第一篇:《圆锥的认识和体积计算》说课设计
《圆锥的认识和体积计算》说课设计
一.教材分析:
今天我说课的内容是人教版小学数学第十二册第二单元的“圆锥的认识和体积计算”。本单元是小学阶段学习几何知识的最后一部分内容,圆锥的认识和体积计算是在学生掌握了圆柱的认识、表面积、体积计算的基础上进行教学的,它是后继学习立体几何知识的重要基础。
根据教材内容,本课教学的重点是认识圆锥的特征,掌握圆锥体积的计算方法。而根据六年级学生的认知规律和我班学生的实际情况,我认为推导圆锥体积的计算方法是本课的难点。
根据以上的分析,本课时的教学目标是:(1)使学生认识圆锥,掌握圆锥的特征和圆锥体积的计算方法;会应用公式计算圆锥的体积并解决一些实际问题。(2)通过对圆锥的认识、体积公式的推导,培养学生实践操作、逻辑推理的能力和发展空间观念。(3)在推导公式的实验中,培养学生良好的合作习惯;获得成功的体验和学习的乐趣。二.学情分析;本课教材分圆锥的认识和体积计算两部分内容,体积计算中又分体积公式的推导及公式的运用。教材先通过介绍几个圆锥的实物,抽象出圆锥几何图形,接着介绍圆锥的底面、侧面、顶点和高,以及如何测量圆锥的高来认识圆锥的。然后让学生用厚纸制作等底等高的圆锥和圆柱各一个,猜猜这个圆锥体积和它等底等高圆柱体积之间的关系,再利用实验推导出圆锥体积计算公式,最后通过例3直接运用公式求圆锥的体积,又安排练一练,提高运用公式的能力。三.教学模式
采用“童真课堂”教学法,抓住五个凡是::凡是学生能独立解决的,由个人独立解决;凡是学生不能独立解决的,有AB同学合作解决;凡是AB同学合作不能解决,由小组同学合
作解决;凡是小组同学合作不能解决的,由全班同学解决;凡是全班同学不能解决的,教师和大家一起解决。四.教学设计:
(一)创设情境,引入新课。
我先用媒体呈现学生堆沙堆的画面,学生仔细观察,说说这是一个什么图形?引出圆锥。接着问:我们日常生活中哪些物体的形状也是这样的呢?学生思考后相互说说,再集体交流,然后利用多媒体抽象出圆锥的立体几何图形。在此基础上,引入课题。这环节通过与生活的联系,使学生初步感性圆锥,感悟数学与生活的联系。
(二)观察操作,认识圆锥的特征
我先让学生取出圆锥学具,引导学生看一看,摸一摸,问:有什么发现?学生先小组说说对圆锥的认识,在此基础上,全班交流,引出圆锥的特征,教师板书:底面、侧面、高。接着我请学生测量圆锥的高,学生分小组动手测量,全班交流时,我请两组不同测量方法的学生到讲台上进行演示,随即设问:什么是圆锥的高呢?该怎样测量?学生小组讨论,再全班交流,电脑演示圆锥的高,进一步明确高的概念和测量方法。这环节,通过学生看一看,摸一摸,说一说等活动,使学生在充分感知的基础上,进一步认识圆锥的特征,又通过学生尝试测高,使学生产生争论,在争论逐步理解高,建立圆锥的空间观念。
(三)自主探索,验证体积公式
我先借助媒体出示四个体积不同的圆锥并编上号,问:你能比较出它们体积的大小吗?学生可能一下着说出3号体积最大和4号体积最小,而1号,2号无法看出。教师随即设问:3号4号为什么能一下子看出来呢?你们觉得圆锥的体积会与什么有关系?使学生认识到跟底面积和高的大小有关。接着引导学生思考用什么办法来比较1号与2号呢?学生可能会说用体积计算公式底面积乘以高除以3来算一算。教师追问:你们确信圆锥的体积=底面积×高÷3吗?怎样验证?学生小组讨
论,可能会说用一个圆锥装满水后倒入一个圆柱里,看倒了几次;也可能会用底面积和高相等的圆柱、圆锥分别放入水面一样高的相同的容器中,看水面上升的高度。接着我组织学生到讲台上领取实验需要的材料分小组实验,学生动手操作、合作交流。交流时,引导学生说说为什么有的组验证成功的,而有的组却没有成功?在观察比较中,学生发现等底等高的情况下圆锥的体积才等于圆柱体积的三分之一。在此基础上引出圆锥的体积计算公式。这环节,通过比较圆锥的体积,使学生感悟到圆锥的体积与底面积和高有关,通过验证公式,使学生亲身经历圆锥体积公式的推导过程,在验证中掌握公式,培养学生的动手实践能力。
最后出示例题,学生独立审题,尝试解答,再让学生分组算算1号,2号圆锥的体积,比较大小。这环节放手让学生独自解决问题,有利于培养学生解决问题的能力,调动学生学习的积极性。
(四)灵活运用,拓展创新
根据以上内容,我准备在实践练习中安排四个层次的内容。
1.出示一些组合的立体图形,让学生指出各图的名称,使学生进一步认识圆锥。
2.出示一些判断题。先让学生独立判断,再集体交流。让学生深刻理解圆锥与圆柱体积之间的关系。
3.习题超市。出示已知底面积、半径、直径、周长和高,求圆锥的体积的一组习题。学生自主选择解答,再集体交流。这满足了不同学生的需求,体现了学生的自主性。
4.让学生拿出一把直角三角尺,以一条直角边为轴,绕一圈,想想是什么图形?并求出它的体积。先让学生操作,再讨论并解答。这是一道开放题,不仅发展了学生的空间想象能力,还提高了学生的发散思维。
综合这节课的教学程序,本课的教学特色是:(1)以学生发展为本开展课堂有效教学。根据学生已有的经验,创设堆
沙堆的情境,激发学习欲望,充分为学生提供动手操作、合作交流的机会来验证、推导圆锥的体积公式,体现了学习的自主性。(2)注重学生思维的发展。在认识圆锥、验证公式时,都放手让学生自主探索,激发了学生的思维,在实践练习中,让学生计算三角尺旋转后的体积,发散了学生的思维,培养了空间观念。五.板书设计
圆锥体积等于等底等高的圆柱体积的三分之一 圆锥的体积=底面积X高X1/3
V=1/3S 六.课堂评价
1.坐的最好,写的字真漂亮。(学习习惯)2.你们小组真棒,这么快就把问题解决了;
这个小组,有的剪,有的摆,分工非常明确; 这个小组讨论的非常认真。(合作学习)3.你讲的很有道理,如果能把语速放慢一些,其他同学听得就更清楚了。(优化语言)七.资源开发 1.用好教材资源 2.活用生活资源。3.善用活动资源 4.巧用学生资源
第二篇:圆锥的体积说课
圆锥的体积说课
川汇区城北办黄庄小学
陈春兵
一、说教材
圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式(P42)和圆锥体积计算公式的具体运用(P43例
1、例2)。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(一)教学目标
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。
2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
(二)教学重、难点和关键
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
二、说教法
以谈话法、实验法为主,讨论法,读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满大米往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
三、说学法
1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。
四、说教学过程
(一)、导入课题
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。
回答:(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?
这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。
(二)新授
(1)引入新课
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
(2)教学圆锥体积公式
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满大米往等底等高的圆柱中倒和在圆柱中装满大米往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V=Sh。
31第四、让学生做在小圆锥里装满大米往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
(3)练习
1、填空:
(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。
2、教学应用体积公式计算体积
(1)教学例1(电脑出示题目)
例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生读题,找出题目中的已知条件和问题。(全班尝试练习,指名回答。)
这题采取“放”方法,让学生尝试探究,使学生在探究中求知。
(2)巩固练习(电脑出示题目)
(1)基本练习。一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视,做完后集体订正)。
(2)变式练习。只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?
(3)小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以,还要注意单位统一。
(4)教学例2(出示例2)
例2在打谷场上,有一个近似圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得保留整千克)
学生读题、想:要求小麦的重量,必须先求什么?(先分组讨论,再尝试练习,个别板演,然后集体评讲。)
(三)、师生小结,质疑问难:这节课我们学到了什么知识?还有什么不懂得的问题?
(四)布置作用
1、做P51练习十二的第3-5题,(学生练习,教师巡视,个别辅导,特别注意对学习有困难的学生的辅导。)
2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习)。
第三篇:圆柱和圆锥圆锥的认识以及体积计算
圆柱和圆锥 圆锥的认识以及体积计算
教学目标:
l.认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养同学们初步的空间观念和发展同学们的思维能力。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学理念:1.学习的方式以动手实践、自主探索与合作交流为主。
2.科学的结论是通过“猜想——验证”探究得来的。
教学设计:
教学步骤:
教师活动过程
学生活动过程
一、复习引新
1. 说出圆柱的体积计算公式。
2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第41页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
1.学生口答
二、教学新课
1. 认识圆锥特征。
2.推导圆锥体积计算公式
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第41页插图,和学生举的例子通过课件或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习九第1、2题。
5.教学圆锥高的测量方法。(见课本第41页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。
1. 学生回答
2.观察圆锥,认识圆锥的特征
3.学生口答
4. 学生自学
5. 学生测量
第四篇:《圆锥体积的计算》教学设计
《圆锥体积的计算》教学设计
◆您现在正在阅读的《圆锥体积的计算》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《圆锥体积的计算》教学设计教学内容:
《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。
教学目标:
1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。
2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。
3、培养学生的合作意识及主动探索知识的精神。
教学重点:
让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。
教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。
教学准备:
1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。6
2、教学软件。
教学流程:
一、创设情景,激趣引新。
1、首先教师手中拿一圆柱体问:同学们,老师想知道这个圆柱体的体积你们能帮助我吗?
(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)
2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。
〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉
二、小组合作,探究学习。
1、动手操作,测量圆锥体的体积。
要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。
〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉
3、分组汇报不同的方法。
〈学生在汇报时可边讲解边示范〉
方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。
方法二:利用手中的一立方厘米的小木块进行估算。
方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。
方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh
〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉
(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?
(2)学生再次在小组内操作探究。
(3)汇报结论。
(4)微机演示。
当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。
◆您现在正在阅读的《圆锥体积的计算》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《圆锥体积的计算》教学设计
〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉
4、评价以上各种办法
同学们的结论是用公式计算比较方便。
三、解决实际问题
(问题一)
1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)
2、汇报结果。
先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]262立方厘米(忽略厚度,即把溶剂可看作体积)
(问题二)
1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?
2、汇报结果。
用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262236克
3、验证计算结果
用称称一称,比较一下结果。
4、讨论两次结果为什么不同。
由于测量时厚度不计,计算时是近似值。都存在误差。
〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉
(问题三)
利用圆锥体积公式计算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(问题四)
计算不规则物体体积或容积。(直说出计算的方法即可)
1、用什么方法计算出葫芦能装多少水?
2、胡萝卜的体积怎样计算?
3、不规则的零件体积计算?
〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉
四、总结全课
说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。
第五篇:《圆锥体积的计算》教学设计
教学目标:
1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。
2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。
3、培养学生的合作意识及主动探索知识的精神。
教学重点:
让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。
教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。
教学准备:
1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。62、教学软件。
教学流程:
一、创设情景,激趣引新。
1、首先教师手中拿一圆柱体问:同学们,老师想知道这个圆柱体的体积你们能帮助我吗?
(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)
2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。
〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉
二、小组合作,探究学习。
1、动手操作,测量圆锥体的体积。
要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。
〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉
3、分组汇报不同的方法。
〈学生在汇报时可边讲解边示范〉
方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。
方法二:利用手中的一立方厘米的小木块进行估算。
方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。
方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh
〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉
(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?
(2)学生再次在小组内操作探究。
(3)汇报结论。
(4)微机演示。
当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。
您现在正在阅读的《圆锥体积的计算》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《圆锥体积的计算》教学设计〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉
4、评价以上各种办法
同学们的结论是用公式计算比较方便。
三、解决实际问题
(问题一)
1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)
2、汇报结果。
先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]262立方厘米(忽略厚度,即把溶剂可看作体积)
(问题二)
1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?
2、汇报结果。
用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262236克
3、验证计算结果
用称称一称,比较一下结果。
4、讨论两次结果为什么不同。
由于测量时厚度不计,计算时是近似值。都存在误差。
〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉
(问题三)
利用圆锥体积公式计算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(问题四)
计算不规则物体体积或容积。(直说出计算的方法即可)
1、用什么方法计算出葫芦能装多少水?
2、胡萝卜的体积怎样计算?
3、不规则的零件体积计算?
〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉
四、总结全课
说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。