第一篇:整式的加减题型总结教案
整式的加减题型总结
专题
一、单项式,多项式的区别以及单项式的系数、多项式的最高次项与多项式的次数.例题:指出下列各式中,哪些是整式,哪些是单项式,哪些是多项式,并指出单项式以及多项式的次数.11xb1x22xy,xy,,,,1,2x2y
22xa3分析:本题考查单项式、多项式的定义及次数问题.解:单项式:2xy,1x,, 211x2多项式:xy,231x21x1整式:2xy,,,xy,2231x11x2其中:2xy,的次数为2;,的次数为0;,xy的次数为1.223定义:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.单项式中所有字母的指数的和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数,包括前面的符号.几个单项式的和为多项式.(多项式的每一项一定是单项式,像bb111,2x2y都不是多项式,因为,2x2y2x2,而不是单项式.).在多项式里次数aayy最高项的次数,叫做这个多项式的次数.单项式与多项式统称为整式.有关单项式与多项式的理解判断
1、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式
B.四次多项式或单项式 C.七次多项式 D.四次七项式 解析:B
2、若A是一个四次多项式,B是一个二次多项式,则“A-B”()A.可能是六次多项式 B.可能是二次多项式 C.一定是四次多项式或单项式 D.可能是0 解析:C
专题
二、多项式的排列
排列是指按某一个字母的指数的大小排列.降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来.多项式的排列升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来.例题:将多项式aabab4a分别按照a的升幂、降幂进行排列.解:按a的升幂排列为:aabab4a 按a的降幂排列为:4aababa 注:这里ab与a的次数一样.专题
三、有关系数为0型的题
此类型的题多会出现“……式中不含某次项,或者……式的取值与某一字母无关”的字眼,遇到这种题,假如说不含三次项,那么三次项的系数为0,若一个多项式的取值与某一字母无关,则含有这个字母的项的系数(不管几次)都为0.例题:已知关于x,y的多项式(3a2)x2(9a10b)xyx2y7中不含二次项,求3a5b的值.分析: 本题主要考查多项式的相关概念,该多项式中二次项有x2,xy项,依题意可知这两项的系数为0.23222232232a3a203解:依题意得
解得
39a10b0b5将其带入3a5b得:3a5b=3()5解题策略: 某一项不存在,则其系数为0.相关链接:
233=5 5 若多项式2xax3ybbx2x6y5的值与字母x无关,试求多项式
22226(a22abb2)(2a23ab4b2)的值.
解: 2xax3ybbx2x6y
5(2b)x(2a)x(36)yb5
∵多项式2xax3ybbx2x6y5的值与字母x无关,222ab0b2 解得: 2a0a26(a22abb2)(2a23ab4b2)
6a212ab6b22a23ab4b24a29ab10b24292(2)10(2)12
试一试,练一练
1、如果式子(2x2axy6)(2bx23x5y1)的值与字母x所取的值无关,试求式子a2b(a3b)的值.专题
4、去括号与添括号 去括号法则:
(1)括号前面是“+”号,把括号连同它前面的“+”号去掉,括号各项不变符号.(2)括号前面是“-”号,把括号连同它前面的“-”号去掉,括号内各项都改变符号.添括号法则:
(1)所添括号前面是“+”号,括到括号里的各项都不改变符号.(2)所添括号前面是“-”号,括到括号里的各项都要改变符号.例题:有理数a,b,c在数轴上的对应点分别为A,B,C其位置如图FX2-1所示,化简22
13221422ccbacba.解:由图知c0,bc0,ac0,ba0.原式=c(bc)(ac)(ba)c 专题
5、多项式的求值
1.如果整式7xx6的值为9,则整式21x3x5的值是()A.10 B.20 C.40 D.50 解析:此类题型关键是看所求多项式与已知多项式的结构关系(通常看次数最高的项),通过观察我们知道21x是7x的3倍,由题可知7xx69,则我们在等式两边同乘以3,步骤如下:3(7x2x6)93,21x3x1827,21x3x45,222222221x23x545550,即选D.亦可以先算出7x2x的值,然后再乘以3带入所要求解的多项式.这题隐约用到下一章要学的等式的性质1.2.已知a与1-2b互为相反数,则整式2a-4b-3的值是 ________.
专题6、探究规律题
1、有一列单项式:x,2x2,3x3,...,19x19,20x20,...(1)你能说出他们排列的规律吗?
(2)根据你发现的规律,写出第100个和第101个单项式;(3)你能进一步写出第n个和第n1个单项式?
分析:在寻找规律时,首先看系数的规律,其次看字母的规律.解:(1)每一项的系数正负相间,奇数项的系数为负,偶数项的系数为正,系数的绝对值等于项数;字母部分是x的幂,其指数等于项数。
(2)第100项是100x100;第101项是101xnn101
n1(3)第n个单项式是(1)nx;第n1个单项式是(1)
2、已知(a1)xy2(n1)xn1
3a1是关于x,y的六次单项式,试求下列代数式的值.(1)a2a1(2)(a1)
由(1)(2)小题的结果,你有什么想法?
3、若多项式6xn2x2n2是三次三项式,求代数式n22n1的值.分析:本题考查了多项式的相关概念与代数式求值的综合运用.本题多项式是三次三项式,说明多项式有三项,而且最高次项的次数为3,关键是确定那一项是最高次项,此题次数最高项可能是6xn2,也可能是x2n项,所以有两种情况.解:
规律方法:本题充分运用了分类讨论的数学思想解题.4、将杨辉三角中的每一个数都换成分数,得到一个如图2—1所示的分数三角形,称为莱布尼茨三角形.若用有序数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数那么(9,2)表示的分数是()
1,121
第一行 111,第二行
22111, 第三行
3631111,,第四行
412124
图2—1......111,从左到右第二个数是,mm1m111因为(9,2)表示第九行,从左到右第2个数,所以表示的分数是=
9872分析:仔细观察可知第m行,从左到右第一个数是
第二篇:整式加减教案
§ 4.4整式的加减
万国栋
※ 学习目标:
1、知识与技能:
让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。
2、过程与方法:
培养学生的观察、分析、归纳、总结以及概括、合作能力。
3、情感、态度、价值观:
认识到数学是解决实际问题和进行交流的重要工具。
4、学习重点:正确进行整式的加减。
5、学习难点:总结出整式的加减的一般步骤。
※ 复习检测
复习:单项式,多项式,同类项,去括号。
※ 数学小游戏
把你的出生月份数乘2,加10,再把和乘5,加上你家的人口数(小于10),记录结果;
我就知道你出生月份和你家有几口人。若结果为133 答案:你出生于8月份,你家有3口人
※
新课引入 ※ 整式生活秀
1、苹果每斤4元,小红买了x斤。桔子每斤3元,小丽买了y斤。(1)两人买水果共花了______
元。(2)小红比小丽多花了______
元。(3)你能表示两人共花了多少钱吗?(4)你能计算两个整式的差吗?(5)你能把结果化简吗?
2、七年级
(二)班分成公益活动小组,第一组有 m人,第二组比第一组的2倍少10人;第三组人数 是第二组的一半。七年级
(二)共有到少人?(1)第二组人数为:(2)第三组人数为:(3)全班共有到少人:
注:在实际情境中体会整式加减
※ 探索方法
计算:2b3+(3ab2-a2+b3)-2(ab2+b2)注:探究整式加减的的实质;去括号,合并同类项。总结整式加减的步骤。
※ 自主探究
1、求多项式2a2+3a-1 与4a2-4a+2的差。
22、先化简,后求值(5a2-3b2)-3(a2-b2)-(-b2)其中a=5,b=-3
注:灵活运用整式的加减的步骤进行运算。
※ 巩固提高 ,B2xx1;1若多项式 A3x2x1计算多项式A-2B。
2005,y12、求(2x2-3xy+y2-2xy)-(2x2-5xy+2y-1)的值,其中 x222004※大家谈一谈(小组合作)
3、有这样一道题:已知A=2a2+2b2-3c
2,B=3a2-b2-2c2,C=c2+2a2-3b2,当a=1,b=2,c=3时,求A-B+C的值.”有一学生说,题中给出b=2,c=3是多余的,他说的有道理吗?为什么? ※ 课堂小结:
1.整式的加减实质就是去括号、合并同类项这两个知识的综合。2.整式的加减的一般步骤: ①如果有括号,那么先算括号。②如果有同类项,则合并同类项。
※ 作业设计 :课本P138
A组2.3.4.P139B组 3.4.※补充
2一个多项式A加上
3x
5x
得
2x
x
3,求这个多项式A?
整式加减-----教学反思
自我评价:
整式的运算是解方程、解不等式的重要基础。整式的加减是学生学习了单项式、多项式的有关概念,这节课学习整式的加减,它是整式运算的基础。我在教学中从学生已有的认知发展水平和已有的知识与经验出发,利用学生感兴趣的小游戏开场,提高学生的活跃程度。在教学中尝试了“创造情景,提出问题;层层推进,提出猜测;相互交流,归纳提升”的教学策略,学生在独立探索,合作交流中捕捉到学习的知识。
本节课不足之处,比如对活动时间的把控上,活动的时间少,准备不充分,幻灯片有错误。以致后面的教学实践不足,进行的有些仓卒;评价的方式有些单一,不能全面的了解学生的学习历程。
因此,今后应注意:
1.要不断学习新的教学理念,更新教学观念,使数学教学面向全体学生,实现——人人学有价值的数学,人人能获得必需的数学,不同的人在数学上得到不同的发展。
2.注意评价的多元化,全面了解学生的数学学习经历,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
3.备课应该更充分,随时应对课堂的突发情况。
第三篇:整式加减教案
第24课时 2.2 整式的加减(1)
教学目标: 知识与技能
(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项.
(2)能先合并同类项化简后求值.
重、难点与关键
1.重点:掌握合并同类项法则,熟练地合并同类项. 2.难点:多字母同类项的合并.
教学过程
一、新授
我们来看本章引言中的问题(2).
在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+120×2.1t,即100t+252t 1.类比数的运算,我们应如何化简式子100t+252t呢?
(1)运用有理数的运算律计算:
100×2+252×2=______;100×(-2)+252×(-2)=________.
(2)根据(1)中的方法完成下面的运算,并说明其中的道理.
思路点拨:根据逆用乘法对加法的分配律可得:100t+252t=________.
2.填空:(1)100t-252t=()t;(2)3x2+2x2=()x2;
(3)3ab—4ab=()ab.具备什么特点的多项式可以合并呢?
观察(1)中多项式的项100t和-252t,它们都含有相同字母t,并且t的指数都是1;(2)中的多项式的项3x+2x都含有相同字母x,并且字母x的指数都是2;(3)•中的多项式的项3ab2和-4ab2都含有字母a,b,并且字母a的指数都是1,b的指数都是2.
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项.
3.思考:下列各组是不是同类项:
(1)0.5x2y和0.2xy2;(2)4abc和4ab;(3)-5m2n3和2n3m2;(4)7xnyn+1和-3xnyn+1.
把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.
若两个同类项的系数互为相反数,则两项的和等于零,即这两项相抵消,如-3ab2+3ab2=(-3+3)ab2=0·ab2=0.
多项式中只有同类项才能合并,不是同类项不能合并.
通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x2+5x+5或写成5+5x-4x2.
二、范例学习
例1.合并下列各式的同类项:
(1)xy-
2222
215xy;(2)-3xy+2xy+3xy-2xy;(3)4a+3b+2ab-4a-4b.
12222222222 例2.(1)求多项式2x2-5x+x2+4x-3x2-2的值,其中x=
.(2)求多项式3a+abc-
13c-3a+
13c的值,其中a=-
16,b=2,c=-3.
例3.(1)水库中水位第一天连续下降了a小时,每小时平均下降2cm,•第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,•下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
三、巩固练习课本第66页,练习第1、2、3题.
四、课堂小结
1.什么叫同类项?字母相同,次数也相同的项是同类项吗?举例说明. 2.什么叫合并同类项?怎样合并同类项?合并同类项的依据是什么?
对于求多项式的值,不要急于代入,应先观察多项式,看其中有没有同类项,若有,要先合并同类项使之变得简单,而后代入求值.
五、作业布置
1.课本第71页习题2.2第1、7、10题. 2.选用课时作业设计.
第一课时作业设计
一、填空题. 1.如果5x2y与12xmyn是同类项,那么m=______,n=______.
2.合并同类项:(1)-a-a-2a=________.(2)-xy-5xy+6yx=________.
二、选择题.(3)0.8ab2-a2b+0.2ab2=_______.
3.下列各组式子中是同类项的是().
A.-2a与a2 B.2a2b与3ab2 C.5ab2c与-b2ac D.-4.下列运算中正确的是().
A.3a2-2a2=a2 B.3a2-2a2=1 C.3x2-x2=3 D.3x2-x=2x
三、合并下列各式中的同类项: 5.-7mn+mn+5nm;6.
四、求下列各式的值: 8.3x2-8x+2x3-13x2+2x-2x3+3,其中x=-1b=0.01.
10.2(x-2y)2-4(2x-y)+(x-2y)2-3(2x-y),其中x=-1,y= [提示:分别把(x-2y),(2x-y)看作一个整体]
12125617ab2和4ab2c
x-
12x-
x23;7.3ab-4ab-4+5ab+2ab+7.
2222
.9.a2b-6ab-3a2b+5ab+2a2b,其中a=0.1,.
第四篇:整式的加减的教案
教学目标
1.知识与技能:掌握去括号法则,运用法则,能按要求正确去括号.
2.过程与方法:通过去括号法则的推导,培养学生观察能力和归纳能力;通过去括号法则的应用,培养学生全方位考虑问题的能力.
3.情感态度与价值观:让学生体验在数学学习活动中充满了探索与创造,在探索中学会与人合作、交流,在探索中体验成功的快乐.
教学重点
本节课的重点是去括号法则及其应用.教学难点
点是括号前面是“—”号,去括号时括号内各项要变号的理解及应用.
教学准备
多媒体课件
教学过程
一.创设情景,激活思维
1.根据题意,列代数式
① 周三下午,校阅览室内起初有a 名同学.后来某班级组织同学阅读,第一批来了b 位同学,第二批来了c 位同学.则阅览室内共有多少同学?你能用两个代数式表示吗?
② 若阅览室内原有 a名同学,后来有些同学因上课要离开,第一批走了b 位同学,第二批走了c 位同学.试用两种方式写出阅览室内还剩下的同学数.
(点评:选取了学生熟悉的教学资源为背景,提出问题,引入新课,调动学生的学习积极性.)
二.积极探索,活跃思维
1.观察上面①中的两个代数式,它们的运算顺序一样吗?结果一样吗?②中的两个代数式呢?试用数学语言表示你的发现.
2.请同学们思考一下,你周围还有没有与问题①和②相仿的问题,把它提出来.(点评:在得出a+(b+c)=a+b+c和 a-(b+c)=a-b-c后,并不是按惯例马上就引导推出去括号的法则,而是继续让学生提出类似的问题,让学生参与进来,感受并理解去括号法则.)
例如本章引言中的问题:
(1)+120(t-0.5)=+120t-60
(2)-120(t-0.5)=-120t+60
3.再请大家观察 a+(b+c)=a+b+c和a-(b+c)=a-b-c 这两个式子,它们有什么特点?
4.由上面的分析探索,体会应该如何去括号?试用文字语言表达你的结论.
(点评:通过让学生自主探究,体验新知的产生过程,由感性认识上升到理性认识.)
概括:去括号法则:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
三.典型例题,知识迁移
例题
1(1)a+(b-c)(2)a-(b-c)
(3)a+(-b-c)(4)a-(-b-c)
(点评:应用新知,解决问题,突出学生自主学习.)
例题2.化简下列各式:
(1)8a+2b+(5a-b);??
(2)(5a-3b)-3(a2 -2b).
(点评:应用新知——去括号,同时复习旧知——合并同类项,在解决问题的过程中为后面“整式的加减”埋下伏笔.突出学生自主学习.)
例题3两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
注意:顺水速度=静水速度+水速
逆水速度=静水速度-水速
解:(1)2小时后两船相距:
2(50+a)+2(50-a)=100+2a+100-2a=200(千米
(2)2小时后甲船比乙船多航行
2(50+a)-2(50-a)=100+2a-100+2a=4a(千米)
四.巩固提高,体验成功
练习:课本67页1,2五.课堂小结
今天你有哪些收获?
六.作业设计
课本第70页1、2.2 3,4,5??
2、选做课本70页 2.2? 7,8
课后反思
去括号这节内容,看似容易,实际上是学生最易出错的地方.整式的加减与有理数运算中,学生最容易搞错的地方就是括号和符号.在去括号这节内容的教学中,教师决不能疏忽大意.
第五篇:整式的加减 教案
整式的加减 教案
整式的加减
一、教学目标:
知识与技能目标
会用代数式表示简单问题中的数量关系,并能利用去括号、合并同类项等法则验证所探索的规律。
过程与方法目标
通过观察、分析、总结等一系列过程,经历探索数量关系、运用符号表示规律、运算验证规律的过程,进一步培养学生的数学逻辑思维。
情感态度与价值观目标
通过学生动手操作、观察、思考、猜想等过程,体验数学活动是充满着探索性和创造性的过程,通过合作交流,体会在解决问题的过程中与他人合作的重要性。
二、教学重点与难点:
重点:学会探索数量关系,运用符号表示规律。
难点:学会从不同角度探索数量关系表示规律。
三、教学方法:
教师引导式与学生探究、合作交流式相结合的方法。
四、教学用具: 日历、粉笔、黑板、多媒体等。
五、教学过程:
1、新课引入
小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:
活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形
⑴填写下表:
⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒? ★注意引导学生概括“探索规律”的一般步骤:
寻找数量关系;用代数式表示规律
验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢? 活动二:探索具体情景下事物的规律
问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法? 问题2.若按图2方式摆放桌子和椅子
⑴一张桌子可坐6人,2张桌子可坐 人。⑵按照上图方式继续排列桌子,完成下表:
问题3.如果按图3的方式将桌子拼在一起
⑴2张桌子拼在一起可坐多少人?3张呢?n张呢? ⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
活动三:探索图表的规律
下面是2010年五月份的日历:
1.日历图彩色方框中九个数之和与方框正中间的数有什么关系?通过计算找出这个关系。这个关系在其他方框中也成立吗?(学生观察日历方框中九个数,四人小组讨论并计算验证自己的结论,四人小组再任选一方框计算验证结论是否成立。)2.这个关系在任何一个月的日历中也成立吗? 3.如果用a表示中间数请学生按前面找出的关系填出框中另外8个数。
(引导学生观察横,竖列三个相邻数之间的关系。)发现:
规律一,横列三个相邻数,后者比前者多1。
规律二,竖列三个相邻数,下一个比上一个多7 让学生想一想,并引导学生用代数式填写,如下: a-8 a-7 a-6 a-1 a a+1 a+6 a+7 a+8 用式子表示九个数的关系:
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8)=9a(使学生体会符号运算可以用来验证所发现的规律。)规律三:方框中九个数的和是正中间这个数的九倍。
3、小结
其实在我们周围的生活中存在着许多很多的数学信息,今天我们就利用数学知识发现了很多身边事物所存在的数学规律。希望同学们做生活的有心人,继续去探索周围生活中的数学规律。
4、作业
观察生活,编一道探索数学规律的题
六、预期的教学效果
1.学生更进一步的体会字母表示数的意义。
2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
3.通过交流合作,体验在解决问题的过程中与他人合作的重要性。
具有相反意义的量学案 有理数的加法与减法3
更多初一数学教案请关注