第一篇:空间中直线与直线之间的位置关系教学设计
《空间中直线与直线之间的位置关系》教学设计
西吉县回民中学
潘燕
教材分析
高中数学新课程标准对本节课的要求是:在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义。它既是研究空间点、直线、平面之间各种位置关系的开始,又是学习这些位置关系的基础。学情分析
学生通过前面知识的学习,具有一定的空间意识和空间想象能力,对数学学习有一定的兴趣,能够积极参与研究,但在分析推理能力、空间想象能力方面比较欠缺。在合作交流意识方面,发展不够均衡,有待加强。教学目标:
1、知识与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;
(5)异面直线所成角的定义、范围及应用。
2、过程与方法
(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。
3、情感与价值
让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。教学重点、难点
重点:异面直线的概念、异面直线所成的角与简单角的求法;公理4的运用.
难点:异面直线概念的理解与求法. 学法与教学用具
1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型、三角板 教学过程设计:
思考问题:空间直线与直线的位置关系有几种?
设计意图:由教科书第44页“思考”中的问题,引起学生注意,诱发学生探知的欲望,养成思考问题的习惯.
师生活动:(虚拟)教师放课件图片,引导学生观察:日光灯所在线与黑板左右两侧所在直线的位置关系,让学生发现,直线与直线有既不平行又不相交的位置关系.我们今天上课的内容是:
板书:空间中直线与直线的位置关系
观察:如图,长方体ABCD-A'B'C'D'中,线段A'B'所在直线与线段BC所在直线的位置关系如何? 学生:既不相交,又不平行.
教师:这种关系我们定义为异面直线.
板书:1.异面直线的定义:把不同在任何一个平面内的两直线叫做异面直线.(关键点:不同在任何一个平面内)概念辨析:
下列说法是否正确?请同学思考后回答:
如图,AD'平面A'B'C'D',BC平面ABCD,问AD',BC是否是异面关系。
教师:同学们要理解定义中关键词“不同在任何一个平面内”,虽然直线AD',BC是不在同一底面上,但它们却在对角面A1BCD1内,因此,它们不是异面直线。
由学生归纳空间直线的位置关系有且仅有三种:
板书:2.空间直线的位置关系:
板书:3.异面直线画法:(幻灯片给出图形及小标题):
(1).一个平面衬托画法:
(2).两个平面衬托画法:
(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律? 组织学生思考:
长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗?
生:平行
再联系其他相应实例归纳出公理4 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线
a∥b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。(2)例2(投影片)
例2的讲解让学生掌握了公理4的运用(3)教材P47探究
让学生在思考和交流中提升了对公理4的运用能力。
4、组织学生思考教材P47的思考题
(投影)
让学生观察、思考:
∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?
生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800 教师画出更具一般性的图形,师生共同归纳出如下定理
=>a∥c
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
教师强调:并非所有关于平面图形的结论都可以推广到空间中来。
5、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。
(2)强调:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选
2择无关,为了简便,点O一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0,);
③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例3(投影)
例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。
课堂练习
教材P49 练习1、2 充分调动学生动手的积极性,教师适时给予肯定。课堂小结
在师生互动中让学生了解:(1)本节课学习了哪些知识内容?(2)计算异面直线所成的角应注意什么? 板书设计 教后反思
本节课的教学目标是:理解异面直线的概念;会判断两条直线是否为异面直线;理解异面直线所成角的概念;会求简单的异面直线所成角的大小。通过本节课的教学,使学生感知数学,体验数学;培养学生的空间想象能力和化归转化能力;了解科学学习方法和研究方法,增强创新意识和实践能力,训练学生独立分析问题解决问题的能力。我在使用信息技术上还是很不成熟的,这既与客观条件有关系,也与我自己的认识和能力有关系,以后还有很多需要提高的地方。当然,在利用信息技术的同时,双基的训练不能忽略,还应当进一步加强,数学教学的本质是培养和锻炼学生的逻辑思维能力,我们不能为了用课件而用课件,在这节课我深有体会,比如课堂上我发现有部分学生忙于记笔记,而跟不上上课的思路,导致引导起来比较费力一些。应该根据不同的学生和课堂情形,灵活处理,要充分发挥学生的主体地位,真正从学生的发展这个角度来灵活实现信息技术与数学教学的有机整合。
第二篇:直线与平面之间的位置关系教学设计
一、教学目标
1、知识与技能:(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力。
2、过程与方法:(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;(2)让学生利用已有的知识与经验归纳整理本节所学知识。
二、教学重点、难点
重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教法
1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。
2、教法:观察类比,探究交流。
四、教学过程
(一)复习引入:空间两直线的位置关系:(1)相交;(2)平行;(3)异面
2.公理4 :平行于同一条直线的两条直线互相平行 推理模式: .
3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.5.空间两条异面直线的画法
6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式: 与 是异面直线
7.异面直线所成的角:已知两条异面直线,经过空间任一点 作直线,所成的角的大小与点 的选择无关,把 所成的锐角(或直角)叫异面直线 所成的角(或夹角).为了简便,点 通常取在异面直线的一条上
8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线 垂直,记作 .
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内 —— 有无数个公共点
(2)直线与平面相交 —— 有且只有一个公共点
(3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
例1下列命题中正确的个数是()
?内,则L∥?⑴若直线L上有无数个点不在平面
内的任意一条直线都平行?平行,则L与平面?(2)若直线L与平面
(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行
内任意一条直线都没有公共点?平行,则L与平面?(4)若直线L与平面
(A)0(B)1(C)2(D)
32、探析平面与平面的位置关系:
① 以长方体为例,探究相关平面之间的位置关系? 联系生活中的实例找面面关系.② 讨论得出:相交、平行。
→定义:平行:没有公共点;相交:有一条公共直线。→符号表示:α∥β、α∩β=b
→举实例:…
③ 画法:相交:……。平行:使两个平行四边形的对应边互相平行
④ 练习: 画平行平面;画一条直线和两个平行平面相交;画一个平面和两个平行平面相交
探究:A.分别在两平行平面的两条直线有什么位置关系?
B.三个平面两两相交,可以有交线多少条? C.三个平面可以将空间分成多少部分?
D.若,则
(三)、巩固练习
1.选择题,则a∥b??,b? ④若a∥?,则a∥?,则a∥b ③若a∥b,b∥?,b∥? ②若a∥?,则a∥??表示平面)①若a∥b,b?(1)以下命题(其中a,b表示直线,其中正确命题的个数是()
(A)0个(B)1个(C)2个(D)3个,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()?,b∥?(2)已知a∥
(A)2个(B)3个(C)4个(D)5个的位置关系一定是()?的距离都是a,则直线AB和平面?外有两点A、B,它们到平面?(3)如果平面
??(A)平行(B)相交(C)平行或相交(D)AB
=l,则l()?∩?,?,n∥平面?(4)已知m,n为异面直线,m∥平面
(A)与m,n都相交(B)与m,n中至少一条相交
(C)与m,n都不相交(D)与m,n中一条相交
教材P51 练习学生独立完成后教师检查、指导
(四)归纳整理、整体认识
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(五)作业:
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P51习题2.1 A组第5题
第三篇:2.1 空间点、直线、平面之间的位置关系 教学设计 教案
教学准备
1.教学目标
1、知识与技能
(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力。
2、过程与方法
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;(2)让学生利用已有的知识与经验归纳整理本节所学知识。
2.教学重点/难点
重点:空间直线与平面、平面与平面之间的位置关系。难点:用图形表达直线与平面、平面与平面的位置关系。
3.教学用具
投影仪等.4.标签
数学,立体几何
教学过程
(一)创设情景、导入课题
教师以生活中的实例以及课本P49的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题)
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点(3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 表示
α来
例4(投影)师生共同完成例4 例4的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:
(1)两个平面平行 —— 没有公共点
(2)两个平面相交 —— 有且只有一条公共直线
用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为
教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。教材P51 探究
让学生独立思考,稍后教师作指导,加深学生对这两种位置关系的理解 教材P51 练习
学生独立完成后教师检查、指导
(三)归纳整理、整体认识
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(四)作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P51习题2.1 A组第3题、第5题,B组第1题
课堂小结
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
课后习题 作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P51习题2.1 A组第3题、第5题,B组第1题
板书 略
第四篇:直线与圆的位置关系教学设计
直线与圆的位置关系(1)教学设计
教学目标:(一)教学知识点:
1.了解直线与圆的三种位置关系。2.了解圆的切线的概念。
3.掌握直线与圆位置关系的性质。(二)过程目标:
1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。
2.通过让学生发现与探究来使学生更加深刻地理解知识。(三)感情目标:
1.通过图形可以增强学生的感观能力。
2.让学生说出解题思路提高学生的语言表达能力。教学重点:直线与圆的位置关系的性质及判定。
教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。教学过程:
一、创设情境,引入新课
请同学们看一看,想一想日出是怎么样的? 屏幕上出现动态地模拟日出的情形。(把太阳看做圆,把海平线看做直线。)师:你发现了什么?
第 1 页(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。)让学生在本子上画出直线与圆三种不同的位置图。(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)
二、讨论知识,得出性质
请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系
设圆心到直线的距离为d,圆的半径为r 让学生讨论之后再与学生一起总结出: 当直线与圆的位置关系是相离时,dr 当直线与圆的位置关系是相切时,d=r 当直线与圆的位置关系是相交时,d 知识梳理:
直线与圆的位置关系 图形 公共点 d与r的大小关系 相离 没有 r 相切 一个 d=r 相交 两个 d
第 2 页
三、做做练习,巩固知识 抢答,我能行活动:
1、已知圆的直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:
2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别 为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。
师:前面两题中直接告诉了我们是直线的问题,而下面的这题是在三角形中解决直线与圆的位置关系,看题: 考考你
3.在Rt△ABC中,C=900,AC=3cm,BC=4cm.(1)以A为圆心,3cm为半径的圆与直线BC的位置关系是 以A为圆心,2cm为半径的圆与直线BC的位置关系是 以A为圆心,3.5cm为半径的圆与直线BC的位置关系是.师:同样地第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?(2)以C为圆心,半径r为何值时,⊙C与 直线AB相切? 相离?相交?
第 3 页(请同学们思考讨论后,再请个别同学说出答案)总结:作题时要找出d与r中哪些量在变化,而哪些没有变化的。
比如日出就是r没有变化而d发生了变化。不管哪些变了,哪些没有变,总之d,r和位置关系中,已经两个都可以求第三个量。
四、联系现实,解决实际
在码头A的北偏东60方向有一个海岛,离该岛中心P的15海里范围内是一个暗礁区。货船从码头A由西向东方向航行,行驶了18海里到达B,这时岛中心P在北偏东30方向。若货船不改变航向,问货船会不会进入暗礁区? 让学生完整解答。
五、归纳总结,形成体系 师:这节课你有何收获? 请个别学生回顾知识,教师再总结完整。
六、布置作业,课后巩固 分层作业:
1.基础题:作业本(2)P21;
2.自选题: 如图,一热带风暴中心O距A岛为2千米,风暴影响圈的半径为1千米.有一条船从A岛出发沿AB方向航行,问BAO的度数是多少时船就会进入风暴影响圈?
第 4 页
第五篇:直线与圆的位置关系教学设计
直线与圆的位置关系教学设计
大虹桥乡阳城一中
杨跟上
一:教材:
人教版九年义务教育九年级数学上册 二:学情分析
初三学生已经具备一定的独立思考和探索能力,并能在探索过程中形成自己的观点,能在倾听别人意见的过程中逐渐完善自己的想法,因此本节课设计了探究活动,给学生提供探索与交流的空间,体现知识的形成过程。
三教学目标(知识,技能,情感态度、价值观)
1、知识与技能
(1)了解直线与圆的位置关系
(2)了解直线与圆的不同位置关系时的有关概念(3)了解判断直线与圆相切的方法
(4)能运用直线与圆的位置关系解决实际问题 2.过程与方法
(1)通过运用直线与圆的位置关系解决实际问题,体验数学与现实生活的密切联系。(2)
能综合运用以前的数学知识解决与本节有关的实际问题。
3. 情感态度与价值观
(1)通过和点与圆的位置关系的类比,学习直线与圆的位置关系,培养学生类比的思维方法。
(2)培养学生的相互合作精神 四:教学重点与难点:
1.重点:直线与圆的位置关系 2难点:理解相切的位置关系
五:教学方法:
启发探究
六、教学环境及资源准备
1、教学环境:学校多媒体教室。2.教学资源
(1).教师多媒体课件,(2)学生准备硬币或其他类似圆的用具
七:教学策略选择与设计
1、自主学习策略:通过提出问题让学生思考,帮助学生学会探索直线与圆的位置关系关系。
2、合作探究策略:通过学生动手操作与相互交流,激发学生学习兴趣,让学生在轻松愉快的教学气氛下之下掌握直线与圆的位置关系。
3、理论联系实际策略;通过学生综合运用数学知识解决直线与圆的位置关系的实际问题,培养学生利用知识 解决实际问题的能力。
教学流程:
一.复习回顾,导入新课
由点和圆的位置关系设计了两个问题,让学生独立思考,然后回答问题,为下面做准备。
1.请回答点和圆有那几种位置关系?
2.如果设圆的半径是r,某点到圆心的距离为d,那么在不同的位置关系下,d和r有什么样的数量关系?
二:合作交流,探求新知
第一步,学生对直线与圆的公共点个数变化情况的探索。
通过学生动手操作和探索,然后相互交流,并画出图形,得出直线与圆的公共点个数的变化情况。
第二步,师生共同归纳出直线与圆相交、相切等有关概念。
第三步,直线与圆的位置关系的教学,我设计了三个问题:
1. 设圆O的半径为r, 圆心O到直线的距离为d,那么直线与圆在不同的位置关系下,d与r有什么样的数量关系?请你分别画出图形,认真观察和分析图形,类比点和圆的位置关系,看看d和r什么数量关系。
2.反过来,由d与r的数量关系,你能得到直线与圆的位置关系吗?
3.类比点和圆的位置关系,你能总结出直线和圆的位置关系吗? 通过引导学生由图形联想到数量关系,又由数量关系联系到图形,分两步引导学生思考,使学生更好的理解图形与数量之间的互推关系,培养学生类比的思维方法,并且为以后学习充要条件做准备。三:应用新知
我设计了两个问题,使学生学会通过计算圆心到直线的距离,来判断直线与圆的位置关系。四:巩固提高:
我设计了一个问题,让学生通过运用直线与圆的位置关系解决实际问题,体验数学与现实生活的密切联系。并且通过学生的相互交流,培养他们的合作精神。五:小结升华
通过让学生小结,培养学生善于总结和善与反思的习惯,为以后的学习打下良好的基础。六:布置作业
在本节的教学中,我设计了两个练习、一个作业加以巩固,使学生能更好的掌握本节内容