高分子不是由单一分子量的化合物所组成,即使是一种“纯粹”的高分子,也是由化学组成相同、分子量不等、结构不同的同系聚合物的混合物所组成。这种高分子的分子量不均一(即分子量大小不
一、参差不齐)的特性,就称为分子量的多分散性。
高分子分子量多分散性的表示方法:
①以分子量分布指数表示,即质均分子量与数均分子量的比值,Mw / Mn
Mw / Mn 分子量分布情况 1 均一分布
接近1(1.5-2)分布较窄
远离 1(20-50)分布较宽 ②以分子量分布曲线表示。以被分离的各级分的质量分率对平均分子量作图,得到分子量质量分率分布曲线。可通过曲线形状,直观判断分子量分布的宽窄。绿线:分子量分布较宽,即分散程度大;红线:分子量分布较窄,即分散程度小。影响:分子量分布是影响聚合物性能的因素之一,分子量过高的部分使聚合物强度增加,但加工成型时塑化困难;低分子量部分使聚合物强度降低,但易于加工;不同用途的聚合物应有其合适的分子量分布:合成纤维是分子量分布易窄,而塑料薄膜和橡胶则分子量分布较宽。
第五篇:水泥与混凝土的研究
水泥与混凝土的研究
一种模拟钢纤维钢筋自密实混凝土抗拉行为的完整方法 摘要:目前的工作是继续进行试验和数字的研究。此研究是为了推广一种能够模仿钢纤维钢筋自密实混凝土的抗拉行为的数显工具而进行的。钢纤维钢筋自密实混凝土被视为一种两相材料。其中,自密实混凝土基质的非线性材料行为由一种三维的涂有油漆的一种带裂痕的模具而模拟,而钢纤维则被认为是一种嵌入的短的缆索,并以一种蒙特卡罗的方式分布于自密实混凝土基质中。钢纤维中的内应力是由源于实行的纤维拔出试验的加压与卸载原理来获得的。这种数显方案的效果是通过所做的模拟抗拉行为的实验来评定的。这种数字模拟方法显示出与试验结果很好的吻合。
关键词:钢纤维钢筋自密实混凝土
微观力学
抗拉性能
有限元分析
正文
1、介绍
在钢纤维钢筋自密实混凝土中,SFRC,钢纤维和基质是通过一个微弱的界面联接在一起的,此界面行为对于理解和精确模拟SFRC的一种建模的钢纤维加强拉伸性能综合办法自密实混凝土
V.M.C.F.库尼亚,丙,J.O.A.O.巴罗斯,丙,和J.萨纳-克鲁兹,ç
一ISISE,工程部,科学与技术学院,对重点税源监控操作系统-蒙特斯é奥拓杜罗,维拉真实,葡萄牙UTAD大学
b结构分部,DEP的保护。土木工程,米尼奥,Guimarães的大学,葡萄牙 ç ISISE,可持续性和结构工程学会创新
摘要
目前的工作恢复进行的实验和数值研究为一个数值模拟工具钢纤维拉伸行为能力的发展而加强自密实混凝土(SFRSCC)。SFRSCC假定为两相材料,其中鳞状细胞癌基质非线性材料的行为是由三维弥散裂缝模型为蓝本,并假定钢纤维作为嵌入在SCC的矩阵根据蒙特卡罗方法分布短电缆。在钢纤维的内力取自执行的纤维拉拔试验得出的应力滑法。这一战略的表现被评为数值模拟拉伸试验所进行。数值模拟表明与实验结果相吻合。关键词:钢纤维自密实混凝土;细观力学(c)条;拉伸属性(C),有限元分析
(三)