改善水泥与混凝土外加剂相容性的技术措施

时间:2019-05-14 16:37:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《改善水泥与混凝土外加剂相容性的技术措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《改善水泥与混凝土外加剂相容性的技术措施》。

第一篇:改善水泥与混凝土外加剂相容性的技术措施

改善水泥与混凝土外加剂相容性的技术措施

随着预拌混凝土的飞速发展,混凝土设计除了虑混凝土强度、耐久性之外,还要注意其施工性;改善施工性能的主要措施是掺加外加剂,同时还在水泥与外加剂是否相适应的问题。水泥与外加不相适应主要表现在:混凝土坍落度经时损失大,凝土凝结过快,甚至造成混凝土结构出现裂缝等况,影响混凝土工作性能。外加剂作为混凝土的组部分,所占的比例虽然很小,但是对混凝土的性能影响很大,它能够明显提高混凝土的坍落度,调节结时间,从而很好改善混凝土施工性能,节约生产本、提高经济效益。水泥与混凝土外加剂相容性不,可能是外加剂本身质量问题,也可能是水泥品质原因及施工时使用方法不当造成的。采取相应的术措施,改善水泥与混凝土外加剂相容性,也是水企业所要面对的问题,因为它关系到企业市场占率和企业经济效益。

1.存在的问题

2007年10月16日山东临沂市某搅拌站使用我司生产PO42.5级水泥预拌混凝土,用户反应使用批次水泥配制混凝土经时流动度损失大,不利于凝土的运输和工地施工。虽然搅拌站采取相应技措施,如增加外加剂掺量,适当提高水灰比等措,但效果不理想,特别是10月18日预拌混凝土到达施工现场施工时发生急凝现象,导致工程被迫中断施工,不得不拆除已施工的路面重新施工,造成相当大的经济损失,同时也影响公司和搅拌站的声誉。好在发现问题及时,该搅拌站共进该批次水泥3000t,只用去500t左右,损失相对较小。双方共同取样进行全套水泥物理检验,但检测结果各项指标均符合GB175-1999标准,即水泥质量没有问题。经进一步了解发现,搅拌站为降低生产成本,刚刚更换了外加剂生产厂家,很有可能是水泥与混凝土外加剂不相适应造成的。为验证这一判断,我们和搅拌站一起使用原来和现在的使用外加剂做水泥净浆流动度对比试验,两种外加剂掺量均按水泥质量的1.5%,原来使用的外加剂水泥净浆初始流动度为2110mm,600min后水泥净浆流动度为1740mm,经时流动度损失为370mm;而现在正使用的外加剂水泥净浆初始流动度为2130 mm,600min后水泥净浆流动度为1490mm,经时流动度损失为640mm,试验结果发现 正在使用的外加剂经时流动度损失大,表明水泥与混凝土外加剂相容性差。

2原因分析及采取技术措施

众所周知,水泥水化反应需要小于水泥质量25%的水量,但水泥遇到水会形成絮状结构将水包裹在里面,因此为了使水泥水化更完全和提高混凝土施工性能,需要加入更多的水。外加剂的加入能够在水泥颗粒表面定向性吸附,使水泥颗粒带相同电荷相互排斥而分离开来,从而释放出水泥絮状结构包裹的水分,使更多的水参与水化反应,提高其施工性能。水泥颗粒对外加剂吸附性的大小及外加剂耗量的大小,均能反应出水泥与外加剂适容性的好坏。外加剂与水泥不相适应的问题主要表现在外加剂对水泥工作性能改善不明显。这既有外加剂本身质量问题,也与水泥矿物组成、煅烧状况、石膏掺量、水泥细度和混合材种类、石膏品种和掺量、水泥粉磨温度、水泥新鲜度有关。虽然水泥物性检验均合格,但发生此次凝结时间异常也有水泥因素在里面。因查对原始生产控制记录和化验台帐发现,这批水泥的出磨水泥温度过高,连续18 h出磨水泥温度超过130℃,因此导致二水石膏绝大部分转化为无水石膏,无水石膏的溶解速度最慢,尽管水泥中有石膏提供足够的SO3含量,但仍不足以抑制C3A的早期水化发生急凝现象,导致水泥浆的流动性能变差。

2.1调整熟料矿物组成

水泥熟料四种主要矿物C3S,C2S,C3A,C4AF,它们对外加剂的吸附能力是不一样的,其吸附顺序为:C3A>C4AF>C3S>C2S。其原因是:铝酸盐矿物在水化初期其电动势是正值,能吸附较多的阴离子型的外加剂;而硅酸盐矿物(C3S和C2S)在水泥水化初期其电动势为负值,吸附阴离子型的外加剂的能力较弱。为提高水泥与外加剂的相容性,应适当提高熟料矿物中硅酸盐矿物(C3S+C2S)的含量,降低铝酸盐矿物的含量,特别是C3A的含量。我公司为提高熟料早期强度,曾经提高过C3A含量[即w(C3A)由8.1%提高到9.9%]。为此对熟料矿物进行重新调整,熟料三率值由KH=0.89±0.02,SM=2.65±0.1,IM=1.60±0.1调整

为:KH=0.91±0.02,SM=2.70±0.1,IM=1.50±0.1,且控制熟料中w(Al2O3)=4.8%~5.0%,w(Fe2O3)=3.2%~3.4%,使熟料中w(C3A)值控制在8%以下。

2.2石膏的品种和掺量

石膏作为水泥的缓凝剂,遇水后溶解为Ca2+、SO42-,如果在水泥水化初期能抑制C3A水化速率,水泥和混凝土就能得到所需要的工作性能,因此水泥中硫酸盐的数量和溶解度至关重要。但不同品质,不同形态的石膏溶解度和溶解速度差异很大,它们对水泥的缓凝作用不同。二水石膏应用的最多,但它的溶解度和溶解速度不是最大的,因此在生产中要控制好出磨水泥温度。水泥磨内温度偏低时产生半水石膏少,不能抑制C3A的早期水化,导致急凝,与外加剂相容性变差;水泥磨内温度偏高时几乎全部二水石膏都转化为硬石膏,易导致水泥假凝;水泥磨内温度适当高,使部分二水石膏转化为溶解速度大的半水石膏,能很好地抑制C3A的早期水化,与外加剂适应性好。同时水泥中石膏的掺量对外加剂也有影响,在水泥凝结时间控制范围内,适当提高水泥中SO3的含量,有利于改善水泥与外加剂的相容性,但适宜的SO3含量应根据水泥中C3A的含量、碱含量、水泥比表面积及生产水泥的品种来确定。通过以上分析可知,由于熟料中C3A量上升,而生产中水泥SO3控制指标并没有及时做出相应提高,导致水泥凝结时间缩短;再加上粉磨温度过高,二水石膏转化为溶解速度小的无水石膏,导致水泥凝结时间不正常。为此在调整熟料三率值的基础上,通过实验确定w(SO3)控制指标由2.2%±0.2%调整为2.5%±0.2%,同时对磨机筒体采用淋水的方法,使出磨水泥温度控制在120~130℃。

2.3水泥细度及颗粒级配

在外加剂掺量相同的条件下水泥颗粒越细,其比表面积越大,外加剂对其的塑化效果要差些。因为比表面积越大时,水泥与水接触的面积越大,水泥颗粒表面形成水膜所需水量就大,在相同水灰比的情况下,水泥颗粒之间的自由水就相应减少,水泥浆体流动性变差;同时水泥比表面积越大,水泥早期水化速度越快,絮状水化产物形成越快,水泥浆体流动性变差,同样导致水泥与外加剂相容性变差。水泥颗粒级配也对外加剂有影响,水泥颗粒平均粒径过小时,水泥中的细粉较多,比表面积大,与外加剂相容性差;而水泥颗粒平均粒径过大时,水泥净浆泌水性增大,同样与外加剂相容性变差。公司为提高水泥早期强度,采取提高水泥比表面积的技术措施,这样不但因水泥比表面积过大,产生水泥与外加剂不相适应的问题;而且在研磨比表面积过大的水泥时,研磨温度会上升,导致更多的二水石膏转解成无水石膏,进一步导致水泥与外加剂相容性变差。为此调整出磨水泥比表面积控制指标由(370±10)m2/kg降为(350±10)m2/kg。

2.4延长水泥出库时间

刚磨制的水泥比较干燥,温度高,正电性较强,与水化合快,对外加剂吸附大,降低了外加剂对其的塑化效果,与外加剂相容性差。10月份是水泥销售黄金季节,水泥供不应求,库存量少。为此在保证发货量的基础上,增加水泥库存量,搞好均化搭配,相应延长水泥出库时间,降低水泥温度,当水泥库存小于10m时,禁止水泥出库。

2.5调整混合材品种

水泥中混合材的品种、颗粒形貌及掺量对外加剂均有影响。根据试验和实践表明,水泥中混合材对外加剂相容性由差到好的顺序为:煤矸石<粉煤灰<矿渣。这是因为火山灰质混合材具有较大的内表面积,对外加剂有吸附性;另外就是不同品质的粉煤灰对外加剂的相容性相差也较大,优质粉煤灰、超细粉煤灰相容性好,粗粉煤灰和含碳量大的粉煤灰对外加剂相容性差。粒化高炉矿渣本身具有胶凝性和火山灰性,磨细的矿渣粉,还具有填充效果,有利于提高混凝土的流动性,与外加剂相容性好;但如果矿渣粉较粗,水泥易泌水,与外加剂相容性差。为此在确保水泥质量不变的情况下,对水泥配比进行了调整。水泥原质量配比为:熟料∶石膏∶矿渣∶炉渣∶粉煤灰∶石灰石=76∶4∶6∶8∶3∶3,调整后为熟料∶石膏∶矿渣∶炉渣∶粉煤灰∶石灰石=76∶4∶9∶4∶3∶4。经检验水泥各项技术指标均符合控制要求。

3结语

(1)生产实践表明,水泥与外加剂相容性的影响因素众多,很多因素之间既相互作用又相互依赖,几乎所有影响水泥与外加剂相容性的因素都与水泥的其他性能有关。

(2)采取以上技术措施后,公司所生产PO42.5级水泥与外加剂相容性进一步加强,得到了混凝土搅拌站的认可,不但使产品牢牢地占稳市场,增强了市场竞争力,而且提高企业的经济效益。

第二篇:混凝土外加剂的作用机理与水泥适应性及其影响因素和改善措施

混凝土外加剂的作用机理与水泥适应性及其影响因素和改善措施

宁靖

(深圳市福盈混凝土实业有限公司,广东 深圳20151026)

摘要:简要论述了混凝土外加剂与水泥的适应性及其影响因素和改善措施,可供混凝土试验员、混凝土生产与施工人员,以及工程管理、监理人员阅读参考。

关键词:外加剂;作用机理;水泥;适应性;分析;改善措施

一、外加剂的作用机理

各种外加剂尽管成分不同,但均为表面活性剂,所以其减水作用机理相似。表面活性剂是具有显著改变(通常为降低)液体表面张力或二相间界面张力的物质,其分子由亲水基团和憎水基团二个部分组成。表面活性剂加入水溶液中后,其分子中的亲水基团指向溶液,憎水基团指向空气、固体或非极性液体并作定向排列,形成定向吸附膜而降低水的表面张力和二相间的界面张力,在液体中显示出表面活性作用。当水泥浆体中加入减水剂后,减水剂分子中的憎水基团定向吸附于水泥质点表面,亲水基团指向水溶液,在水泥颗粒表面形成单分子或多分子吸附膜,在电斥力作用下,使原来水泥加水后由于水泥颗粒间分子凝聚力等多种因素而形成的絮凝结构(图4—28)打开,把被束缚在絮凝结构中的游离水释放出来,这就是由减水剂分子吸附产生的分散作用。水泥加水后,水泥颗粒被水湿润,湿润愈好,在具有同样工作性能的情况下所需的拌和水量也就愈少,且水泥水化速度亦加快。当有表面活性剂存在时,降低了水的表面张力和水与水泥颗粒间的界面张力,这就使水泥颗粒易于湿润、利于水化。

同时,减水剂分子定向吸附于水泥颗粒表面,亲水基团指向水溶液,使水泥颗粒表面的溶剂化层增厚,增加了水泥颗粒间的滑动能力,又起了润滑作用[图4—29(a)、(b)]。若是引气型减水剂,则润滑作用更为明显。

二、外加剂的品种及作用

(1)减水剂:又称塑化剂或分散剂。拌和混凝土时加入适量的减水剂可使水泥颗粒分散均匀,同时将水泥颗粒包裹的水分释放出来,从而能明显减少混凝土用水量。减水剂的作用是在保持混凝土配合比不变的情况下,改善其工作性,或在保持工作性不变的情况下减少用水量,提高混凝土强度或在保持强度不变时减少水泥用量,节约水泥,降低成本。同时,加入减水剂后混凝土更为均匀密实,改善一系列物理化学性能,如抗渗性、抗冻性、抗侵蚀性等,提高了混凝土的耐久性。普通减水剂 water-reducing admixture,在混凝土坍落度基本相同的条件下,能减少拌合用水量的外加剂。

高效减水剂 superplasticizer,在混凝土坍落度基本相同的条件下,能大幅度减少拌合用水量的外加剂。

高性能减水剂high performance water reducer,比高效减水剂具有更高减水率、更好坍落度保持性能、较小干燥收缩,且具有一定引气性能的减水剂。

(2)缓凝剂:能延缓混凝土凝结硬化时间,便于施工,能使混凝土浆体水化速度减慢,延长水化放热过程,有利于大体积混凝土温度控制。缓凝剂会对混凝土l~3d早期强度有所降低,但对后期强度的正常发展并无影响。一般缓凝剂可使混凝土的初凝时间延长l~4h,但这对高温情况下大仓面混凝土施工是不够的。为了满足高温地区和高温季节大体积混凝土施工需要,国家“八五”科技攻关项目研究出了高温缓凝剂,这种缓凝剂能在气温为(35+2)℃、相对湿度为(60+5)%的条件下混凝土初凝时间为6~8h。

(3)早强剂:是指能加速混凝土早期强度发展的外加剂。主要作用机理是加速水泥水化速度,加速水化产物的早期结晶和沉淀。主要功能是缩短混凝土施工养护期,加快施工进度,提高模板的周转率。主要适用于有早强要求的混凝土工程及低温、负温施工混凝土、有防冻要求的混凝土、预制构件、蒸汽养护等等。(4)引气剂:是一种表面活性物质,它能使混凝土在搅拌过程中从大气中引入大量均匀封闭的小气泡,使混凝土中含有一定量的空气。好的引气剂能引入混凝土中的气泡达l0亿个之多,孔径多为0.05~0.2mm,一般为不连续的封闭球形,分布均匀,稳定性好,这样能显

著提高混凝土的抗冻性、耐久性同时还能改善混凝土和易性,特别是在人工骨料或天然砂颗粒较粗、级配较差以及在贫水泥混凝土中使用效果更好,改善混凝土的泌水和离析,减少混凝土渗透性,提高混凝土抗侵蚀能力。

(5)膨胀剂:是指能使混凝土产生一定体积膨胀的外加剂,掺入膨胀剂的目的是补偿混凝土

自身收缩、干缩和温度变形防止混凝土开裂,并提高混凝土的密实性和防水性能。目前建筑工程中膨胀剂的应用越来越多,如地下室底板和侧墙混凝土、钢管混凝土、超长结构混凝土、有防水要求的混凝土工程等等。

(6)泵送剂:能改善混凝土拌和物泵送性能的外加剂称为泵送剂,所谓泵送性,是指混凝土拌和物具有能顺利通过输送管道、不阻塞、不离析、料塑性良好的性能。泵送剂是硫化剂中的一种,它除了能大大提高拌和物流动性以外,还能在60~180min时间内保持其流动性,剩余坍落度应不小于原始的55%。此外,它不是缓凝剂,缓凝时间不宜超过120min(特殊情况除外)。

三、混凝土外加剂与水泥的适应性及其影响因素和改善措施 1 存在的问题

对水泥制品和混凝土的性能提出了新的要求,采用水泥、砂子、碎石和水4组分制作的常用混凝土已不能满足材料性能和施工性能要求。在混凝土、砂浆和净浆的制备过程中,掺人少量的(不超水泥用量的

5%)能对混凝土、砂浆或净浆改变性能的一种产品,称为混凝土外加剂。在混凝土中加入适量的外加剂,能提高混凝土质量,改善混凝土性能,减少混凝土用水量,节约水泥,降低成本,加快施工进度。随着技术的进步,外加剂已成为除水泥、粗细骨料、掺合料和水以外的第5种必备材料。掺外加剂是混凝土配合比优化设计和提高混凝土耐久性的一项重要措施。2.影响混凝土外加剂与水泥适应性的主要因素 2.1水泥矿物组成的影响

影响水泥适应性的主要是水泥矿物中的铝酸三钙(C3A)及硅酸三钙(C3S)的含量,试验分析水泥中C3A含量低而C3S含量高对外加剂适应好,而C3A含量越高,适应效果越差。2.2调凝剂的影响

2.2.1调凝剂(石膏)的形态 水泥常用调凝剂为石膏(硫酸钙),石膏又分为二水石膏(CaSO4 •2H2O)(又称生石膏),半水石膏(CaSO4•1/2H2O)(又称熟石膏或烧石膏),硬石膏(CaSO4)(又称无水石膏或天然石膏)。根据有关标准,三种石膏都可作水泥调凝剂使用,而其中硬石膏溶解性能较差,一些外加剂如糖钙、木钙等与硬石膏同用,不但不能促进石膏溶解,反而会降低硬石膏的溶解度,使水泥因缺少调凝成份而产生速凝等异常凝结。2.2.2石膏的细度

如石膏研磨细度不够,会影响石膏的溶解性,即使运用二水石膏也会产生速凝等现象。

2.2.3石膏的用量

在C3A含量偏高的水泥中,调凝剂仍按常规用量(3%~5%),无论选用何种石膏,混凝土凝结时间都会提前,这主要是水泥中C3A水化快,C3A含量增加,少量石膏不能满足它生成胶状钙矾石,从而影响了石膏的调凝效果。2.2.4石膏研磨温度

水泥厂为了缩短熟料冷却时间,经常将温度还较高的熟料与石膏同磨,二水石膏在150℃高温下会脱水成为半水石膏,温度再高至160℃以上,半水石膏还会成为溶解性较差的硬石膏影响水泥的适应效果。2.3碱含量的影响

(1)水泥中的碱主要来源于所用原材料,特别是石灰和粘土,当然这些碱相当一部分可以在水泥生产中挥发,但许多水泥厂为了节约能源,将挥发废气进行回收利用,这就使挥发的碱又沉淀下来,无形中使水泥含碱量增高。

(2)减水剂用于高碱水泥,减水率会急剧下降。试验表明,减水剂用于高碱水泥,混凝土增强效果下降,体积稳定性不好。

(3)缓凝剂的作用机理是能够吸附在水泥颗粒的表面,形成一层吸附膜,在一定时间内有效地阻止水泥水化,而大量的碱会破坏吸附膜,使水泥继续水化,失去了缓凝作用,如将缓凝剂用于有一定保塑要求的混凝土,则会加速坍落度损失,达不到保塑保坍效果。6水泥的存放时间及温度影响

水泥出磨存放时间较短的水泥称为“新鲜水泥”,由于水泥存放时间短,水泥温度较高,水泥水化速度极快,会造成石膏脱水,影响水泥的正常凝结,加之由于水泥在研磨过程中产生电荷颗粒之间相互吸附,影响了减水剂的分散作用,增大了混凝土坍落度损失率。事实上,出磨水泥的时间越短,水泥颗粒间吸附、凝聚的能力越强,因而致使外加剂的适应性变差.2.1外加剂自身的因素

外加剂的自身的原因主要有以下几个方面:(1)品种不同;(2)结构官能团的不同;(3)聚合度不同;(4)复配组分不同。

这些影响回通过不同的方式会影响与水泥的适应性。而不同厂家生产出来的外加剂也会有很多差异, 主要原因有:(1)生产制作工艺;(2)厂家制作过程的技术水平;(3)质量管理水平。因此,不同的厂家生产出来的产品必然有差异。

2.4水泥细度的影响

许多混凝土工程为了缩短工期,要求所用水泥有一定早强效果,而提高水泥细度是最有效的方法,水泥过细水化速度快,水化热高同时水泥比表面积的增加,更加降低了液相中残留外加剂溶度,增加了液体粘度,不能适应泵送,预拌混凝土要求。另外,过细水泥还会降低混凝土中的含气量,降低混凝土的抗渗、抗冻性能。

2.5掺合料的影响

根据国家标准,允许在水泥中掺入一定量的掺合料,常用掺合料有:粉煤灰、火山灰、煤矸石等,由于掺合料的性能不同,也会影响外加剂对水泥的适应性。

为掺煤矸石普通水泥与未用掺合料水泥应用外加剂后的不同测试结果。虽然应用同一种高效缓凝减水剂,掺量也相同,掺煤矸石水泥混凝土的减水率只有标准水泥的一半,即使外加剂掺量增加0.5%,掺煤矸石水泥的减水率也没有标准水泥高,煤矸石影响水泥效果的主要原因是煤矸石的比表面积大,吸附能力较强,外加剂掺入后,大部分被它吸附,而占较大比例的水泥粒子得不到外加剂的吸附分散,从而影响了减水效果。

2.6混凝土配合比的影响

(1)施工配合比虽然是设计问题,但它也会影响外加剂对水泥的适应性,如泵送混凝土适当提高砂率可提高混凝土可泵送性,但砂率过高也会影响混凝土的保塑性能,增加混凝土坍落度的经时损失率。

(2)实践证明,降低水灰比可以提高混凝土强度,而在较低水灰比条件下配制掺外加剂混凝土应有一最低用水量,这不但是保证混凝土有一定工作性,更重要的是保证水泥在水化时,石膏有足够的溶解用水,石膏在缺水时会大大影响溶解度,影响外加剂对水泥适应性。

2.7外加剂品种的影响

(1)外加剂中含钠盐过高对混凝土早期强度是有利的,但用于预拌混凝土中则会加快坍落度损失。

(2)有些引气剂引气量过大,且气泡性能不好会影响混凝土体积稳定性。(3)有一些膨胀剂与减水剂同掺,特别是和铝酸三钙含量高的水泥一起使用,会降低减水率增加坍落度损失,甚至会造成速凝。2.8搅拌时间和搅拌速度的影响

(1)混凝土的搅拌时间会影响混凝土中的含气量以及混凝土外加剂分散的匀质性,从而影响新拌混凝土的工作性。

(2)如果搅拌速度过快,水泥颗粒表面形成的双电层膜受到剪切应力的破坏,影响对水泥的适应性。外加剂与水泥适应性的改善措施

长期以来,混凝土工作者在提高减水剂与水泥的适应性,从而控制混凝土坍落度损失方面进行了大量的研究工作,提出了各种改善外加剂与水泥适应性,控制混凝土坍落度损失的方法。

3.1 新型高性能减水剂的开发应用

目前国内外广泛使用的高效减水剂主要为萘磺酸盐甲醛缩合物(萘系高效减水剂)和三聚氰胺磺酸盐甲醛缩合物(蜜胺树脂系高效减水剂),它们的减水率高,而且价格适中,但缺陷是与水泥适应性不太好,混凝土坍落度损失快。为了克服萘系高效减水剂和蜜胺树脂系高效减水剂的缺陷,国内外目前研究最多的是氨基磺酸盐系及聚羧酸盐系新型高效减水剂。这两种新型高效减水剂就可以很好地控制混凝土坍落度的损失。3.2 外加剂的复合使用

通过外加剂的复合使用,提高减水剂与水泥的适应性,从而控制混凝土的坍落度经时损失,这是目前普遍使用的一种简单而经济的方法。

①在生产减水剂时把高效减水剂与缓凝剂或缓凝减水剂复合使用,主要通过缓凝作用抑制水泥的早期水化反应,从而减小混凝土坍落度的经时损失;

②减水剂与引气剂复合使用,主要通过引入大量微小气泡,增大混凝土拌合物的流动

性,同时增大粘聚性,减小混凝土的离析泌水;

③减水剂与减水剂复合使用,通过“协同效应”和“超叠加效应”,提高减水剂与水

泥的适应性。事实上,复合使用减水剂控制混凝土坍落度经时损失,不应局限于高效减水剂与普通减水剂、缓凝剂以及引气剂的复合使用。在总掺量不变的情况下,复合使用高效减水剂也是提高高效减水剂与水泥的适应性,有效地控制混凝土坍落度经时损失的一种重要方法。高效减水剂的复合使用有以下两种情况:

(1)不同种类的高效减水剂,特别是具有不同种类极性基团分子结构的高效减水剂的复合使用。由于多种极性基团及多种分散作用力的共同作用,在总掺量不变的情况下,不但可以使复合高效减水剂的减水率得到提高,而且可能使复合高效减水剂与水泥的适应性得到显著改善。

(2)不同厂家生产的同种高效减水剂的复合使用。将不同厂家生产的同种高效减水剂复合使用,可能使复合高效减水剂具有更合适的平均分子量以及更合理的分子级配,因而,在总掺量不变的情况下,也可能使复合高效减水剂的减水率得到提高,可能使复合高效减水剂与水泥的适应性得到改善。3.3选择减水剂

(或泵送剂)的掺入方法减水剂(或泵送剂)的掺入方法对水泥净浆、砂浆及混凝土拌合物的流动性有明显的影响。先掺法和同掺法的流动性较小,滞水法的拌合物流动性较高,后掺法则能较长时间地保持拌合物的流动性。但是,当减水剂与水泥的适应性好,能有效地控制

坍落度损失,或减水剂掺量较大时,则掺入方法对拌合物流动性的影响差异减小。

减水剂(或泵送剂)的掺入方法对砂浆及混凝土的保水性也有明显影响,先掺法和同掺法时拌合物的保水性好,滞水法和后掺法的拌合物泌水性显著增加,甚至连拌合物的颜色也有所变化。滞水法和后掺法拌合物泌水后,其和易性变差,尤其是在掺量较高时浆体沉淀板结。泌出水的颜色也不同,同掺法水清,滞水法和后掺法的水混浊(即含有较多的减水剂及水泥颗粒)。在配合比完全相同的情况下,滞水法及后掺法对水泥有一定的缓凝作用,但其影响随着减水剂品种、水泥品种、减水剂与水泥的适应性以及减水剂的掺量不同而变化。3.4适当“增硫法” 在工程实践中,有时会遇到使用高浓萘系减水剂(Na2SO4含量低于5%)配制泵送剂,混凝土坍落度损失很快,而改用低浓萘系减水剂(Na2SO4含量15%左右)配制泵

送剂,混凝土坍落度损失会大大降低。出现这种现象,可能是因为水泥浆中“缺硫”,即水泥水化初期,水泥浆液相中溶解的SO42-离子浓度低,掺用低浓萘系减水剂后,可带入一定量Na2SO4,从而增加了水泥水化初期液相中SO42-离子浓度的缘故。

水泥中的“硫”指的是水泥水化初期抑制C3A迅速水化,从而调节水泥凝结时间的

SO42-离子,通常用SO3含量表示水泥中的“硫量”。SO3最主要来源于水泥粉磨时加入的石膏,同时熟料中由于原料及燃料的原因也带入一些硫酸盐,如K2SO4,Na2SO4以及外加剂中带入的硫酸盐。水泥中的SO3适宜含量与水泥熟料中C3A

含量、碱含量、水泥粉磨细度、混合材种类及掺量、石膏品种等因素有关。水泥中SO3

含量会影响减水剂与水泥的适应性。SO3抑制C3A的水化速度还与水泥浆中的W/C

有关,当W/C较小时,由于水泥浆中水量少,SO3(即SO42-离子)溶出量不足,而此时如果水泥中C3A含量较高,且水泥比表面积又大时,水泥水化速度加快,C3A

与石膏会争夺水分;若水泥中SO3含量较低,浆液中溶出SO42-离子不足,此时减水剂与水泥适应性会变差,混凝土坍落度损失加快,甚至出现急凝现象。如果确信坍落度损失快是由于水泥浆中“缺硫”引起的,可通过适当“增硫法”,即适当增加外加剂中硫酸盐含量的方法,提高减水剂与水泥的适应性,从而控制混凝土坍落度损失。3.5适当调整混凝土配合比法

混凝土拌合物初始坍落度值的大小对2h经时损失速度影响很大。通常初始坍落度值小,坍落度2h经时损失速度大;而随着初始坍落度值增大,特别是1h坍落度经时损失速度减小。因此,对于运程较远的商品泵送混凝土,如果出现坍落度损失过快,而通过调整外加剂配方及掺量的方法,又不能很好地解决问题,或者虽能解决问题,但成本太大,在这种情况下,则可能通过适当调整混凝土配合比(包括浆量多少、砂率大小等),在原坍落度设计值基础上,在充分保证硬化混凝土的各种性能的前提下,适当增大混凝土初始坍落度,也不失为一种解决工程中紧急事件的应急方法。

再小的个体,也有自己的品牌。更多资讯,请关注我们的微信公众平台:混凝土论坛及技术交流,QQ交流:465427504,QQ群 241904460

第三篇:混凝土外加剂总结报告

混凝土外加剂实验总结报告

实验目的

本次实验的目的主要是解决混凝土C40、C35P6、C35、C30 等等级的配比,对以前的配比进行改进,按照搅拌站的要求进行实验。其次主要是解决我公司外加剂掺入量过大的问题,要降低我们外加剂的掺入量,达到搅拌站的要求,满足施工要求,最后解决混凝土凝结时间比较长的问题。

实验时间

2014年12月3日——2014年12月5日

实验地点

大理市宾川县宾川玉牛劳务有限公司

实验仪器及用品

搅拌机、外加剂、混凝土用的水、公分石、机砂、粉煤灰、水泥、细石、电子秤 实验过程

1、做实验前的准备,提取公分石(公称粒径在5—25mm,压碎指数在10%-12%)、机砂(细度模数2.5-2.8mm)、粉煤灰(攀枝花)、水泥(大理宾川金鑫水泥,42.5)、细石(公称零数粒径在5-10mm)、外加剂。对搅拌机进行清洗。

2、预配C40等级的混凝土,根据我们计算的混凝土配比进行预拌,配比记录详见2014年12月3日宾川玉牛劳务。本次实验做15L的小样,分别称取公分石、机砂、粉煤灰、水泥、细石、外加剂。试配分析混凝土配比合理,预拌效果良好,包裹性好,流动性好,混凝土强度达到要求。可以做一定的调整。

3、预拌C35P6等级混凝土,根据我们计算的混凝土配比进行预拌,配比记录详见2014年12月4日宾川玉牛劳务。过程如上。混凝土流动性好,包裹性好,4、预拌C30等级混凝土,根据我们计算的混凝土配比进行预拌,配比记录详见2014年12月4日宾川玉牛劳务。过程如上。

5、预拌C35等级混凝土,根据我们计算的混凝土配比进行预拌,配比记录详见2014年12月4日宾川玉牛劳务。过程如上。实验记录及分析

实验记录详见2014年12月3日——2014年12月4日云南昆钢建材科技有限公司混凝土外加剂试配实验记录表。

实验结论

本次实验用时4天,做实验10组,为搅拌站基本解决了问题,混凝土强度还在待检,一些结果还得等试块强度出来以后才可确定。将外加剂的掺入量降低到我公司合同上的掺入量。

解决搅拌站的混凝土等级的要求,并为搅拌站提供技术支持,把混凝土配方提供。

第四篇:混凝土外加剂对水泥的适应性检测作业指导书

混凝土外加剂对水泥或矿物掺合料的

适应性检测作业指导书

一、目的

为规范化指导混凝土外加剂对水泥或矿物掺合料的适应性检测方法,保证检验数据的真实性,特制定本作业指导书。

二、适用范围

本指导书适用于对进场混凝土外加剂对水泥或矿物掺合料的适应性检测。

三、引用标准

GB 50119-2003《混凝土外加剂应用技术规范》。

四、检测所用仪器设备应符合下列规定: 1 水泥净浆搅拌机;

截锥形圆模:上口内径36mm,下口内径60mm,高度60mm,内壁光滑无缝的金属制品;

玻璃板:400mm× 400mm×5mm;

钢直尺: 300mm; 5 刮刀;

秒表,时钟; 7 药物天平:称量100g;感量1g;

电子大平:称量50g;感量0.05g。

五、水泥适应性检测方法按下列步骤进行: 1 将玻璃板放置在水平位置,用湿布将玻璃板、截锥圆模、搅拌器及搅拌锅均匀擦过,使其表面湿而不带水滴; 2 将截锥圆模放在玻璃板中央,并用湿布覆盖待用; 3 称取水泥600g,倒入搅拌锅内; 4 对某种水泥需选择外加剂时,每种外加剂应分别加入不同掺量;对某种外加剂选择水泥时,每种水泥应分别加入不同掺量的外加剂。对不同品种外加剂,不同掺量应分别进行试验; 5 加入174g或210g水(外加剂为水剂时,应扣除其含水量),搅拌4min; 6 将拌好的净浆迅速注入截锥圆模内,用刮刀刮平,将截锥圆模按垂直方向提起,同时,开启秒表计时,至30s用直尺量取流淌水泥净浆互相垂直的两个方向的最大直径,7 已测定过流动度的水泥浆应弃去,不再装入搅拌锅中。水泥净浆停放时,应用湿布覆盖搅拌锅;

剩留在搅拌锅内的水泥净浆,至加水后30、60min,开启搅拌机,搅拌4min,按本规范第A.0.3-6 方法分别测定相应时间的水泥净浆流动度。七 测试结果应按下列方法分析:

绘制以掺量为横坐标,流动度为纵坐标的曲线。其中饱和点(外加剂掺量与水泥净浆流动度变化曲线的拐点)外加剂掺量低、流动度大,流动度损失小的外加剂对水泥的适应性好。

需注明所用外加剂和水泥的品种、等级、生产厂,试验室温度、相对湿度等。如果水灰比(水胶比)与本规定不符,也需注明。

第五篇:北京市混凝土外加剂买卖合同

合同编号:

北京市混凝土外加剂买卖合同

买方(甲方):

卖方(乙方):

北京市工商行政管理局北京市建设委员会制定二○○五年一月

买方(甲方):

卖方(乙方):

根据《中华人民共和国合同法》及相关法律法规的规定,甲乙双方在自愿、平等、公平、诚实信用的基础上,就混凝土外加剂买卖事宜协商订立本合同。

第一条 外加剂名称、规格、单位、数量、单价

┌──────────┬─────┬───┬───┬──┬───┬─────┬─────┐

│外加剂名称│规格│粉/液 │ 数量 │单位│ 单价 │金额│备注│

││││││(吨/元│(元)││

││││││)│││

├──────────┼─────┼───┼───┼──┼───┼─────┼─────┤

│││││││││

├──────────┼─────┼───┼───┼──┼───┼─────┼─────┤

│││││││││

├──────────┼─────┼───┼───┼──┼───┼─────┼─────┤

│││││││││

├──────────┼─────┼───┼───┼──┼───┼─────┼─────┤

│││││││││

├──────────┼─────┼───┼───┼──┼───┼─────┼─────┤

│总计││││││││

├──────────┴─────┴───┴───┴──┴───┴─────┴─────┤

│价款总计(人民币大写):佰拾万仟百十元角分│

└───────────────────────────────────────────┘

第二条 外加剂应符合下列第项技术标准(包括质量要求)。

1、国家标准,标准号。

2、北京市地方标准,标准号。

3、双方约定的附加技术要求(见附件)。

第三条 计量方法

1、国家或主管部门有规定的,按规定执行;无规定的,双方约定为:。

2、交货数量的正负尾差、合理磅差和在途自然减(增)量规定及计算方法:。

第四条 包装标准和包装物的供应与回收对于包装标准,国家或主管部门有规定的,按规定执行;无规定的,双方约定为:。对于包装物,除国家规定由甲方供应的以外,应由乙方负责供应;包装物的回收为:。

第五条 交货方法、运输方式、到货地点

1、交货方法:。

2、运输方式:。

3、交货地点。

4、甲方应提前小时以(书面 / 电话)方式向乙方提出供货需求;交货完毕双方应签字确认。

第六条 验收方法

1、甲方应在货到48小时内按相关标准进行验收。

2、经验收不合格的外加剂,甲方有权拒收并退回乙方。

3、甲方因使用、保管不善等造成产品质量下降的,应自行承担相关责任。

第七条 价款结算及支付

1、价款的结算依据:双方签字确认的磅单或签字盖章的对账单。

2、价款的支付方式:。

3、价款的支付时间:。

4、在供货过程中,如甲方不能按合同约定期限支付价款,乙方可中止供货,但应提前5日通知甲方。

第八条 违约责任

1、甲方未按本合同约定给付价款的,自应付价款之日起按银行同期贷款利率向乙方支付所欠价款的利息。

2、甲方未按合同约定履行其他义务的,应按向乙方支付违约金;给乙方造成损失的,还应承担赔偿责任。

3、乙方未按合同约定履行义务的,应按向甲方支付违约金;给甲方造成损失的,还应承担赔偿责任。

4、因不可抗力原因致使本合同不能继续履行或造成的损失,甲、乙双方互不承担责任;因不可抗力原因而终止合同造成的损失,由双方协商承担。

5、。

第九条 争议解决方式

本合同项下发生的争议,由双方当事人协商解决或向申请调解解决;协商或调解解决不成的,按下列第种方式解决:

1、向人民法院提起诉讼;

2、向仲裁委员会提起仲裁。

第十条 其他约定事项。

第十一条 未尽事宜,经双方协商一致可另行补充约定。补充约定与附件均为本合同组成部分,与本合同具有同等法律效力。

第十二条 本合同自双方签字盖章之日起生效。本合同及附件一式份,甲方份,乙方份,具有同等法律效力。

买方(签章):卖方(签章):

住所:住所:

法定代表人:法定代表人:

电话:电话:

委托代理人:委托代理人:

电话:电话:

现场联系人:现场联系人:

电话:电话:

传真:传真:

混凝土外加剂技术要求(附件)

┌──────────┬──────────┬──────────┬──────────┐

│品 种│项 目│控制指标│备 注│

├──────────┼──────────┼──────────┼──────────┤

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

│││││

└──────────┴──────────┴──────────┴──────────┘

下载改善水泥与混凝土外加剂相容性的技术措施word格式文档
下载改善水泥与混凝土外加剂相容性的技术措施.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    混凝土外加剂合成技术

    混凝土外加剂合成技术、复配技术的工程应用 商品混凝土、工程混凝土、预制件混凝土等,现已大量使用外加剂。怎样经济、高效的使用外加剂,不单是节能、低成本的经济问题,也是一......

    关于混凝土外加剂匀质检测之水泥胶砂流动

    最新【精品】范文 参考文献专业论文 关于混凝土外加剂匀质检测之水泥胶砂流动 关于混凝土外加剂匀质检测之水泥胶砂流动 摘要:水泥胶砂流动检测最初的目的是为外加剂生产......

    北京市混凝土外加剂采购合同

    合同编号:_________买方(甲方):_________卖方(乙方):_________根据《中华人民共和国合同法》及相关法律法规的规定,甲乙双方在自愿、平等、公平、诚实信用的基础上,就混凝土外加剂买......

    主要跨国混凝土外加剂企业分析

    主要跨国混凝土外加剂企业分析 我国加入世界贸易组织(WTO)后,各行各业都面临着一个共同的问题:世界范围内的跨国公司已经或者将要进入到中国市场与我们同台竞争。而我国水泥混凝......

    水泥与混凝土的研究

    水泥与混凝土的研究 一种模拟钢纤维钢筋自密实混凝土抗拉行为的完整方法 摘要:目前的工作是继续进行试验和数字的研究。此研究是为了推广一种能够模仿钢纤维钢筋自密实混凝土......

    GB 8076-2008《混凝土外加剂》应用答疑

    国家标准GB 8076-2008《混凝土外加剂》应用答疑 2010-4-16 11:29:04 中国建筑材料科学研究总院 田培王玲 问:GB 8076-2008《混凝土外加剂》标准修订的主要内容有哪些? 答:与......

    混凝土外加剂厂安全生产实务

    中国矿大安全学院08级科技论文 混凝土外加剂厂安全生产实务 孟璐璐 混凝土外加剂厂安全生产实务 摘要 混凝土外加剂在混凝土中的广泛应用,已使其成为混凝土中必不可少的第五......

    水泥混凝土实习报告

    水泥混凝土实习报告一、实习目的: 混凝土是世界上产量最大、用量最多的建筑材料。通过到混凝土及混凝土制品公司参观,深入实际地了解水泥、预拌混凝土和混凝土制品的生产过程,......