第一篇:教案-七年级数学上第01课1.1正数和负数
资料有大小学习网收集 www.xiexiebang.com 第1课时
§1.1 正数和负数
(一)举例说明:3、2、0.5、一、教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。2.知道什么是正数和负数。3.理解数0表示的量的意义。
1等是正数(也可加上“十”)31-
3、-
2、-0.5、-等是负数。
34、数0既不是正,也不是负数,0是正数和负数的分界。0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。2.会用正、负数表示具有相反意义的量。
(三)巩固提高:
练习:课本P5练习(由学生板演)
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
二、教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
(四)课时小结:
这节课我们学习了哪些知识?你能说一说吗?
三、教学难点:
理解负数,数0表示的量的意义。
四、教学方法:
师生互动与教师讲解相结合。
(五)课后作业:
课本P7习题1.1的第1、2、4、5题。
(六)活动与探究:
在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
六、板书设计:
§1.1 正数和负数
(一)1.问题引入
正数和负数是用来表示具有
相反意义的量 2.举例说明生活中正数和负数
3.负数的概念
零既不正数,也不是负数
七、后记:
五、教具准备:
地图册(中国地形图)。
六、教学过程:
(一)创设问题情境,引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?
内容:老师说出指令: 向前两步,向后两步; 向前一步,向后三步; 向前两步,向后一步; 向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+
2、-
2、+
1、-
3、+
2、-
1、+
4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
(二)讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
资料有大小学习网收集 www.xiexiebang.com
第二篇:七年级数学上册 1.1《正数和负数》教案
1.1正数和负数
课前热身温故知新
1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
3、阅读课本P3和P4三幅图(重点是三个例子,边阅读边思考)
回答上面提出的问题:.学习目标有的放矢
1、会区分两种不同意义的量,会用符号表示正数和负数.2、用正、负数表示具有相反意义的量
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.指点迷津授之以渔
学习重点:两种意义相反的量
学习难点:正确会区分两种不同意义的量
教学方法:引导、探究、归纳与练习相结合教学流程
一 未雨绸缪
1.预习:阅读P5练习前面的内容
2.小试牛刀
1)做P5练习1-4题,填写在书上。
二 课堂探究
1.自主学习
1、正数与负数的产生
1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—
3、—
8、—47。
归纳总结:正数、负数的概念
1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
2.合作探究(兵教兵)
认真分析下面例题,交流自己的答题情况
例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.3.成果展示
4.质疑解疑
在同一个问题中,分别用正数与负数表示的量具有的意义。
5.平行训练
1).任意写出5个正数:________________;任意写出5个负数:_______________.
2).小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3).已知下列各数:13,2,3.14,+3065,0,-239. 54
则正数有_____________________;负数有____________________.
4).如果向东为正,那么-50m表示的意义是„„„„„„„„„()
A.向东行进50m
B.向南行进50m
C.向北行进50m D.向西行进50m B.O是最小的正数 D.0既不是正数,也不是负数5).下列结论中正确的是 „„„„„„„„„„„„„„„„()A.0既是正数,又是负数C.0是最大的负数
6).给出下列各数:-3,0,+5,311,+3.1,,2004,+2008. 22
其中是负数的有 „„„„„„„„„„„„„„„„„„„„()
A.2个B.3个C.4个D.5个
6.画龙点睛
1)具有相反意义的量的特征:(1)有两个量(2)有相反的意义
2)相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
3)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
三 提高拓展
1.零下15℃,表示为_________,比O℃低4℃的温度是_________.
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最
高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________.
4.写出比O小4的数,比4小2的数,比-4小2的数.
5如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米
处游动,试用正负数分别表示潜水艇和鲨鱼的高度.
6.甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度
是.7.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
第三篇:1.1正数和负数教案
人教版义务教育教科书◎数学七年级上册
1.1 正数和负数(第1课时)
内容简介 1.《正数和负数》是人教版义务教育教科书七年级数学第一章第一节. 2.“正数与负数”是“有理数”一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾数的产生和发展,然后通过引言中温度、产量增长率、收支情况的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用.
学情分析
1.学生已经学过了正整数、正分数和零的知识,即正有理数及“0”的知识,还学过用字母表示数的知识,这些都是学习本节内容的基础.
2.负数是一个比较抽象的概念,为了让学生能比较容易理解负数,要多采用从学生的生活实际出发,让学生理解由于知识面的不断扩大,引入负数的必要性.
教学目标
1.借助生活中的实例,感受引入负数的必要性,认识到数的产生和发展离不开生活和生产的需要.
2.知道什么是正数和负数,并会用正、负数表示实际问题中的数量. 3.理解数“0”表示的量的意义.
4.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法. 5.通过本节课的学习,培养观察、想象、归纳与概括的能力. 6.通过正负数的学习,渗透对立、统一的辩证思想. 教学重点
1.知道什么是正数和负数.
2.理解数“0”表示的量的意义. 教学难点
理解负数、数“0”表示的量的意义. 教学策略
1.通过师生共同活动,创设问题情景,展示一些在实际生活中出现“负数”应用的图片,激发学生对新知识的兴趣,引入“负数”.
2.通过学生主动学习和研讨,让学生自己完成对负数概念的引入.
3.课前把学生分成几个学习小组,培养学生主动学习与合作学习的能力. 教学资源
1.教具:电脑、PPT课件(或相应图片)、投影仪. 2.学具:地图册等.
教师备课系统──多媒体教案
3.多媒体教室. 教学时数 1课时.
教学内容:1.1 正数和负数.
教学目标
1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念. 2.能区分两种相反意义的量,会用符号表示正数和负数.
3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣. 教学重点
两种相反意义的量. 教学难点
正确区分两种相反意义的量. 教学过程
一、设置情境 引入课题
上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重74.5千克,今年33岁.我们的班级是七(1)班,有50个同学,其中男同学有27个,占全班总人数的54%„„
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗?
请同学们看教材(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数.
二、分析问题 探究新知
问题3:前面带有“-”(负)号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
建议教师以本章引言中的实例加以说明. 这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,然后师生交流.也可以让学生阅读本章引言中的实例,并思考上面的问题.
明确:上述问题中,表示温度、产量增长率、收支情况时,既要用到数 3,1.8%,3.5 等,还要用到数-3,-2.7%,-4.5,-1.2等,它们的实际意义分别是:零下3摄2 人教版义务教育教科书◎数学七年级上册
氏度,减少2.7%,支出4.5元,亏空1.2元.
我们知道,像3,1.8%,3.5这样大于0的数叫做正数.像-3,-2.7%,-4.5,-1.2这样在正数前加符号“-”(负)号的数叫做负数.有时,为了明确表达意义,在正数前面也加上“+”(正)号.
强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.
三、举一反三 思维拓展
经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子. 问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?请举例说明.
四、实例演练 深化认识
教科书第3页例题.
例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.
(2)某年,下列国家的商品进口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%. 解:(1)这个月小明体重增长2 kg.小华体重增长-1 kg,小强体重增长0 kg.(2)六个国家这一年商品进出口总额的增长率是:
美国
-6.4%,德国
1.3%,法国
-2.4%,英国
-3.5%,意大利
0.2%,中国
7.5%.
五、小结
围绕下面两点,以师生共同交流的方式进行.
1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了.
2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.
本课作业:教科书第5页习题1.1第1,2,4,5题. 本课评析
密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应
教师备课系统──多媒体教案
过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理.
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点.当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.
这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了.
第四篇:1.1正数和负数 教案(推荐)
1.1正数和负数
教学目标:
1.了解负数的产生过程,能判断一个数是正数还是负数,认识具有相反意义的量。
2.正确理解正数和负数的概念以及0表示的量的意义。3.借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。教学过程
一、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
三、自主学习
1.认识正数、负数以及0.(1)像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,11+2,+0.5,+,…就是3,2,0.5,…一个数前面的“+”、“-”号叫做它33的符号,这种符号叫做性质符号。
(2)数0既不是正数,也不是负数,但0是正数与负数的分界数.
(3)0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。2.用正负数表示具有相反意义的量
(1)把0以外的数分为正数和负数,起源于表示两种相反意义的量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。(2)请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。(3)你能再举一些用正负数表示数量的实际例子吗?
(4)例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
四、巩固练习
课本第3页,练习1、2、3、4题。
五、课堂小结 为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。
基础知识详解:
1.正数和负数的概念:
大于0的数叫做正数,小于0的数叫做负数。正数前面的“+”可以省略,但负数前面的“-”不可以省略。
注意:不能简单的认为带“+”的数就是正数,带“-”的数就是负数,例如+(-3)不是正数,-(-5)不是负数。2.“0”的认识:
0既不是正数也不是负数,它是正数和负数的分界。0既表示没有也表示有,它常用来表示某些量的基准数。
3.用正数和负数表示具有相反意义的量:
为了表示具有相反意义的量,我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数来表示。
第五篇:1.1正数与负数教案
1.1正数与负数教案
[教学目标]
1.使学生了解正数与负数是从实际需要中产生的;
2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;
3.初步会用正负数表示具有相反意义的量;
4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。
[教学重点和难点]
负数的意义。
[课堂教学过程设计]
一、从学生原有的认知结构提出问题 大家知道,数学与数是分不开的,它是一门研究数的学问。现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、,我们用到整数1,2。
为了表示半小时、四元八角七分、,我们需用到分数 和小数4.87、。
为了表示没有人、没有羊、,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
二、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,高于和低于其意义是相反的。
又如,某仓库昨天运进货物 吨,今天运出货物 吨,运进和运出,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,5℃表示零下5℃。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做正算黑,负算赤。如今这种方法在记账的时候还使用。所谓赤字,就是这样来的。现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进货物 吨,记作;运出货物 吨,记作。
教师讲解:什么叫做正数?什么叫做负数?强调,0既不是正数,也不是负数,它是正、负数的界限,表示基准的数,零不是表示没有,它表示一个实际存在的数量。并指出,正数、负数的+、-号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
三、运用举例变式练习
例 所有的正数组成正数集合,所有的负数组成负数集合。把下列各数中的
正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4.8,+73,-2.7,,-8.12,此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用图表示集合,也可以用大括号表示集合。
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ },负数集合:{ }。
四、小结
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正
数是大于0的数,负数就是在正数前面加上-号的数。0既不是正数,也不是
负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、作业
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖周中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数?
-16, 0.004,,,25.8,-3.6,-4,9651,-0.1。
4.如果-50元表示支出50元,那么+200元表示什么?