第一篇:数学文化心得体会
刚开始是不想学这门课程的,因为在上高中的的时候数学就不好。但心想“数学肯定难,数学文化肯定不难。”上第一节课,发现老师好幽默,授课的方式很有趣。老师给我们讲了接下来具体要讲的内容。最吸引我的一句是,我们考试很简单,只写一篇论文。大家好好学习,认真听都能听懂。老师告诉我们,我们这门课程其实很简单,我们讲文化。听到这里,我心里面很激动。老师还告诉我们,他会介绍一些数学家名人,同时他会教我们怎么去思考,以及思维方式与逻辑推理。于是,我开始对这么课程产生了兴趣。
这门课给我们介绍了很多数学的知识,包括数学的历史、数学的发展等等,我们国家是一个数学大国,也是一个数学古国,早在2000多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。
我印象最深刻的是老师给我们介绍祖冲之及康熙在数学领域的伟大事迹。老师介绍了很多关于他的事迹,老师说,祖冲之的主要成就,也恰恰在于圆周率的计算方面。据《隋书·律历志》记载,祖冲之确定了圆周率的不足近似值为3.1415926,剩余近似值为3.1415927,这是世界上首次将圆周率精确到小数点后第七位。祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休.直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。祖冲之实际上还给出了圆周率的误差范围。
祖冲之还和他的儿子祖暅一起,用巧妙的方法解决了球体积的计算问题。《九章算术》中认为,外切圆柱体与球体积比等于正方形与其内切圆面积之比,刘徽为《九章算术》作注时指出,原书的说法是不正确的,只有“牟合方盖”(垂直相交的两个圆柱体的共同部分的体积)与球体积之比,才正好等于正方形与其内切圆的面积之比。但刘徽没有求出两圆柱体垂直相交部分的体积公式,也就得不出球体积公式。祖冲之父子应用“等高处横截面积常相等的两个立体,其体积也必然相等”这一原理,求出了牟合方盖的体积。而球体体积等于π/4乘以牟合方盖体积,从而最终算出球体积为πD3/6(D为球直径),这个公式就是著名的“祖暅公理”。西方人得到这一公理时,距祖冲之父子已1000余年。祖冲之还研究过“开差幂”和“开差立”问题,这涉及到了二次、三次方程求根的问题,祖冲之在求解中甚至“兼以正负参之”,可见其研究水平之高。
祖冲之父子的数学研究成就汇集于他的数学专著《缀术》中。这本书极其高深,以至于“学官莫能究其深奥,故废而不理”。
老师讲的这些我非常感兴趣。从祖冲之的身上我学到了很多。祖冲之在前人创造的基础上做出了他的成绩。对于我们当代大学生来说,我们应该学习他的认真学习,刻苦钻研,不迷信古人,不畏惧守旧势力,不怕斗争,不避艰难。我们真的很需要这些品质,我们学习他的刻苦专研和创新的精神,同时,我们要利用他广博的知识和突出的贡献去继续探索这个世界。
在以后的学习中,老师传授了很多有趣的关于数学方面又涉及实际生活的知识。老师出过很多培养我们思维的题,每句话都有它所要传达的信息。去寻找里面的逻辑关系,建立数学模型。题自然而然就解出来了。总而言之,我很高兴能抢到数学文化这门课程。我从中收获了很多。从以前对祖冲之的一无所知到有所了解,我还从中学习到了祖冲之的优秀品质。这门课程对我以后的生活也会产生很大的帮助。老师还是很辛苦的,每节课都要给我们备很多知识。老师的授课方式也对我以后的教学起到了相当大的帮助。
第二篇:学习“数学文化”的心得体会
学习“数学文化”的心得体会
在上学期我学习了“数学史”,这学期我又选修了“数学文化”,主要是我比较喜欢文化,想更多的了解一些关于数学文化上的知识,增加自己的一些知识和见解。
当时在选课的时候我看到我们系上开了一门选修课“数学文化”,我就好不犹豫的选了这门课,我觉得学习更多关于我们周边的数学文化和数学知识对我还是非常有用的,“数学文化”给我们介绍了一些经典的数学知识,很清楚的记得其中就有一个问题是微软公司招聘经理的一个题目,是关于5个海盗分100枚金币的事情,题目是:“加勒比海有5个海盗,分别为老大、老
二、老
三、老
四、老五,有一次他们得了100枚金币,现在要来分这100枚金币,前提条件是老大先提出分配方案,如果有一半以上的人同意,就按这个分配方案进行分配,否则就杀掉老大,再由老二提出分配方案,如果有一半以上的人同意,就按这个分配方案进行分配,否则就杀掉老二,再由老三提出分配方案,如果有一半以上的人同意,就按这个分配方案进行分配,否则就杀掉老三,再由老四提出分配方案,如果有一半以上的人同意,就按这个分配方案进行分配,否则就杀掉老四,如果你是老大,应该怎样提出分配方案?”那么要解决这个问题就一定要有一个好的思路和方法,既然是人就要考虑是要钱还是要命,如果你要钱不要命,那么要再多的钱也没有用,如果不要钱只要命这也不符合实际,所以说就应该是要命的前提下来得到更多的钱。首先我们就假设我们是其中的一个海盗,让自己身临其境的想一想此时这个海盗的心里想法,既然是老大现提出分配方案就应该想一想其余的四个此时的心里想法,那样才能够有胜算,不然自己就丢了命。从这个例子中让我了解到数学问题与我们的实际生活是息息相关的,任何一个问题脱离实际生活太多都没有什么研究的意义。
下一个就是给我们讲解“博弈”的知识,博弈跟我们所学的概率统计是有联系的,我们的概率统计就是从赌博当中产生的一门新的数学学科,其中有一句重要的话就是:“在赌博当中,第十一次的输赢跟前十次没有一点关系”,就是说前十次都输了第十一次不一定会输,第十一次的输赢跟前面的根本就没有关系。概率统计是一门模糊的数学,不像其他的数学学科的出身那么的好,结果是那么的准确,概率统计出生于赌博,而它的结果也是模糊的。
一些经典的数学问题都在数学文化中有了身影,前面就是两个明显的例子。老师的讲解使我了解了数学,并让我看到了数学的美丽和壮观,让我对数学 — 这门把一切食物抽象化的科学产生了更浓厚的兴趣。作为一名数学专业的学生,我会努力的去学习数学这门课程,并去学习数学家们坚持不懈、开拓进取的精神。
姓名:
学号:
第三篇:数学与文化 心得体会
时间冲冲而逝,不知不觉间这学期又过去了。我在这学期的公共选修课上选择了《数学与文化》这门课程。其实当初我在选择这门课程上主要是为了获得学分;然后是为了让我的学分来自不同的领域;最后才是因为我从小学开始就对数学比较感兴趣(数学成绩还不错);抱着一种不以为然和好奇的思想来学习这门课程。但是到了这个时候,我可以发自内心的说一句我太爱这门课程了,我真真正正的喜欢上了数学。
虽然我对数学不感说精通,但是成绩却总是名列前茅。不过在学《数学与文化》之前我和大家的的想法都一样以为数学只是一门为算数而服务的学科,它的出现是为了简化人们在实际生产过程遇到问题时的计算过程中大量的计算步骤和提供简便有效解决问题的方法。它的存在只是作为一门基础学科。只是为了应付一次次的考试才去学它,对它一点兴趣都没有。不过在学了《数学与文化》之后我的想法发生了天翻地覆的变化,在授课老师的讲授和指导下获益良多。老师喜欢和我们同学一起互动,不象有的老师只是填鸭式教学,而不管学生吸收了没有。通过学习我才发现十多年来我心中的数学是被我狭义化了的,数学的地位被贬低,完全没有意识到他完全处在自然学科和社会学科等同的地位上。他在人类社会的进程中起到了不可替代的推动作用,他完全是一门独立的文化,指引着人类向理性方向前进。
人们常说做事要一步一步来,其实教书也是一样的道理。不能一来就讲一些大道理,让同学们还没有学就已经被那些大道理搞得头昏眼花。这一点老师就做的非常好。
在开始的时候,然我明白数学是提高人的精神世界,求善求美数学是人类悟性的自由创造物。老师在上课时列举了很多生动鲜活的面试例子,而且这些面试材料让我们联想到我们以后会不会遇到,如果记下来,以后不就更容易找到工作了吗?通过这些让我们培养了认真听课的好习惯,也让我们对这门课程有了学下去的理由。
学到中段的时候,让我懂得数学是认识自己和理性的探索精神。基本上就是一个模式,通过简单游戏来和同学们互动,再在这些题的基础上列举一些与之类似却更叫深奥的题,最后根据解法一步一步推导出神密的数学知识和规律。让我们明白从简单的事物也能得出大道理,培养了我们以后做什么事情都要从小事做起,日积月累,最后自然而然的达到你最求的目标。其实这个道理我以前也明白,但我认为那只适合于一些大的事件,却忽略了运用在学习上。到了这时我才明白为什么我的数学成绩好,却不是最好,就是有一步到位的思想,不肯花时间慢慢来梳理一道题的来源,导致我认为的难题实际上对我来说不是难题。
在收尾的阶段,让我认识到数学永恒的主题是认识宇宙,对于数学的探索是无穷无尽的。在这段时间里里,通过例子给我们展示出了数学课已渗透到各个领域,还列举出了一些神奇的数学知识,告诉我们数学知识的博大精深,我们现在了解的数学还不全面,还有许多的数学猜想和难关还没有攻破,我们后代要更加努力,积极学习和思考,尽快的让我们认识这个神秘的宇宙。
不管其它人怎么想,我认为老师的授课的方式非常适合我们。理论和实际相结合,通过例题使知识更条理化。那些例子听起来生动有趣,活跃气氛,另外多媒体课件制作精美、图文并茂、内容丰富、信息量大、文字简明,有利于学生学习观看,提高了教学效果。不过还是给老师提点建议:一:老师给我们思考时间过于长,到最后那些更精妙的解法讲得太快没有听懂,特别是到了最后;二:多讲几遍是好事,不过也不能太纠结于某一道题,感觉有点不耐其烦。其它的我就想不到了。
最后我非常感谢老师让我懂得了这么多的知识,学会了做事的方法,补充了我的大脑。最后祝老师身体健康,暑假快乐。
第四篇:数学文化
选 修 课 论 文
课程:数学文化 院系:化工学院化工系 专业:化学工程与工艺
班级:
学号: 姓名:
数学文化的美以及其他学科的体现
摘要:数学文化中的美主要体现在以下四个方面:
一、完美的符号语言;
二、特有的抽象艺术;
三、严密的逻辑体系;
四、永恒的创新动力。通过展现数学文化中的与哲学、计算机、经济、教育方面的关系,可以激发我们的学习兴趣,提高学习质量。
关键词:数学;美; 其他学科;体现
从学科分类来看,数学是理论自然科学中的重要分支—素有“科学之王”之美誉;从数学的起源来看,她是对客观事物的一种量的抽象—从客观存在的有限性演变为认识领域的无限性;从人文环境来看,数学有着无与伦比的美学情趣—古希腊有一句名言:“哪里有数,哪里就有美”。
面对以上种种美誉,人们不禁要问:“数学为何如此美丽?又该怎样从美学的角度,来观察、分析、理解、并感受数学的魅力?”事实上,数学美的表现形式是多种多样的—从数学的外在形象上观赏:她有体系之美、概念之美、公式之美;从数学的思维方式上分析:她有简约之美、无限之美、抽象之美、类比之美;从美学原理上探讨:她有对称之美、和谐之美、奇异之美
[1]
等。
一、数学有着自身特有的语言——数学
语言从形的角度来看—对称性:“中心对称”、“轴对称”演绎了多少遥相呼应的缠绵故事:比例性:美丽的“黄金分割法”分出的又岂止身材的绝妙配置?和谐性:如对数中,对数记号、底数以及真数三者之间的关联与配套实际上是一种怎样的经典的优化组合!鲜明性:“最大值”、“最小值”让我们联想起——“山的伟岸”与“水的温柔”,新颖性:一个接一个数学“悖论”的出现,保持了数学乃至所有自然科学的新鲜与活力„„
数与形完美结合的思想—辨证法:熟悉数学的人都体会到在数学中充满着辨证法。如果说各门科学都包含着丰富的辨证思想,那么,数学则有自己特殊的表现方式,即用数学的符号语言以及简明的数学公式能明确地表达出各种辨证的关系和转化。例如:初等数学中:点与坐标的对应;曲线与方程之间的关系;二面角的平面角的度数;两条异面直线之间的距离;概率论和数理统计所揭示出的事物的必然性与偶然性的内在联系等。以及高等数学里所涉及的:极限概念,特别是现代的极限语言,很好地体现了有限与无限,近似和精确的辨证关系:牛顿—莱布尼茨公式描述了微分和积分两种运算方式之间的联系和相互转化等等。这类事例在数学中比比皆是。当然,要真正掌握好“数学美”,仅仅知道一些数学知识还是远远不够的,还必须善于发现各种数学结构、数学运算之间的关系,建立和运用它们之间的联系和转化。唯其如此,才能发挥出蕴藏在数学中的辨证思维的力量。数学中许多计算方法之灵巧,证明方法之美妙,究其思路,往往就是综合利用了各种关系并对他们进行过适宜的转化而成的。
二、特有的抽象艺术
从初等数学的基本概念到现代数学的各种原理都具有普遍的抽象性与一般性。正如开普勒所说的:“对于外部世界进行研究的主要目的,在于发现上帝赋予它的合理次序与和谐,而这些是上帝以数学语言透露给我们的”。
数学的第一特征在于她具有抽象思维的能力,在数学中所处理的是抽象的量,是脱离了具体事物内容的用符号表示的量。它可以成为任何一个具体数的代表,但它又不等于任何具体数。比如“N”表示自然数,它不是N个岗位,N只鸡或N张照片„也不是哪一个具体的数,分不清是0?是1?或者是100?„“知道”中蕴含着“不知道”,“具体”中充满了“不具体”,它就是这样一个抽象的数!
从初等数学的基本概念到现代数学的各个分支,都具有相当的抽象性与一般性。正如恩格斯所说的,数学是一种研究事物的抽象的科学。人们一直在各种抽象的数概念或数学结构之间思索着、追求着,努力寻找它们之间的内在联系和规律。人们总在大谈特谈“数字化”,事实上,绝大多数人并不知道数学的成就,给人类带来了哪些巨大变化。但有一点几乎是不争的事实:数学研究成果运用于实际问题之所以有效,甚至是惊人的成功,正是因为它们反映了实际事物的规律性。这就是“矛盾”中的“统一”!
三、严密的逻辑体系
数学以逻辑的严密性和结论的可靠性作为特征在数学中,每一个公式、定理都要严格地从逻辑上加以证明后才能够确立。数学的推理步骤要严格遵守形式逻辑的各种法则,以保证从前提到结论的推导过程中,每一个步骤在逻辑上都是准确无误的。所以,运用数学方法从已知的关系推求未知的关系时,所得到的结论具有逻辑上的确定性和可靠性。而数学的这种逻辑确定性又是与数学的抽象性分不开的,没有高度的抽象性,就难以达到逻辑上的严格化。
爱因斯坦说得好:“为什么数学比其它一切科学受到特殊的尊重,一个理由是它的命题是绝对可靠的和无可争辩的,并且经常处于会被新发现的事实推翻的危险之中。”数学之所以声誉高,还有另一个理由,那就是数学给予精密自然科学以某种程度的可靠性,没有数学,这些科学是达不到这种可靠性的。
四、永恒的创新动力
黑格尔对于数学的智慧之美十分推崇,十二岁的爱因斯坦就被欧几里得平面几何体系的逻辑推理美和伟力所深深吸引。“数学那种所向披靡的力量是什么?难道不是人类智慧的力量吗?”在自然科学中,古老如数学的不多,创新如数学的更少,数学以其特有的生命力,展现在科学论坛上。数学运用于实际的关键在于建立较好的数学模型,所谓“数学模型”实际上能从“量”的方面,反映出所要研究问题的本质关系的模型。这是一个科学抽象的过程,分析和综合的过程。要善于把无关紧要的东西先撇在一边,抓住系统中的主要因素、主要关系,经过合理的简化,把问题用数学语言表述出来。在这样提炼成的数学模型上展开数学的推导和演算,以形成对问题的认识、判断和预测。这是数学运用抽象思维去把握现实的力量所在。
数学是思维的工具:随着电子计算机广泛应用,数学计算与推理进入了一个崭新的时代。科学实验研究、系统工程技术以及社会生活的各个方面都需要计算,其中有一些问题计算量之大,精确要求之高和速度之快,往往是人力难以胜任的。在电子计算机上进行数学定理的证明,使一些数学推理实现了智能化,从而帮助人们节约思维劳动,把许多人从繁琐的运算中解放出来。如同机器是人手的延伸一样,电子计算机是人脑的延伸。人脑加上电脑,人的智能加上计算机实现的人工智能,极大地增强了人类的思维能力。现在还出现了一种“数学实验”,即运用电子计算机对数学模型进行大量的试算---数学的和逻辑的演算。这对于复杂系统的研究和处理,有很大意义。因此从多个数学模型中挑选一个好的模型,或是在一个模型中挑选一组好的参数,需要通过数学实验,加以验算比较,从而对各个模型或各种参数做出评价。在社会管理、经济生活中,这种试算有可能是帮助决策人“深思熟虑”,选定优秀方案的一种手段。
由此可见,无论是计算、推理、以及模型的建立,都是数学的运用之美。我们完全有理由这样认为:数学是人类社会永恒的创新动力!
数学已广泛应用于自然科学、社会科学、管理科学等各个领域,成为这些领域的工具和语言。数学化,不仅仅出现在自然科学中,而且越来越多地出现在社会科学中。因此,数学是人类精神文明的一部分,无疑它也是人类文化的一个重要组成部分,本身应该属于文化的范畴。
所谓的数学文化包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流;通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。重视数学文化与其他文化的联系[2],真正理解数学是一个有机的整体,是科学思考和行动的基础。
五、数学与哲学
马克思主义哲学是具体学科的最普遍规律、方法的高度抽象和概括,同时又对具体学科有着重要的指导作用。数学是研究客观世界数量关系和空间形式的自然科学,数学反映了哲学范畴或基本矛盾的数量方面,数学有其逻辑严密性、高度抽象性、应用广泛性等特点,当然与哲学有很多相似之处,因而决定了其与哲学必有更为密切的联系。
(一)数学科学的发展,为哲学的发展提供了内容和证据 恩格斯指出,数学是“辨证的辅助工具和表现形式。”事物的发展总是由量变的积累到质变,质变又为新的量变开辟新的领域,每次质变都是量变积累的结果。例如在二次曲线中,当e=0,表示圆;当0
(二)哲学指导数学的研究与发展方向,促进了数学科学的发展 用辩证唯物主义哲学观点来看待数学,这不仅是认识数学的需要,而且也是研究数学、发展数学、保持数学之树常青的需要。借用模型研究原型的功能特征及其内在规律的数学模型方法,在当今已发展成为解决科学技术以及人脑思维等问题的最重要的一种常用方法。它运用数学变换方法揭示和把握了这种高度的抽象化和形式化。它的思想基础是辩证法:任何事物都是相互联系,不断发展变化的。因此作为一个数学模型其组成要素之间的相互依存和相互联系的形式是可变的。数学家利用这种可变的规律性,强化自身在解决数学问题中的应变能力,从而不断提高解决数学问题的能力。
六、数学与计算机
从帕斯卡发明第一台能做加减法运算的机械式计算机到图灵、冯·诺依曼提出现代计算机设计思想,数学家在计算机的产生和发展过程中始终扮演着重要的角色。计算机自诞生之日起便与数学结下了最为亲密的关系[3],这种关系一方面使计算机离不开数学,一方面也使计算机对数学产生了深层次的影响。
(一)数学是计算机的缔造者,为计算机科学提供了内容和方法 离散数学作为有力的数学工具,对计算机的发展、计算机科学的研究起着重大的作用。计算机发展初期,利用布尔代数理论研究开关电路从而建立了一门完整的数字逻辑理论,对计算机的逻辑设计起了很大的作用。在近期利用代数结构研究编码理论。利用谓词演算研究程序正确性等问题使离散数学在计算机研究中的作用越来越大,计算机科学中普遍采用其基本的概念、方法和思想,使得计算机科学越趋成熟与完善。
(二)计算机为数学提供了强有力的工具,拓宽了数学的发展空间
计算机的出现,对数学的发展、其他学科的发展与数学方法在诸多领域中的应用带来了巨大的影响,计算机快速、准确的计算能力为自然科学、社会科学的定量研究和用科学理论定量地指导实践打开了新的局面,使得近似计算方法作为一种科学方法开始发展起来。例如由于天气预报微分方程组中涉及的参数多,测得的各种数据十分复杂,计算机产生之前,往往需要利用手算或简单的计算器械花费几天甚至几十天的实践进行求解,预报也就失去了意义。而计算机的出现使得求解几分钟就能完成,天气预报才真正成为可能。随着经济、化学、生物、地理等学科数学化进程的加快,建立数学模型的实验方法的应用范围也大大加强。计算机快速、精确的计算机进行大量复杂计算的能力使得数学家能够把时间放在数学的发现和发明上,并且在计算机的帮助下形成了新的数学分支,例如计算数学、机器证明等等,繁荣了数学的发展,数学科学在社会发展中的地位得到了空前提高。
七、数学与经济
数学在经济分析
[4]
中有着重要的作用,它为解决以“变量”为对象的大量问题提供了一种深刻的思想方法,是运用定量分析法研究经济理论与管理问题的有效工具。随着社会的发展,数学与经济学二者的结合越来越紧密,数学成为每个从事经济专业的人进行经济实践和研究必备的工具。利用高等数学的知识可以分析商品的市场价格与需求量(供给量)之间的函数关系、经济最优化问题等。利用数学知识建立模型以后,能够成功解决许多经济问题。数学应用于经济学,并不意味着简单地将数学中的公式、定理、结论照搬,而是需要进行创造性的研究。正是在这样的意义下,经济学成了数学家、经济学家共同创造的领地。由于数学知识在经济中的应用,从而促进了数学的发展。数学应用于经济学
[5],不仅能灵活地建立经济模型,使复杂问题用世界统一的逻辑简单语言表达出来,而且由于计算机的参与,可以解决十分复杂、繁重的经济问题。因此,随着经济学的发展,数学将会显得日益重要。
八、数学与教育
在传授数学文化的过程中,我们要不失时机地对学生进行思想教育,塑造学生的优秀品质。首先数学是一门论证科学,它的发展史可以教育学生尊重事实,服从真理,养成言必有据的习惯。其次数学的研究和学习是一种连续的、不断发展、永无止境的探索活动,一个问题的研究往往需要几代人的共同努力,也可以耗费人一生的精力,因此数学文化的学习能促使人养成追求真理
[6],坚持真理的习惯,激发献身事业的热忱和执著,培养人勤奋进取的精神。再次,数学中大量计算有利于培养学生做事严谨、细致、准确的作风。最后,数学在实际工作和生活中的应用,可以培养学生理论联系实际的品德,脚踏实地的办事风格。这些优秀品质的形成都会使学生在将来的工作和生活中受益匪浅。
九、参考文献:
[1]崔瑞苹,数学文化中的美.郑州市科技工业学校
[2]杨菲,数学文化与其他文化关系的研究.天津市河西区职工大学
[3]郑丽.数学-计算机教育的基石[J].职业教育研究,2005,(11). [4]黄林静.基于高等数学在经济研究中的运用[J].商场现代化,2009,(5):62.
[5]杨丽贤,曹新成,关丽红.谈高等数学理论在经济领域中的应用[J].长春大学学报,2006,(12).
[6]丁石孙,张祖贵.数学与教育[M].大连:大连理工大学出版 社,2008.
第五篇:数学文化
数学文化
上大学了,第一次接触高等数学,感觉还不错,对于数学文化感觉如果能掌握了学习数学的方法,并能针对自己学习中所存在的问题加强其薄弱环节,对高等数学这门课程的学习是应该有所帮助的.笔者试图依照数学思想方法学习对个人整体素养提高的重要性,通过对数学思想方法的层次性划分,在微观方面提供学习数学的一些具体方法,以提高学生的学习效率数学思想方法学习对提高个体整体素养的有效性数学教育作为教育的一个重要组成部分,在发展人和社会方面有着极其重要的作用.数学教育的价值和目标:“数学的贡献在于对科学技术水平的推进与提高,对科技人才的培养和滋润,对经济建设的繁荣,对全体人民科学思维的提高和文化素质的哺育.”
数学是一门充满神秘与奇趣的学科“.一天怎样过24次新年?”“地球有多重?”“动物中的数学天才”“大金字塔之迷”“什么是电脑动物?”“人身上的尺子”“蝴蝶效应”“为什么芭蕾舞蹈演员要惦起脚尖跳舞?”等等,这些有趣的知识适当的在低年级给学生补充一下就容易让他们产生强烈的好奇心去想得到这些课本上没有的知识。学生怀着强烈的好奇心和积极的热情投入到教学中,从数学知识得到这些小知识。爱因斯坦说过:“兴趣是最好的老师。”
数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。
数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。
欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。
数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。
数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢?
数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔(M.C.Escher)的画、计算机画出的分形图,也是数学美的表现。名数学教育家波利亚有过这样的精辟的论述:“如果学生在学校里没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学教育就在最重要的地方失败了。”在数学课上根据学生的掌握情况,适当安排古今中外数学史上的一些名题,让学生打开自己的思路多做相关题型就会让他们更加丰富知识容量,增快思维的敏捷性。例如高斯8岁时做的1+2+3+4+5+„„+100=?不仅让学生感到数学的神秘还让学生学到了如何运用,对以后填方格以及求55+56+57+58+59+60=?这样类似的题都起到了很大的作用。还比如中外数学家解决”幻方”的方法很多:杨辉法、罗伯法、巴舍法等。我国的“百鸡问题”、“韩信点兵”“三人分钱”、“田忌赛马”这些数学名题,因其巧妙的解题思路向学生展现了数学的无穷魅力。
数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。