数学文化欣赏-浅谈个人选修《数学欣赏》感想[模版]

时间:2019-05-12 14:20:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学文化欣赏-浅谈个人选修《数学欣赏》感想[模版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学文化欣赏-浅谈个人选修《数学欣赏》感想[模版]》。

第一篇:数学文化欣赏-浅谈个人选修《数学欣赏》感想[模版]

浅谈个人选修《数学欣赏》感想

浅印象里提起数学一词,对于我个人来说,数学就是一堆堆死板无活力的公式,像是一个个严肃的战士,需要各种证明来计算我们课本或者卷纸上的问题。幼稚园时候,数学就是数数,简单的计算,简单到用手指头就能计算出结果;小学时候,数学就是不停的计算鸡鸭鹅狗笼子里多少只脚的问题;初中时候,问题变得多元化,但是从此开始了更没有什么趣味的代数和几何,不停的计算来证明,得分。唯一的一点趣味也无了踪影;高中时候,数学变成了高数,每天脑子里的正余弦定理,一切依旧没了趣味;大学时候,学的依旧叫高数,只是名字由高中数学变成了高等数学,依旧对数学提不起兴趣。无意中选修了这门选修课,却让我收获了另一种看法,一改以往的印象,其实数学是需要欣赏的,数学有它自己的文化和趣味,并不是一门枯燥反反复复的计算。

关于数学我这样理解:数学,用公式的话来解释它就是研究数量.结构.变化及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用。由计数.计算.量度和对物体形状及运动的现象中产生。数学家们拓展这些概念,为了公事新的猜想以及从何时选定的公式及定义中建立起严谨推导出的真理。

虽然说,数学存在着各种逻辑与抽象的问题,但是,这些都掩盖不住数学的没,数学的美不在于表面,而在于它的内在,数学的表面枯燥乏味,但是它的内在却是充满了乐趣。数学的美吸引了许许多多的人们来探索,人们喜欢数学,探索数学,其实就是被数学的美吸引。爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:v-e+f=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数v、棱数e、面数f,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?

数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(L.A.White)的数学文化论力图把数学回归到文化层面。克莱因(M.Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。

课上我们看了个视频,名字记不住了,但是确实很吸引我们,让我们感受到数学确实很重要,我们在不断的实践,无论哪个国家。这是人类的探索。

我们国家是一个数学大国,也是一个数学古国,早在2000多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。听讲了几次课后,我觉得我收获蛮多,在老师的带领下,我们在数学的王国里漫游着,学习着,就像参观景点一般浏览了数学世界的奥秘,数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。可见数学的发展是一步步发现深化和完善的,我们如同探险者,不断的推翻错误的观点和公式,然后用新的公式代替,最后期待实现真理的目的。数学的神秘和有趣是无尽的,是人们追求的,是人们在高科技现代化所需要的文明产物,可以说上到科学研究,下到吃穿住行没有一个可以完全脱离数学而存在的。它是支撑我们这个多元多彩世界的重要部分,没有它就没有这个丰富的世界。所以通过这门选修课,确实让我对数学有了更深的了解,我不能用以往的印象理解数学,误解数学的美。感谢老师以及数学,让我意识到数学有它独特的美,我们要用欣赏的眼光去看待数学,因为它不仅是一种解决问题的方法,也是一种美丽的文化。

第二篇:数学文化欣赏

对数学的认识

(一)概念:数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。

(二)数学发展划分为以下五个时期:数学萌芽期(公元前600年以前);初等数学时期(公元前600年至17世纪中叶);变量数学时期(17世纪中叶至19世纪20年代);近代数学时期(19世纪20年代至第二次世界大战);现代数学时期(20世纪40年代以来)。

(三)数学与其它学科的关系。数学是一种语言,是一种科学的共同语言,可用来描述宇宙。任一门科学只有使用了数学,才成为一门科学,否则就是不完善与不成熟的。宇宙和人类社会就是用数学语言写成的一本大书。数学是打开科学大门的钥匙,凡是有意义的科学理论与实践成就,无一例外地借助于数学的力量。数学是一种思维的工具,自然哲学认为任何事物都是量和质的统一体,数学就是研究量的科学。数学是一门创造性艺术。美是艺术的一种追求,美也是数学中一种公认的评价标准。

(四)数学史上一共爆发了三次数学危机:

第一次:无理数的发现。毕达哥拉斯学派认为自然界的任何数都可以由整数或整数之比表示,但其学派成员发现了直角边长均为1的直角三角形的斜边不能表示成整数或整数之比(不可通约),该悖论触犯了毕氏学派的根本信条,导致了第一次数学危机产生。

第二次:无穷小是零吗? 在微积分蓬勃发展时一位哲理学家指出应用无穷小量究竟是不是零?无穷小及其分析是否合理?由此引发了第二次数学危机。

第三次:悖论的出现。在19世纪,集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑,史称第三次数学危机。

(五)数学是美丽的。其代表有A.完美数,它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。B.素数质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个因数(1和自己)的自然数即为素数。素数与素数对的分布规律:N和2N之间至少有一个素数。两个奇数之和是偶数,素数除去2以外都是奇数。C.无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。无理数的发现引发了第一次数学危机的产生。D.黄金分割。黄金分割又称黄金律因数,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1

关闭

好友动态

我自己的邮箱

562808454@qq.com

编辑

往来邮件

正在加载...窗体顶端

标记:已将此邮件标记为星标邮件。取消星标

数学悖论

悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所谓数学悖论,是指数学领域中既有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。起源可以一直追溯到古希腊和我国先秦时代。

三个悖论引发的三次数学危机。第一次:无理数的发现。毕达哥拉斯学派认为自然界的任何数都可以由整数或整数之比表示,但其学派成员发现了直角边长均为1的直角三角形的斜边不能表示成整数或整数之比(不可通约),该悖论触犯了毕氏学派的根本信条,导致了第一次数学危机产生。第二次:无穷小是零吗? 在微积分蓬勃发展时一位哲理学家指出应用无穷小量究竟是不是零?无穷小及其分析是否合理?由此引发了第二次数学危机。第三次:悖论的出现。在19世纪,集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑,罗素提出的关于“集合论”的悖论,它导致了数学史上第三次危机。罗素把集合论悖论用数学语号称天衣无缝、绝对严密的精确数学居然在基础问题上就明显地自相矛盾。

数学悖论、数学危机对数学的起推动作用。数学悖论往往导致数学危机产生,而悖论提出的正是让数学家无法回避的问题。正如希尔伯特在《论无限》一文中所指出的那样:“必须承认,在这些悖论面前,我们目前所处的情况是不能长期忍受下去的。人们试想:在数学这个号称可靠性和真理性的模范里,每一个人所学的、教的和应用的那些概念结构和推理方法竟会导致不合理的结果。如果甚至于数学思考也失灵的话,那么应该到哪里去寻找可靠性和真理性呢?”悖论的出现逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了:第一次数学危机促成了公理几何与逻辑的诞生;第二次数学危机促成了分析基础理论的完善与集合论的创立;第三次数学危机促成了数理逻辑的发展与一批现代数学的产生。数学由此获得了蓬勃发展。关闭

好友动态

我自己的邮箱

562808454@qq.com

编辑

往来邮件

正在加载...窗体顶端

标记:已将此邮件标记为星标邮件。取消星标

数学史上的三大危机

数学的发展史中曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。

第一次危机发生在古希腊,毕达哥拉斯建立了毕达哥拉斯学派。毕达哥拉斯学派所说的数,原来是指整数。该学派的希伯索斯根据毕达哥拉斯定理通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现冲击了传统的数学,这就是第一次数学危机。最后,这场危机通过在几何学中引进不可通约量概念而得到解决。只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。第一次危机的产生最大的意义导致了无理数地产生。

第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。牛顿和莱布尼兹开辟了新的天地--微积分。牛顿在推导一些力学和几何学的公式及应用时发现这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?

19世纪,柯西详细而有系统地发展了极限理论。认为把无穷小量作为确定的量,是说不过去,它会与极限的定义发生矛盾。无穷小量本质上它是变量,且是以零为极限的量,柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而第二次数学危机基本解决。

第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。其中之一是 “理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。

解决这场危机的办法之一是回避悖论。首先德国数学家策梅罗提出七条公理,在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。

数学的发展史中曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。

关闭

好友动态

我自己的邮箱

562808454@qq.com

编辑

往来邮件

正在加载...窗体顶端

标记:已将此邮件标记为星标邮件。取消星标

数学与其它学科的关系

1、数学是一种语言,是一种科学的共同语言,若没有数学语言,宇宙就是不可描述的,因而也就是永远是无法理解的。任何一门科学只有使用了数学,才成其为一门科学,否则就是不完善与不成熟的。、2、数学与物理:数学是打开科学大门的钥匙。忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。几千年来,凡是有意义的科学理论与实践成就,无一例外地借助于数学的力量。例如,没有微积分就谈不上力学和现代科学技术,没有麦克斯威尔方程就没有电波理论,伦琴因发现X射线于1901成为诺贝尔的第一位获奖人,记者问他需要什么时,他回答:“第一是数学,第二是数学,第三还是数学。”

3、数学与哲学:自然哲学认为:任何事物都是量和质的统一体,数学就是研究量的科学,它不断地发现、总结和积累了很多人类对量的方面的规律,这些都是人们认识世界的有力工具。这里举两个例子:一个是自然科学的,一个是社会科学的。我们企图找到一个不经手术就可以准确确定人体内的器官位置、密度和三维形状的方法,可惜借助X射线只能绘出二维信息图。这个问题难倒了工程师很多年,后来遇到数学家的工作,即Radon变换,考尔麦克把X射线从许多不同角度照射人体,再运用计算机进行数学变换,导致CT数据透视仪的诞生。现这一方法进一步推广到核磁共振领域,使图像分辨率更高。从本质上说,这两项技术只不过是,先大量测量一维的物理量,再用数学技巧来重构三维图像而已。另一例子:现代经济学家使数学进入了经济学领域,构建了平衡模型,可以预言自由市场的经济行为,这方面的工作使阿洛获得了诺贝尔经济学奖,他的哈佛大学的同事看了这篇得奖论文说,这些应用在数学中是很基本的,很多哈佛大学一年级学生就可以完成。可见掌握数学工具后,在其它领域中进行应用,并不是一件困难的事,而且有时甚至是一个很大的成就。

4、数学与艺术:数学是一门艺术,一门创造性艺术。美是艺术的一种追求,美也是数学中一种公认的评价标准。数学的美体现在和谐性、对称性、简洁性,这三性上。数学家不断地追求美好的新概念、新方法、新结论,因此数学是创造性艺术。人们掌握了数学,可以陶冶人的美感,培养理性的审美能力,一个人数学造诣越深,越是拥有一种直觉力,这种直觉力实际就是理性的洞察力、由美感驱动的选择力,最终成为创造美好新世界的驱动力。

关闭

好友动态

我自己的邮箱

562808454@qq.com

编辑

往来邮件

正在加载...窗体顶端

标记:已将此邮件标记为星标邮件。取消星标

数学美

数学是理性思维和想象的结合,它的发展建立于社会的需求,所以就有了数学美。主要有:统一性、对称性、简单性。

统一性:统一性反映的是审美对象在形式或内容上的某种共同性、关联性或一致性,它能给人一种整体和谐的美感。数学对象的统一性通常表现为数学概念、规律、方法的统一,数学理论的统一,数学和其它科学的统一。(1)数学概念、规律、方法的统一。数学概念、数学定理、数学公式、数学法则也是互相联系的,在一定条件下可处于一个统一体之中。例如,运算、变换、函数分别是代数、几何、分析这三个数学分支中的重要概念,在集合论中,便可统一于映射的概念。在数学方法上,数学中的公理化方法,使零散的数学知识用逻辑的链条串联起来,形成完整的知识体系,在本质上体现了部分和整体之间的美。(2)数学理论的统一。数学理论的统一性主要表现在它的整体性趋势,在数学的高度统一性上给人一美的启迪。(3)数学和其它科学的统一。数学和其它科学的相互渗透,导致了科学数学化。一门科学只有当它成功的运用数学时,才算达到了真正完善的地步。力学的数学化使牛顿建立了经典力学体系。科学的数学化使物理学与数学趋于统一。化学的数学化加速了化学这门实验性很强的学科向理论科学和精确科学过渡......而且数学方法进入了社会科学领域,日益显示出它的效用。

对称性:对称性反映的是审美对象形态或结构的均衡性、匀称性或变化的周期性、节律性。数学的对称美,实质上是自然物的和谐性在量和量的关系上最直观的表现。从数学美来讲,对称包括狭义对称、常义对称与泛对称等。狭义对称可分为代数对称与几何对称,常义对称包括同构、同态、映射等,泛对称包括数学对象的系统性、守恒性、等价性和匀称等。

简单性:简单、明快才能给人以和谐之感,繁杂晦涩就谈不上和谐一致。数学美的简单性,并非指数学对象本身简单、浅显,而是指数学对象由尽可能少的要素通过尽可能简捷、经济的方式组成,并且蕴含着丰富和深刻的内容。数学的简单美,主要表现在数学的逻辑结构、数学的方法和表达形式的简单性。(1)数学结构的简单美。著名的皮亚诺算术公理系统,就是逻辑结构简单美的一个典范。(2)数学方法的简单美。简单性是数学方法美的重要标志。数学中所谓美的问题是指一个难于解决的问题,所谓美的解答则是指一个困难、复杂问题的简单回答希尔伯特解决果尔丹问题的存在性证明方法就是数学方法简单美的一个范例。(3)数学形式的简单美。数学形态美,是数学美的外部表现形态,是数学定理和数学公式的外在结构中呈现出来的美。如,爱因斯坦用E=mc2 揭示了自然界的质量和能量的转换关系;这里F=ma、E=mc2就外在形式而论,都是非常简洁的,不失为数学形态美的范例。

数学美的表现形式主要在语言美和简洁美两方面。

(一)语言美 :数学有着自身特有的语言--数学语言,包括数的语言和形的语言。

数的语言(符号语言):关于“∏”,《九章算术》说:“割之弥细,所失弥小,割之又割,以至于不可割,则与圆合体,而无所失矣”;面对“√2”这一差点被无理的行为淹没的无理数,我们一直难以忘怀那位因发现“边长为1的正方形,其对角线长不能表示成整数之比”这一“数学悖论”而被抛进大海的希帕索斯。还有sin?、∞ 等等,无不将数的完美与精致表现得淋漓尽致。

形的语言(视角语言):从形的角度来看--对称性(“中心对称”、“轴对称”演绎了多少遥相呼应的缠绵故事);比例性(美丽的“黄金分割法”分出的又岂止身材的绝妙配置?);和新颖性(一个接一个数学“悖论”的出现,保持了数学乃至所有自然科学的新鲜与活力)等等。

(二)简洁美 :本质上终究是简单性。只有借助数学,才能达到简单性的美学准则。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:V-E+F=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?

第三篇:数学文化欣赏论文

主题:数学文化

数字的神奇

姓名:杨晨 学院:经管-土管院 班级:土规1102 学号:2011306200619

摘要:在现实世界中,大到宇宙星系,小至生物微粒及人类所处事宜都散发着数学的气息。而数字作为数学的重要组成部分,伴着人类的发展直至今日。经过无数学者对数字的研究与探索,发现了数字独有的魅力。

关键字:数学 数字 走马灯数 黄金分割率 神奇

正文:

数字,美妙且神奇,不仅吸引了众多科学家、文学家、艺术家们,让他们大为感叹,投身其中,还有众多对数字有着独特感觉的普通人,他们认为“8”代表着“发”,意味着发财致富,“6”则代表六六大顺。或许,仅是这样并不足以看出它对人们的吸引力究竟有多大,但是,以下的例子却足以调足你的胃口,引发你的好奇,让你赞叹它的美妙,惊叹它的神奇。

神奇的数----142857 142857,又名走马灯数。它发现于埃及金字塔内,它是一组神奇数字,它证明一星期有7天,它自我累加一次,就由它的6个数字,依顺序轮值一次,到了第7天,它们就放假,由999999去代班,数字越加越大,每超过一星期轮回,每个数字需要分身一次,你不需要计算机,只要知道它的分身方法,就可以知道继续累加的答案。

142857×1=142857(原数字)142857×2=285714(轮值)142857×3=428571(轮值)142857×4=571428(轮值)142857×5=714285(轮值)142857×6=857142(轮值)

142857×7=999999(放假由9代班)

142857×8=1142856(7分身,即分为头一个数字1与尾数6,数列内少了7)142857×9=1285713(4分身)142857×10=1428570(1分身)142857×11=1571427(8分身)142857×12=1714284(5分身)142857×13=1857141(2分身)

142857×14=1999998(9也需要分身变大)继续算下去„„

以上各数的单数和都是“9”。而且,同样的数字,只是调换了位置,反复的出现。如果把它乘与7,我们会惊人的发现是 999999,然后,142 + 857 = 999 14 + 28 + 57 = 99,挑三段 1+8 4+5 2+7 都等于9 若我们把142857再乘于142857,结果是142857x142857=20408122449 再把20408122449分解两组数字,20408和122449,而他们的和正是142857。

黄金分割率

15世纪末期,法兰图教会的传教士路卡·巴乔里(LUCAPACIOLI)发现金字塔之所以能屹立数千年不倒,且形状优美,原因在于其高度与基座每边的结构比例为“5:8”。因为有感于这个神秘比值的奥妙与价值,而使用了黄金一词,将描述此比例法的书籍命名为“黄金分割”。

数百年来,一些学者专家陆续发现,包括建筑结构、力学工程、音乐艺术,甚至于很多大自然的事物,都与“5:8”比例近似的0.382和0.618这两个神秘数字有关:

5/(5+8)=0.3846 8/(5+8)=0.6154 而由于0.382与0.618这两个神秘数字相加正好等于1,所以,将“0.382”及“0.618”的比率称之为“黄金分割率”或“黄金切割率”。

其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星„„许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的名著。

你从电视中见过碧水轻流的安大略湖畔的加拿大名城多伦多吗?这个高楼大厦鳞次栉比的现 代化城市中,最醒目的建筑就是高耸的多伦多电视塔,它器宇轩昂,直冲云霄。有趣的是嵌 在塔中上部的扁圆的空中楼阁,恰好位于塔身全长的0.618倍处,即在塔高的黄金分割点上。它使瘦削的电视塔显得和谐、典雅、别具一格。多伦多电视塔被称为“高塔之王”,这个 奇妙的“0.618”起了决定性作用。与此类似,举世闻名的法兰西国土上的“高塔之祖”——埃菲尔铁塔,它的第二层平台正好坐落在塔高的黄金分割点上,给铁塔增添了无穷的魅力。

气势雄伟的建筑物少不了“0.618”,艺术上更是如此。舞台上,演员既不是站在正中间,也 不会站在台边上,而是站在舞台全长的0.618倍处,站在这一点上,观众看上去才惬意。我们所熟悉的米洛斯的“维纳斯”、“雅典娜”女神像及“海姑娘”阿曼达等一些名垂千古的 雕像中,都可以找到“黄金比值”——0.618,因而作品达到了美的奇境。

达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。因为人体的很多部位,都遵循着黄金分割比例。人们公认的最完美的脸型——“鹅蛋”形,脸宽与脸长的比值约为0.618,如果计算一下翩翩欲仙的芭蕾演员的优美身段,可以得知,他们的腿长与身 长的比值也大约是0.618,组成了人体的美。

总而言之,黄金律历来被染上瑰丽诡秘的色彩,也被人们称为“天然合理”的最美妙的形式比例。

两个简单的例子、几页纸的文字是无法言说数字的奥妙,数学的神奇的。这些并不是巧合,这是人类智慧的结晶,更是人类对美的追求,不仅是对表象的美的追求,更是对学术中美的热爱。数学很美,数字很神奇,是不可置否的。然而它与我们的学习、生活又是那样密切,难道这些还不足以成为我们热爱它的理由吗?

参考书目及网站:

《数学文化欣赏》邹庭荣编著 《数学中的美》吴振奎 《数学发展史》普罗克鲁斯

黄金分割http://baike.baidu.com/view/52401.htm 142857 http://baike.baidu.com/view/812117.htm

第四篇:数学文化与欣赏教案

第一章 数学文化概论

教学目的:使学生了解数学文化的定义、数学文化课的开设方法、数学文化课的学习方法、数学文化课的考核方式等等。

教学重点:数学文化课与一般数学课的区别

教学难点:数学文化课程中如何处理好数学和文化的关系 教学课时:2节

教学方法:课件教学与讲解相配合 教学过程:

序言

一、“数学文化”一词的使用

二、什么是“数学文化”

三、“数学文化”课的开设

四、“数学文化”课的上法

五、“数学文化”课的考核2

一、“数学文化”一词的使用•该词使用已有二、三十年;•在中国,较早使用的是1990年邓东皋、孙小礼等人编写的《数学与文化》及齐民友写的《数学与文化》;•近七、八年这个词用得多起来。•这个词的使用频率近年大大增加,说明它是有生命力的,说明许多人为着某种需要更愿意从文化这一角度来关注数学,更愿意强调数学的文化价值。2 第二章 数学文化与数学教育

教学目的:使学生了解数学教育的功能、数学素养的内容、数学教育与数学教学的区别、数学文化的发展历程等等。

教学重点:数学素养的内容、数学文化的发展历程 教学难点:数学教育与数学教学的区别

教学课时:2节

教学方法:课件教学与讲解相配合 教学过程:

数学文化与数学教育

“数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说;满足了人类探索宇宙的好奇心和对美妙音乐的冥想;有时甚至可能以难以察觉到的方式但无可置疑地影响着现代历史的进程。”——M·克莱因

一、数学教学与数学教育

1、数学教学:初中数学的学习内容是“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。中学数学教学是“通过知识的教学培养能力,发展和完善学生的素质,使学生的聪明日益长进”。

2、数学教育:(1)以动态的观点认识数学知识的发生和发展;(2)数学研究的对象是客观世界,重在突出数学的应用性;(3)不仅仅是得到数学知识和技术,重要的是得到对事物进行认识、推理、判断、运用的能力,以及认识客观世界的情感、态度与价值观。(4)使学习者的认知心理和非认知心理得到健全发展的过程。

二、学生眼中的数学教育老师眼中的数学与学生眼中的数学是有区别的,学生眼中的数学并不是我们理解的数学,要想使学生学好数学,必须走进学生的心中,理解学生的思维,应该站在学生的角度去进行教学设计,这样才有可能使我们的教学切合学生的实际。只有以学定教,才有高的教学效率!第三章 数学发展简史

教学目的:使学生了解数学文化的发展分段。教学重点:数学发展简史

教学难点:数学教育与数学教学的区别

教学课时:2节

教学方法:课件教学与讲解相配合 教学过程:

数学发展简史数学发展史大致可以分为四个阶段。

一、数学起源时期

二、初等数学时期

三、近代数学时期

四、现代数学时期

一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。数学起源于四个“河谷文明”地域•非洲的尼罗河;•西亚的底格里斯河与幼发拉底河;•中南亚的印度河与恒河;•东亚的黄河与长江

二、初等数学时期(前6世纪——公元16世纪)也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。该时期的基本成果,构成现在中学数学的主要内容。这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。1.古希腊(前6世纪——公元6世纪)毕达哥拉斯欧几里得阿基米德——————“万物皆数”几何《原本》面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密丢番图————三角学不定方程

2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之出入相补原理,割圆术,算

四、现代数学时期(19世纪20年代——)•••••• 进一步划分为三个阶段:年);年);现代数学酝酿阶段(1820——1870现代数学形成阶段(1870——1950现代数学繁荣阶段(1950——现在)。这一时期虽然还不到二百年的时间,内容却非常丰富,远远超过了过去所有数学的总和。鉴于本课程的性质,对于这一时期的数学内容,我们只作简略的介绍。

第四章 数学的美

教学目的:使学生了解数学的对称美、数学的简洁美、数学的和谐美。教学重点:数学的严谨与数学的美的辩证统一 教学难点:数学文化课程中如何欣赏数学的美

教学课时:4节

教学方法:课件教学与讲解相配合 教学过程:

1.数学问题的简洁一个好的数学问题为了突出其本质的因素,必然是简洁的。而一个问题提得越简洁、越清晰易懂,也就越容易引起人们的兴趣。凡是经久不衰。引人入胜的数学问题,如三大尺规作图问题(用直尺和圆规求解倍立方、三等分任意角和化圆为方问题)、梅森关于素数的猜想、七桥问题、哥德巴赫猜想等都是以极其简明而深刻的表述方式吸引着人们的注意,多么像引人垂涎欲滴的美丽果实,在诱使人们向它们伸出手来!而一旦把手伸出便欲罢不能。

2.数学语言的简洁数学语言是精炼的语言。例如,c2a2b2把直角三角形三边的关系表达淋漓尽致。在欧拉公式eix=cosx+isinx中令x=得ei+1=0 把五个重要的常数 0,1,i,e,简单而巧妙地结合在一起;爱因斯坦(Einstein)用 E=mc2 就能把茫茫宇宙中的质能互换这样深奥复杂的关系如此简单地揭示出来。多面体的欧拉公式V + F –E = 2V--凸多面体的顶点数,F 凸多面体的面数,E 凸多面体的棱数。3.数学概念的简洁数学概念是数学语言的精髓。不少数学概念已历经沧桑,内涵不断发生着深刻的变化,每一次变化都使这个概念更加清晰、准确、简洁。怀特(White)说“数学可以定义为相继用简单的概念来代替复杂的概念。”以函数概念为例,从1673年莱布尼兹(Leibniz)给出的“函数就像曲线上的点的坐标那样随点的变化而变动的量”定义。到1821年柯西(Cauchy)给出的“对于x的每个值,如果y有完全确定的值与之对应,则y叫做x的函数”的定义,再到近代的“设A、B是非空的集合,f是A到B的一个对应法则,则A到B的映射f:A →B称为A到B上的函数”的定义,其间经历了三百年,一次比一次深刻。4.数学证明的简洁马丁.伽德纳(Martin Cardner)指出:“数学的真谛在于不断寻求越来越简单的方法证明定理和解答问题。”简洁的证明,看上去思路自然,条理清楚。显示出数学证明不容辩驳的逻辑力量,给人带来美的享受。因此,追求简洁也是数学家重要的研究课题。英国数学家阿蒂亚(Atiyah)说“数学的目的就是用简单而基本的词汇尽可能多地解释世界。。。如果我们积累起来的经验要一代一代传下去的话,我们就必须不断地努力把它们加以简化和统一。”

对一个结果的证明如果很繁琐、冗长,人们读起来就会感到累赘且不得要领,甚至不知道是对还是错。例如美国数学家布兰吉(Louis de Brange)花了30多年的时间于1984年证明了比贝伯(Bieberbach)于1916年提出的一个猜想(关于单叶函数系数界的一个猜想),这是20世纪的一个重要的数学成就。但是在数学界遭到了冷遇,原因之一是他的证明太长,整整写了350页。后来,他到了前苏联,在前苏联数学家的帮助下,将证明简化成12页,这个结果才得到了承认与好评。

第五章 数学的神秘

教学目的:使学生了解数学的三次危机 教学重点:数学危机形成的原因

教学难点:数学危机的解决过程与数学发展的关系

教学课时:2节

教学方法:课件教学与讲解相配合 教学过程:

一、“有无限个房间”的Hilbert旅馆1 2 3 4 ┅↓↓↓↓┅↓2 3 4 5 ┅空出了1号房间1.“客满”后又来1位客人(“客满”)k ┅┅k+1 ┅3

2.客满后又来了一个旅游团,旅游团中有无穷个客人1 2 3 4 ┅↓↓↓↓┅2 4 6 8 ┅空下了奇数号房间k ┅↓┅2k ┅4

•4.[思]该旅馆客满后又来了无穷个旅游团,每个团中都有无穷个客人,还能否安排?•“无穷大!任何一个其他问题都不曾如此深刻地影响人类的精神;任何一个其他观点都不曾如此有效地激励人类的智力;然而,没有任何概念比无穷大更需要澄清……”----Hilbert7

2.)“有限”时成立的许多命题,对“无限”不再成立(1)实数加法的结合律在“有限”的情况下,加法结合律成立:(a+b)+c= a+(b+c),a,b,c11

当初的伽利略悖论,就是因为没有看到“无限”的这一个特点而产生的。1 2 3 4 5 6 7 8 9 10 11 …n …↕↕↕↕↕↕↕↕↕↕↕↕↕21 4 9 16 25 36 49 64 81 100 121 …n…[ 该两集合:有一一对应,于是推出两集合的元素个数相等;但由“部分小于全体”,又推出两集合的元素个数不相等。这就形成悖论。]9

第五篇:数学欣赏论文

数学的起源之美

摘要:数学与社会经济生活的密切相关性,在国民经济发展中起到的巨大的促进作用,如:信息技术中的先进通讯与控制方法,经济金融系统的分析预测与仿真,制造与材料设计中的数学方法,能源环境中的科学计算问题,生物医学中的建模与分析等,从粮食产量预测到战略资源预测、石油勘探软件油藏数值模拟软件等,数学这门最基础的应用学渗透到社会当中的方方面面。现在课本上每一门数学知识都可能在将来、在其他方面,包括社会经济方面有重要作用。但是数学在古代特别是在远古时代发挥着怎样的作用呢,我做了相应的总结。

关键字:数学起源,数学的美

数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数、语言点数、进一步用符号,逐步发展到今天我们所用的数字(例如阿拉伯数字:1、2、3、4、5、6、7、8、9、0;希腊数字Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ等等)。图形意识和计数意识发展到一定程度,又产生了度量意识。这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)等等各个分支,而且还在不断发展下去。

(1)数学中0的来源:

数学符号中的0起源于古印度。最初,阿拉伯数字中没有“0”,经过1000多年后才产生了“0”。没有“0”这个数字时,为了表示某一位上一个计数单位也没有,就“不写”或“空写”。后来,印度人在数字中间加上小点“.”表示空位,又过了很长时间,小点便改成“0”。

我国古代用算筹记数,也采取空位表示零。古书中缺字常用“□”表示,数字里的空位也用“□”表示,以后由于书写时常用行书,“□”也就容易写成圆圈了,用“○”表示零。0被传到罗马的是时候,罗马教皇为了加强罗马帝国和罗马神教的统治,宣布:罗马数字是上帝创造的,不允许0的存在,这个邪物加进来是会弄污神圣的数.”,并下令禁止任何人使用0记数。

有个罗马学者,从被查禁的天文书中看到阿拉伯数字中0给记数、运算带来极大的方便,就不顾教皇的禁令,把有关知识记录下来,并在熟识的人中间悄悄流传。这件事被人告密了,罗马教皇大发雷霆,立即派人捉住那位学者,并且头入监狱。由于学者毫不屈服,教皇又下令对他施以酷刑,就是用夹子把十个手指紧紧夹住,使他两手残废,再也不能握笔写字,这位学者最后在饥寒交迫中死去。

(2)、结绳记数。

结绳记数在原始社会已经出现,大约在300万年前,处于原始社会的人类用在绳子上打结的方法来记数,并以绳结的大小来表示野兽的大小。数的概念就是这样逐渐发展起来的。结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来。宋朝人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火。”这是用结草来调发军马,传达要调的人数呢!其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法。据查证,中央民族大学就收藏着一副高山族的结绳,由两条绳组成:每条上有两个结,再把两条绳结在一起。

有趣的是,不但我们东方有过结绳,西方也结过绳。传说古波斯王有一次打仗,命令手下兵马守一座桥,要守60天。为了让将士们不少守一天也不多守一天,波斯王用一根长长的皮条,把上面系了60个扣。他对守桥的官兵们说:“我走后你们一天解一个扣,什么时候解完了,你们就可以回家了。”

回头我们再来看一件有趣的事情。在我国古代的甲骨文中,数学的“数”,它的右边表示一只右手,左边则是一根打了许多绳结的木棍:――“数”者,图结绳而记之也。和结绳几乎同时或者稍后的一种记数方法,要算是书契了。书契,就是刻、划,在竹、木、龟甲或者骨头、泥版上留下刻痕,留下“记”号。《释名》一书中说:“契,刻也,刻识其数也。”意思是在某种物件上刻划一些符号,以记数。

我们国家1974年在青海乐都县发掘的原始社会末期的墓葬中,发现了49枚骨片,大小形状都差不多,是与小孩的小手指差不多大小,但很薄的一个长方形。在骨片的中部两侧有刻口,有的带3个刻口,有的带5个刻口,不少是带一个刻口的。如果一个刻口代表一个数的话,那么这40多枚骨片大约可表达从一到五六十间的任何一个自然数。当然,这些小骨片也可用来计算。十分有趣的是,公元1937年,人们在维斯托尼斯发现了一根四十万年前的骨头,是狼惠子的小腿骨,七寸长,上面有55道深痕。这是到现在为止,最早的刻痕记数的历史见证。随着刻痕刻印的发展,渐渐地就出现了纯粹的数字符号,这是一项光辉伟大的成就,为现代科学奠定了基础。结绳记数是最早的记数方法,是没有文字是的方法,是较早的数学应用的雏形。

(3)、石头记数。

石头计数”就是用天然几小石子记数,也是人类早期常用的一种计算办法,而且计算要方便许多;可以肯定的说,以石子作为计算工具,是每个民族都经历过的历史阶段;在拉丁文中,“计算”一词写作“Calculus”,本意即为计算用的石子。当然只使用与简单的记数,对于大量的记数则束手无策了,但是它仍然体现里人类的智慧和勤劳。

(4)、汉字数字的起源。

对于汉字数字的起源历史上有不同的说法。

有很多学者认为数字是由我们祖先创造的一种十分重要计算方法——筹算演变发展而来的。

我国古代很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,就创造了筹算。算筹是世界上最古老的计算工具。据《汉书·律历志》记载:算筹是圆形竹棍,它长为13-14cm,径粗0.2-0.3cm。到公元6、7世纪的隋朝,算筹长度缩短,圆棍改成方的或扁的。根据文献记载,算筹除竹筹外,还有木筹、铁筹、玉筹和牙筹。算筹记数法则是:“凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当”,“满六以上,五在上方.六不积算,五不单张”[4]。从算筹数码中没有“10”这个数可以清楚地看出,筹算从一开始就严格遵循十进位制:九以上的数就要进一位,同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元六世纪末。随着筹算的普及,算筹的摆法也就成为记数的符号了。

但筹算数码中开始没有“零”,遇到“零”就空位。数字中没有“零”,是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错。不过,我国古代文字中,“零”字出现很早,那时它不表示“空无所有”,而只表示“零碎”、“不多”的意思。如“零头”、“零星”、“零丁”。“一百零五”的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进,“105”恰恰读作“一百零五”,“零”字与“0”恰好对应,“零”也就具有了“0”的含义。

现代学者郭沫若认为,古人用手指表示数目,逐渐形成了汉字的数字。他说:“数生于手,古文一二三四字作一二三四,此手指之象形也。手指何以横书?曰,请以手作数,于无心之间,必先出右掌,倒其拇指为一,次指为二,中指为三,无名指为四,一拳为五,六则伸其拇指,轮次至小指,即以一掌为十。一二三四均倒指,故横书也。”[5]

而使用汉字大写数字,防止贪污作弊,始于我国明朝初年。明太祖朱元璋执政时期,曾发生过一起郭桓重大贪污案。郭桓曾任户部侍郎,在任职期间,勾结地方官吏,大肆贪污政府钱粮,贪污数额累计达2400万石精粮,几乎和当时一年的秋粮实征总数相等。这一大案牵涉十二个朝廷大臣和数万地方官吏。朱元璋对此大为震惊,下令将郭桓及数万名同案犯全部斩首示众。同时,制定了严格的惩治贪污的法令,为了杜绝财务混乱,对全国财政管理实行了一些有效的措施,其中重要的一条就是把记载钱粮数字的汉字“一、二、三、四、五、六、七、八、九、十、百、千”改用“壹、贰、叁、肆、伍、陆、柒、捌、玖、拾、陌、阡”。人们在使用过程中,渐渐地把“陌、阡”改成了“佰、仟”。这些汉字大写数字,一直沿用至今,并且在我国的经济生活中起着重要的作用。

总之,数学的出现是应运而生的,它被广泛的传承和发扬光大,为人类的幸福生活和美好的未来出尽了力量,但事情总是有两面的,也有滥用数学的现象发生。我是学计算机的学生,深知数学在计算机中的应用。通过数学欣赏的学习,我发现了数学的美、数学的艺术,数学并不是乏味枯燥的,而是充满了智慧。数学并不缺少美,而是我们缺少发现美的眼睛。

参考文献

【1】李鼎祚.周易集解[M].上海:上海古籍出版社,1989

【2】纪志刚.孙子算经[M].武汉:湖北教育出版社,1999 注:部分资料来自网络

下载数学文化欣赏-浅谈个人选修《数学欣赏》感想[模版]word格式文档
下载数学文化欣赏-浅谈个人选修《数学欣赏》感想[模版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学欣赏论文

    数学欣赏论文 数学是一门十分神奇的自然科学,我们从很小的时候就开始接触她,却发现自己无论在数学这条路上走了多远都只不过是个开始而已。从儿时咿呀学语时板着手指头会数......

    文学艺术中的数学文化欣赏

    文学艺术中的数学文化欣赏摘要:简述了文学艺术与数学之间的密切联系,着重介绍了文学中的数学,数字诗及回文诗,通过浅显易懂的语言文字将数学与文学艺术之间的关系做以浅层次的说......

    数学文化感想

    关于数学文化的感想 在一学期的数学文化学习中,使我深深的认识到了数学的重要性和通过其所获取的感知。对于个人的发展来说,数学不仅仅是一门工具,还是具有内在价值的精神产......

    选修合唱欣赏作业

    摘要 《黄河大合唱》是一首波澜壮阔的英雄史诗,传递着中华民族不屈不挠的精神,她产生于日本侵略者步步紧逼侵略中国的 危急时刻,在民族危亡的严重关头,为了民族解放,为抗战发出怒......

    14.如何欣赏建筑艺术(选修)

    《如何欣赏建筑艺术》教案 一、教案背景 1、收集易于为学生接受的各类建筑的图片、幻灯片或音像资料。 2、让学生课前搜集有关建筑艺术的各种资料。 三、教材分析 本课需结......

    俄罗斯文化欣赏

    《俄罗斯文化欣赏》 学院:管理学院专业:公共管理类 学号:11305050 姓名:王银琳普希金的苦短人生 任何一个国家的任何一个年代,只要时代在发展,就会有名人层出不穷的涌出。当然,作......

    体育欣赏感想

    说到体育,大多数人就想到去体育场上运动,而且一般人也只对自己经常参与的运动略懂一二。我觉得,体育欣赏这门课,就是在教我们对所有的体育项目都略懂个一二,教会去欣赏各类体育项......

    学习数学文化感想

    学习数学文化感想 写关于数学文化不得不写数学史。数学是人类最古老的科学知识之一,它主要是研究现实生活中数与数、形与形,以及数与形之间相互关系的一门学科。他们发展也......