全等三角形经典模型总结(定稿)

时间:2019-05-12 12:42:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全等三角形经典模型总结(定稿)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全等三角形经典模型总结(定稿)》。

第一篇:全等三角形经典模型总结(定稿)

全等三角形相关模型总结

一、角平分线模型

(一)角平分线的性质模型

辅助线:过点G作GE⊥射线AC

A、例题

1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是cm.2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC.B、模型巩固

1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.(二)角平分线+垂线,等腰三角形必呈现 A、例题

辅助线:延长ED交射线OB于F

辅助线:过点E作EF∥射线OB 例

1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F.求证:BE1(ACAB).2

2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交AD的延长线于M.求证:AM1(ABAC).2

(三)角分线,分两边,对称全等要记全

两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC.A、例题

1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.B、模型巩固

1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合).求证:AB-AC>PB-PC.2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D,求证:AD+BD=BC.3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D,求证:AC+CD=AB.二、等腰直角三角形模型

(一)旋转中心为直角顶点,在斜边上任取一点的旋转全等:

操作过程:

(1)将△ABD逆时针旋转90°,得△ACM ≌ △ABD,从而推出△ADM为等腰直角三角形.(2)辅助线作法:过点C作MC⊥BC,使CM=BD,连结AM.(二)旋转中心为斜边中点,动点在两直角边上滚动的旋转全等:

操作过程:连结AD.(1)使BF=AE(或AF=CE),导出△BDF ≌ △ADE.(2)使∠EDF+∠BAC=180°,导出△BDF ≌ △ADE.A、例题

1、如图,在等腰直角△ABC中,∠BAC=90°,点M、N在斜边BC上滑动,且∠MAN=45°,试探究 BM、MN、CN之间的数量关系.2、两个全等的含有30°,60°角的直角三角板ADE和ABC,按如图所示放置,E、A、C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC.试判断△EMC的形状,并证明你的结论.B、模型巩固

1、已知,如图所示,Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,若M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.(1)试判断△OMN的形状,并证明你的结论.(2)当M、N分别在线段AC、AB上移动时,四边形AMON的面积如何变化?

2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF为多少度.(三)构造等腰直角三角形

(1)利用以上

(一)和

(二)都可以构造等腰直角三角形(略);(2)利用平移、对称和弦图也可以构造等腰直角三角形.(四)将等腰直角三角形补全为正方形,如下图:

A、例题应用

1、如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,P为三角形ABC内部一点,满足PB=PC,AP=AC,求证:∠BCP=15°.三、三垂直模型(弦图模型)

A、例题

已知:如图所示,在△ABC中,AB=AC,∠BAC=90°,D为AC中点,AF⊥BD于点E,交BC于F,连接DF.求证:∠ADB=∠CDF.变式

1、已知:如图所示,在△ABC中,AB=AC,AM=CN,AF⊥BM于E,交BC于F,连接NF.求证:(1)∠AMB=∠CNF;(2)BM=AF+FN.变式

2、在变式1的基础上,其他条件不变,只是将BM和FN分别延长交于点P,求证:(1)PM=PN;(2)PB=PF+AF.四、手拉手模型

1、△ABE和△ACF均为等边三角形

结论:(1)△ABF≌△AEC.(2)∠BOE=∠BAE=60°.(3)OA平分∠EOF.(四点共圆证)

拓展:△ABC和△CDE均为等边三角形

结论:(1)AD=BE;

(2)∠ACB=∠AOB;

(3)△PCQ为等边三角形;

(4)PQ∥AE;

(5)AP=BQ;

(6)CO平分∠AOE;(四点共圆证)

(7)OA=OB+OC;

(8)OE=OC+OD.((7),(8)需构造等边三角形证明)例、如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;

(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;

(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费尔马点.试说明这种作法的依据.

2、△ABD和△ACE均为等腰直角三角形 结论:(1)BE=CD;(2)BE⊥CD.3、四边形ABEF和四边形ACHD均为正方形 结论:(1)BD=CF;(2)BD⊥CF.变式

1、四边形ABEF和四边形ACHD均为正方形,AS⊥BC交FD于T,求证:(1)T为FD中点;(2)SABCSADF.变式

2、四边形ABEF和四边形ACHD均为正方形,T为FD中点,TA交BC于S,求证:AS⊥BC.4、如图,以△ABC的边AB、AC为边构造正多边形时,总有:12180360 n

五、半角模型 条件:1,且+=180,两边相等.2思路:

1、旋转

辅助线:①延长CD到E,使ED=BM,连AE或延长CB到F,使FB=DN,连AF ②将△ADN绕点A顺时针旋转90°得△ABF,注意:旋转需证F、B、M三点共线

结论:(1)MN=BM+DN;

(2)CCMN=2AB;

(3)AM、AN分别平分∠BMN、∠MND.2、翻折(对称)

辅助线:①作AP⊥MN交MN于点P ②将△ADN、△ABM分别沿AN、AM翻折,但一定要证明M、P、N三点共线.A、例题

1、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM+DN,求证:(1)∠MAN=45°;

(2)CCMN=2AB;

(3)AM、AN分别平分∠BMN和∠DNM.变式:在正方形ABCD中,已知∠MAN=45°,若M、N分别在边CB、DC的延长线上移动,AH⊥MN,垂足为H,(1)试探究线段MN、BM、DN之间的数量关系;(2)求证:AB=AH 例

2、在四边形ABCD中,∠B+∠D=180°,AB=AD,若E、F分别为边BC、CD上的点,且满足EF=BE+DF,求证:EAF1BAD.2

变式:在四边形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分别为边BC、CD上的点,且EAF1BAD,求证:EF=BE+DF.2

第二篇:全等三角形

复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。

活动二:讲授新课 全等三角形的判定条件的探究 首先提出

问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。

问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的 情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。

问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式以及应注意的问题。

活动三:题例训练 例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题。

第三篇:全等三角形 总结

全等三角形 知识点梳理

一基本概念

1、全等的理解: 全等的图形必须满足:(1)形状相同的图形(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形

2、全等三角形的性质

(1)全等三角形对应边相等(2)全等三角形对应角相等

3、全等三角形的判定方法

(1)三边对应相等的两个三角形全等(SSS)(边边边)

(2)两角和它们的夹边对应相等的两个三角形全等(ASA)(角边角)

(3)两角和其中一角的对边对应相等的两个三角形全等(AAS)(角角边)

(4)两边和它们的夹角对应相等的两个三角形全等(SAS)(边角边)

(5)斜边和一条直角边对应相等的两个直角三角形全等

4、角平分线的性质及判定

性质:角平分线上的点到这个角的两边的距离相等

判定:到一个角的两边距离相等的点在这个角平分线上

二、灵活运用定理

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找(边)

@ 夹边相等(ASA)@ 任一组等角的对边相等(AAS)

(2)已知条件中两边对应相等,可找(角或边)

@夹角相等(SAS)@第三组边也相等(SSS)

(3)已知条件中有一边一角对应相等,可找(角或边)

@任一组角相等(AAS或ASA)@夹等角的另一组边相等(SAS)

第四篇:全等三角形说课稿

13.1《全等三角形》说课稿

尊敬的评委、各位老师:你们好!

今天我说课的题目是《全等三角形》,源自于人教版数学八年级上册第13章第1节。下面,我将从教材分析、教法与学法、教学过程及板书设计四个方面进行说明。

一、教材分析

(一)教材地位和作用:本小节是全章学习的开篇课,也是本章学习的主线和进一步学习其它图形的基础之一。在知识结构上,以后学习的几何图形很多要通过全等三角形来加以解决;在能力培养上,无论是逻辑思维能力、推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以启迪和发展。因此,本小节的教学对全章乃至以后的学习都是至关重要的。

(二)教学的目标

1、知识与技能目标

(1)掌握怎样的两个图形是全等形、全等三角形,能应用符号语言表示两个三角形全等;

(2)能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并能用其解决简单的问题。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。

2、过程与方法目标

(1)在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉和识图能力;(2)学生经历观察、操作、探究、归纳、总结等过程,获得用数学的思想方法处理问题的能力。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。

3、情感与态度目标

(1)让学生在观察、实践中感受全等三角形的对应美以及全等在生活中的较高使用价值,激发学生热爱科学、勇于探索的精神;

(2)在探究和运用全等三角形知识的过程中感受到数学活动的乐趣。

其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。

(三)根据新课标的要求,我将教学重点设置为:全等三角形的性质

教学难点为:能在全等变换中准确找到对应边、对应角。

(突破方法:利用老师动画演示、学生拼图实践的形式,让学生直观的识别抽象的图形和知识点,从而突出重点、突破难点。)

二、教法与学法 1.教法

根据教学内容以“概念、性质、应用”为侧重点,结合学生所具备的逻辑思维能力,本节课探究式,启发式的教学方法。有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。在教学中,我采用的是“设疑——实验——认识——实践——再认识”的教学模式,并采用“变式练习”方法提高学习效率。

2.学法

学法我采用的是讨论式,学生通过剪一剪、拼一拼、看一看等动手、动脑的活动,合作探索,发现规律;互动合作、解决问题;归纳概括、形成能力。使学生的主体地位得以体现。

三、教学过程

教学过程我分为四个部分一,创设情境,导入新课。二,层层引导,探索新知。三,巩固练习,学以致用。四,课堂小结,反思评价

(一)创设情境,导入新课

第五篇:说课稿 《全等三角形》

《全等三角形》说课稿

龙都街道吕标初中 王淑惠

尊敬的各位老师:你们好!

今天我说课的题目是《全等三角形》,源自于青岛版数学八年级上册第1章第1节。下面,我将从教材分析、教法与学法、教学过程及教学评价等方面进行阐述,请多多指教。

一、教材分析(说教材)

(一)教材地位和作用:本小节是全章学习的开篇课,也是本章学习的主线和进一步学习其它图形的基础之一。在知识结构上,以后学习的几何图形很多要通过全等三角形来加以解决;在能力培养上,无论是逻辑思维能力、推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以启迪和发展。因此,本小节的教学对全章乃至以后的学习都是至关重要的。

(二)学习任务分析:本节先通过形状、大小相同的图形引出全等三角形及其对应元素这些核心概念,然后直观演示图形的平移、翻折、旋转,从中体会图形变换的思想,逐步培养学生动态研究几何的意识,进而理解本节课的重点全等三角形的性质;

(三)学生情况分析:本小节是在学过了线段、角、相交线、平行线、三角形的有关知识以及一些简单的说理内容之后来学习的,为学习全等三角形奠定了基础。通过本小节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。然而由于学生在图形识别能力上的不足,教材要求学生会确定全等三角形的对应元素也就成了学生有待突破的难点。

(四)教学的目标和要求

1、知识与技能目标

(1)掌握怎样的两个图形是全等形、全等三角形,能应用符号语言表示两个三角形全等;

(2)能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并能用其解决简单的问题。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。

2、过程与方法目标

(1)在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉和识图能力;(2)学生经历观察、操作、探究、归纳、总结等过程,获得用数学的思想方法处理问题的能力。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。

3、情感与态度目标

(1)让学生在观察、实践中感受全等三角形的对应美以及全等在生活中的较高使用价值,激发学生热爱科学、勇于探索的精神;

(2)在探究和运用全等三角形知识的过程中感受到数学活动的乐趣。

其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。

(五)教学重点:全等三角形的性质

教学难点:能在全等变换中准确找到对应边、对应角。

(突破方法:利用老师动画演示、学生拼图实践的形式,让学生直观的识别抽象的图形和知识点,从而突出重点、突破难点。)

二.教法与学法

1.课堂结构设计(教法设计)

根据教学内容以“概念、性质、应用”为侧重点,结合学生所具备的逻辑思维能力,本节课采用以启发式、实验法为主,讨论法、阅读法为辅的教学方法。有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。在教学中,我采用的是“设疑——实验——认识——实践——再认识”的教学模式,并采用“变式练习”方法提高学习效率。

2.学法

学生通过剪一剪、拼一拼、看一看等动手、动脑的活动,主动探索,发现规律;互动合作、解决问题;归纳概括、形成能力。使学生的主体地位得以体现。

3.教学媒体设计

本节教学中,为了处理好图形的变换、对应的识别等问题,加之学生对图形的接受水平较低,我借助了多媒体演示。这样做不仅在表现力上直观形象,而且唤起了学生注意,提高了学生参与活动的机会。同时,把三角形的拼图与全等三角形的探索相结合,也就是说,全等三角形的性质和对应元素的找法不是直

接给出的,而是让学生“拼”出来的。这样让学生自己动手拼图实验,就会对相关结论印象深刻。

三.教学过程

(一)情境导入方面

数学源自于生活,这节课从情境问题“如何配回打碎的三角形玻璃”入手,展示一些直观的图形,运用贴近生活的图案激发学生探究的兴趣;接着又让学生举出生活中的实际例子、动手裁剪样板三角形,引导学生进一步联系生活,激发学生主动思考和联想,从而获得全等形的体验,自然而然地引出课题。(此环节约用时6分钟)

(二)新课讲解方面 1.全等三角形的定义

通过动画的展示,引导学生观察、分析得出全等三角形的定义(先展示动画),目的主要在于培养学生的观察分析能力。再以游戏的形式展开,既巩固了概念又寓教于乐。(此环节约用时3分钟)

2.三角形的平移、翻折、旋转

老师用课件展示,学生用样板拼图。通过动手尝试图形全等变换的过程,学生容易形成直观感觉,加深对图形变换的理解,顺理成章地得出结论。(此环节约用时2分钟)

3.全等的对应元素和表示方法

老师先用动画演示,学生再动手实践,小组之间互相交流结论。在操作实践的过程中建立“对应”的概念;接着提出问题“如何用数学符号表示两个三角形全等?”学生阅读教材并解决问题。然后老师出示一个变式图形引起注意,说明表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,使学生真正掌握全等的表示方法。(此环节约用时5分钟)

4.全等三角形的性质

以问答的形式,层层深入地解开全等三角形对应边、对应角的性质。在无形中培养了学生的逻辑思维能力,也加强了学生对全等三角形性质的理解。接着图解全等三角形性质的表达式,既形象生动,又加深了学生对“对应顶点写在对应位置”的理解。(此环节约用时3分钟)

(三)拓展与应用方面

1. 全等三角形对应元素的找法

首先,老师出示变式图形,然后学生开展小组活动,并展示部分小组的解决方案。在此基础上,师生共同完成方法提练。此环节主要利用变式图形使学生掌握各种不同的图形中边、角的对应关系,突破本节课的难点。(此环节约用时7分钟)

2.全等三角形性质的运用

首先,老师提出问题,然后学生分组探究,老师巡回指导,并引导全班交流。在此基础上,师生共同完成解题过程。此环节旨在培养学生对较复杂图形的识别能力,进一步加深学生对全等三角形性质的理解,初步培养学生综合运用的能力。(此环节约用时7分钟)

3.课堂练习

主要是通过教材中的练习让学生巩固所学的知识,并学会用所学的知识进行推理和解决实际问题。(此环节约用时3分钟)

(四)课堂小结

学生畅谈本节课的收获和体会,加深学生对知识的理解,促进学生对课堂的反思,使不同层次的学生得到不同的发展。(此环节约用时2分钟)

(五)作业布置

力求少而精,并附有人性化的命题,极大地激发了学生完成作业的兴趣。(约用时1分钟)

(六)板书设计 力求简洁明了、美观大方。四.说教学评价

本节课我将始终关注学生能否在老师的引导下积极主动地按所给的条件进行探索,能否在活动中大胆尝试并表达自己的想法从而发现结论。既关注学生对“双基”的理解和掌握,更要关注他们的学习过程和在数学活动中表现出来的情感与态度。本节课我选择课堂观察、课后访谈、学生自我评价等多元化评价,对不同的学生有不同的评价标准,尊重学生的个体差异,把评价贯穿于探索活动的全过程,发挥评价的功能,以帮助学生认识自我,建立信心。同时,也有助于老师从中概括出经验教训,以改进自己的教学,找到努力的方向。

我的说课至此结束,谢谢大家,谢谢!

2014年7月8日

下载全等三角形经典模型总结(定稿)word格式文档
下载全等三角形经典模型总结(定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全等三角形课件

    全等三角形课件【教学目标】1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;2.继续培养学生画图、实 验,发现新知识的能力.【......

    全等三角形证明

    全等三角形的证明1.翻折如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;旋转如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;平移如图(3),DEF≌ACB,DEF可以看成是......

    全等三角形(5篇)

    里辛一中“分层互助”导学案初 三 数学课题: 全等三角形(1)备课时间:2014-02-23课堂寄语:雄关漫道真如铁,而今迈步从头越;......

    全等三角形测试题

    全等三角形测试题 ( 出题人孟令震2011 9 12 ) 一.选择题: 1. 在△ABC和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保证△ABC ≌△A’B’C’, 则补充的这个条件......

    全等三角形证明题

    全等三角形证明题1在直角坐标系中,有两个点A(2,4)B(-2,-4),(即A.B两点是关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别连接A,A1和B,B1后,证AA1O和BB1O两三角行......

    全等三角形教案

    教学目标 : 1、知识目标: (1)熟记边角边公理的内容; (2)能应用边角边公理证明两个三角形全等. 2、能力目标: (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力; (2) 通过观察几何......

    全等三角形说课稿

    《全等三角形(第一课时)》说课稿 一、教材简介: 义务教育课程标准实验教科书鲁教版五四学制初中数学七年级下册第十章第一节《全等三角形》第一课时。 二、教学目标: 1、课程标......

    全等三角形教案

    1 11.1全等三角形 教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质 3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉, 4 学生通......