第一篇:七年级数学下册 1.5 平方差公式(教案 北师大版
平方差公式
本节课是在学生学习了单项式乘法、单项式与多项式乘法及多项式乘法之后的一节课。从知识上来讲,实际上不是新知识,而是上一节整式乘法的一个特例。因而可以引导学生在已有整式乘法知识的基础上,归纳这一乘法结果的普遍性,让学生明确这一公式来源于整式乘法。除了从代数角度来认识这个公式之外,还要引导学生理解这个乘法公式的几何背景,可以加深学生对这个乘法公式的直观印象,体会数形结合的数学思想方法。
学生前面已经学习了整式乘法,对多项式乘法法则的形成及几何意义有一定的了解,这对学习本节课的知识有一定的帮助。相信,在问题的引导下,学生应该和乐意用自己已学的知识来发现新的结论,学习新的知识。这一点是与新课程标准中让学生经历知识形成过程的要求相符的。但是对学生来说,如何从项的角度来理解平方差公式的特征,以区别与其他多项式相乘的算式会有一定的困难,再加上要学生用图形来解释所得的乘法公式,要求有点高,估计学生会需要老师的帮助。
义务教育阶段的数学新课程标准明确指出:数学教学活动必须建立在认识发展水平和已有的知识经验的基础之上。强调从学生已有的生活经验出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流、获得知识,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识和能力,增强学好数学的信。
《平方差公式—第二课时》教学设计说明
一、学生起点分析
学生的知识技能基础:通过前面的学习,学生已经会运用平方差公式进行简单的运算,并且掌握了字母表示数的广泛意义,学会了一些探索规律的方法。
学生活动经验基础:本节课从组织学生运用平方差公式进行判断正误入手,通过拼图游戏引入新课。学生在探索这个问题的过程中,将自然体会到数形结合的思想,同时体会符号运算对证明猜想的作用,并灵活运用平方差公式进行计算。
二、教学任务分析
本节课从组织学生运用平方差公式进行判断正误入手,通过拼图游戏引入新课。学生在探索这个问题的过程中,将自然体会到数形结合的思想,同时体会符号运算对证明猜想的作用,并灵活运用平方差公式进行计算。本节课的教学要培养学生的推理能力,使学生通过大胆而又合情合理的推理,有条理地表达自己的思考过程。由此,根据课标要求,我确定本节课的目的如下:
1.知识与技能:
(1)发展学生的符号感和推理能力;(2)了解平方差公式的几何背景。2.数学思考、解决问题:
(1)在进一步体会平方差公式的意义时,发展推理和有条理的表达能力;(2)通过拼图游戏,与同伴交流平方差公式的几何背景。
3.情感与态度:在发展推理能力和有条理的表达能力的同时,通过小组讨论学习,培养学生的团结协作精神。
三、教学设计分析
本节课的设计理念是:遵循“教学、学习、研究”同步协调的原则,让学生在探究合作交流的过程中,展示思维过程,让学生的思维全过程得到充分暴露,学生在再发现、再发明的过程中,思维火花发生强烈碰撞,数学结论的发现、生成为自然的事情.本节课可以按如下教学方式展开:放手做一做—引导想一想—鼓励说一说—特例验一验—设法证一证(多项式展开、几何图形解释)—规律用一用。
第一环节 复习回顾
活动内容:1.提问平方差公式的内容 2.判断正误:
(1)(a+5)(a-5)=a5(2)(3x+2)(3x-2)=3x2(3)(a-2b)(-a-2b)=a4b(4)(100+2)(100-2)=1002=9996(5)(2a+b)(2a-b)=4ab 提问:
⑴两个二项式相乘,因式要具备什么特征时,积才会是二项式?(当因式是两个数的和与这两个数的差相乘时,积是二项式。)....222222222⑵为什么具备这些特点的两个二项式相乘,积会是二项式?而它们的积又有什么特征?(这是因为具备这样特征的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于因式中这两个数的平方差。)活动目的:通过学习旧知,为学习新知识做铺垫。这些都是学生常出错的题目,通过做题引导学生积极地思考并对学生的思维进行调控,帮助学生优化思维过程,进一步理解平方差公式。实际教学效果:学生议论、讨论,各抒己见,找到了正确的做法;运算时不但要注意到字母,还要注意到系数。
第二环节 拼图游戏,验证公式
活动内容:如左图,边长为a的大正方形中有一个边长为b的小正方形。1.请表示图中阴影(紫色)部分的面积。
2.小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗?
aabb 图1 a2-b2 图2(a+b)(a-b)3.比较1,2的结果,你能验证平方差公式吗? ∴ a2-b2 =(a+b)(a-b)4.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.
活动目的:让学生完整地经历“猜想——验证——证明”的过程。若从代数的角度,运用多项式乘法法则计算出结果,进一步明确平方差公式的运算本质;若从几何背景的角度,使平方差公式更具有直观性,避免对公式的死记硬背,使平方差公式的学习更有意义。学生学习数学是与具体实践活动分不开的,重视动手操作,是发展学生思维,培养学生数学能力最有效途径之一。新编数学教材的特点之一,是重视直观教学,增加了学生的实践活动和动手操作内容。为此,操作活动成了课堂教学过程中的一个重要环节。设计这个环节,不仅能使学生获得知识更容易,而且有利于提高学生的逻辑思维能力。通过让学生了解平方差公式的几何背景,进一步了解平方差公式的意义,并初步了解平方差公式的逆运用。说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让学生体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.
实际教学效果:师:“在一块边长为厘米的正方形纸板上,因为工作的需要,中间挖去为b厘米的小正方形,请问剩下的面积有多少?”我们该怎样列代数式来表示?
生:我们可以用a-b来表示剩下的面积。师:还有没有别的方法?
生:也可以用(a+b)(a-b)来表示剩下的面积。
师:今天我们除了找一个比较方便的方法来求面积外,更重要的是我们能从图形中了解到(a+b)(a-b)=a-b这个性质。
安排平方差公式产生的几何背景,使学生经历过实际问题“符号化”的过程。本节课我从复习旧知识入手,观察面积图形了解几何图形背景等一些手段来调动学生学习的积极性,活跃课堂气氛,达到了一定的效果。但用面积相等来证明平方差公式的准确性部分学生难以理解。
第三环节 巩固深化,拓展思维 活动内容:例1 运用平方差公式计算 22
22(1)()()()(2)()()()例2 运用平方差公式计算
(1)(200+1)(200-1)(2)102×98(3)203×197(4)201619 77活动目的:例1两个题都需要运用两次平方差公式,锻炼学生对平方差公式的灵活运用;例2目的是运用平方差公式进行一些有关数的简便运算。通过找规律,利用平方差公式简化数字运算,学生可以体会符号运算对证明猜想的作用,同时使学生较容易的运用平方差公式进行数字运算。
实际教学效果:例1两个题掌握较好;例2需做如下引导:要想用平方差公式,必须把式子写成(+)(-)的形式。引导学生积极地思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供学生交流讨论的机会,学生学会对自己的数学思想进行组织和澄清,并能清楚地、准确地表达自己的数学思想,能通过对其他人的思维和策略的考察,扩展自己的数学知识和使用数学语言的能力,学生会自觉地、主动地、积极地学习,以“问”之方式来启发学生深思,以“变”之方式诱导学生灵活善变,以“梳”之方式引导学生归纳总结. 102=100+2 98=100-2 203=200+3 97=100-3 116620=20+ 19=19+ 7777练习.请每位同学自编两道能运用平方差公式计算的题目
第四环节 感受问题,体验成功 活动内容: 例3 计算
(1)a2(ab)(ab)a2b2
(2)(2x5)(2x5)2x(2x3)例4 填空
(1)a2-4=(a+2)()(2)25-x2=(5-x)()(3)m2-n2=()()思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习1 填空
1.x2-25=()()2.4m2-49=(2m-7)()3.a4-m4=(a2+m2)()=(a2+m2)()()练习2 判断
(1)(a+b)(-a-b)=a-b22 1111abba332(2)计算: 2111111原式babab2a223234 3活动目的:加入简单的混合运算之后,逐步让学生养成识别公式特征并自觉套用的习惯。题目中加入了逆向使用公式的题目,让学生双向应用公式的过程中提高学生公式的应用能力。同时,有意识地通过练习慢慢渗透因式分解的思想。例3两个题的目的,是整式的混合运算,平方差公式的运用,能使运算简便;还需要注意的是运算顺序以及结果一定要化简。例4的目的使让学生体会平方差公式的逆用。
通过有提示的填空题形式,学会如何运用平方差公式解题。巩固所学知识,在练习中发现问题,及时解决。
实际教学效果:此题目错解原因在于没有仔细观察,看到第二个括号里有负号就误以为是(a-b).此题目中两个二项式各项都属相反项,没有相同项,故不能用平方差公式.解题时往往只对字母平方,而忽略了系数,本题错解原因就在于此. 第五环节 扩展能力
1.(221)(241)(281)(2161)22.1234512346123443.观察下列各式:(x1)(x1)x21(x1)(x2x1)x31(x1)(x3x2x1)x41根据前面的规律可得:(x1)(xnxn1x1)________活动内容:
以上题目视学生情况而定。
第六环节 归纳总结,形成知识网络 活动内容:让学生谈谈自己的感受
活动目的:整理本节课的知识点,突出学习重点,明确新、旧知识间的联系,归纳整理重要的数学思想,让学生感觉学有所得。实际教学效果:
鼓励学生结合本节课的学习,谈自己的收获与感想。
第七环节 布置作业习题1.12
四、教学设计反思
本节课从复习旧知识入手,通过计算比赛,观察面积图形了解几何图形背景等一些手段来调动学生学习的积极性,活跃课堂气氛,达到了一定的效果。为了保证基本的运算技能,教学中要适当、分阶段地提供一些必要的训练,使学生能准确地运用平方差公式进行简单的运算,并能明白每一步的算理。但是教学中要避免过多、繁琐的运算。
通过引导学生亲自动手参与活动﹐培养学生解决实际问题.初中生以形象思维为主,试图达到数与形的结合.动手操作又是一个手脑并用的过程,是解决数学知识抽象性与初中生思维形象性之间矛盾的一个有效方法,同时,探索过程中的丰富情感体验可让学生由“要我学”的被动性转变为“我要学”的主动性.通过实验操作,促进学生变抽象为具体,培养了学生“用数学”的意识.通过本节课的设计实现教学目标,并培养学生了学生创造、归纳、演绎、数学建模的数学素质。
第二篇:七年级数学1.5平方差公式同步测试题
1.5
平方差公式
同步测试题
班级:_____________姓名:_____________
一、选择题
(本题共计
小题,每题
分,共计24分,)
1.若x2-y2=100,x+y=-25,则x-y的值是()
A.5
B.4
C.-4
D.以上都不对
2.下列可以用平方差公式计算的式子是()
A.(x-y)(y-x)
B.(a+3)(a+3)
C.(-x+y)(-x-y)
D.(-a-3)(a+3)
3.下列各式中,计算结果为81-x2的是()
A.(x+9)(x-9)
B.(x+9)(-x-9)
C.(-x+9)(-x-9)
D.(-x-9)(x-9)
4.观察下面图形,从图1到图2可用式子表示为()
A.a+ba-b=a2-b2
B.a2-b2=a+ba-b
C.a+b2=a2+2ab+b2
D.a2+2ab+b2=a+b2
5.已知M=4-122+124+128+1216+1,则M的个位为()
A.1
B.3
C.5
D.7
6.3a-2b-3a-2b=()
A.9a2-6ab-b2
B.b2-6ab-9a2
C.9a2-4b2
D.4b2-9a2
7.在边长为a的正方形中挖去一个边长为b的小正方形()(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()
A.B.C.D.8.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()
A.(a+b)(a-b)=a2-b2
B.(a-b)2=a2-2ab+b2
C.(a+b)2=a2+2ab+b2
D.a2+ab=a(a+b)
二、填空题
(本题共计
小题,每题
分,共计21分,)
9.已知a+b=4,a-b=3,则a2-b2=________.
10.计算:(-1-2a)(2a-1)=________.
11.计算:(x+2)(x-2)(x2+4)=________.12.若(2a+2b+1)(2a+2b-1)=63,则a+b=________.
13.若(2x-3y)⋅N=9y2-4x2,那么代数式N应该是________.
14.已知x-ax+a=x2-9,那么a=________.
15.在边长为a的正方形纸片中剪去一个边长为b的小正方形(a>b)(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是________.(用字母表示)
三、解答题
(本题共计
小题,共计75分,)
16.怎样简便就怎样计算:
(1)1232-124×122(2)(2a+b)(4a2+b2)(2a-b)
17.化简:3a+2b-3a+2b9a2+4b2.
18.(1+2a)(1-2a)(1-4a2)
19.计算:2x+12x-14x2+1.20.解答下列小题:
25=()2,9x2=()2 .
观察多项式x2-25,9x2-y2,它们有什么共同特征?尝试将它们分别写成两个因式的乘积,并与同伴交流.
平方差公式:把乘法公式a+ba-b=a2-b2反过来,就得到____________.
21.观察下列算式:39×41=402-12,48×52=502-22,65×75=702-52,83×97=902-72…,请你把发现的规律用字母表示出来.(给定字母m,n)
22.乘法公式的探究及应用.
(1)如左图,可以求出阴影部分的面积是________(写成两数平方差的形式);
(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是________,长是________,面积是________.(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式________.(用式子表达)
(4)运用你所得到的公式,计算下列各题:
①10.3×9.7
②(2m+n-p)(2m-n+p)
23.在边长为a的正方形的一角减去一个边长为的小正方形(a>b),如图①
(1)由图①得阴影部分的面积为________.(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为________.(3)由(1)(2)的结果得出结论:________=________.(4)利用(3)中得出的结论计算:20212-20202
第三篇:北师大版七下1.5《平方差公式》教案1
1.5平方差公式
【课标与教材分析】:
1.经历探索平方差公式的过程,并能运用公式进行简单的计算.2.感受数学公式的意义和作用.培养学生观察、发现、归纳、概括、猜想能力和有条理的表达能力.【学情分析】已经经历具体问题符号化的过程,积累自主探究、合作学习的经验,培养了一定的符号感和推理能力.同时在整式运算等相关知识的学习过程中,学生经历了许多探究学习的过程,具有了一定的独立探究意识和从具体问题情境中抽象出数量关系和变化规律的能力.但学生的抽象思维能力、逻辑思维能力、数学符号化能力有限,理解平方差公式的推导过程和结构特点可能会有一定困难.所以教学中应尽可能多地让学生动手操作,突出平方差公式的探索过程,自主探索出平方差公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力和合作学习能力.【教学目标】 经历探索平方差公式的过程,了解公式的几何背景,并能运用平方差公式,进行简单的计算,以及实际问题的解决
【教学重点】能运用平方差公式,进行简单的计算.【教学难点】理解平方差公式的推导过程和结构特点.【教学方法】先学后教,再练 【教学媒体】课件,学案 【教学过程】 【复习巩固】
(x+2)(x-2)=(1+3a)(1-3a)=(x+3)(x-3)=(x+5y)(x-5y)=(x+4)(x-4)=(y+3z)(y-3z)= 【新课探究】
观察以上算式及结果,你发现了什么规律?
再换一个例子验证一下你的发现对吗?可与同学交流。
结论:两数 与这两数 的,等于他们的,这个公式 称为平方差公式 其结构特征是:
(1)公式左边是两个二项式相乘,两个二项式中第一项 第二项(2)公式右边是两项的,即相同项的 与相反项的 之差。尝试用字母表示出这个公式:(a+b)(a-b)= 尝试练习
请判断下列式子符合平方差公式的结构吗?如果符合,请说出哪部分相当于 第一项和第二项
(a+3)(a-3)(2a+3b)(2a-3b)(5x+1)(5x-2)(-3x+2y)(-3x-2y)(-1-3y)(-1+3y)(-3a-2b)(-2b+3a)(-3x-2y)(-3y-2x)(1+3x)(-3x+1)(-x-y)(x-y)(a+b)(a-b)(2
21nna+3b)(0.5a-3b)(a+b)(a-b)2典例示范
例1 计算
1、(5+6x)(5-6x)
2、(x-2y)(x+2y)
3、(-m+n)(-m-n)
针对性练习(-
【自我检测】
基础达标 课本21页随堂练习和知识技能题1、2 112x-y)(-x+y)(ab+8)(ab-8)(m+n)(m-n)+3n 44
能力提升:(a+1)(a-1)(a2+1)(2+1)(22+1)(2
4+1)(28
+1)+1 已知x2-y2=8,(x-y)=4,求x+y的值(1-122)(1-1132)¨¨(1-92)(1-1102)+1
【板书设计】 1.5平方差公式(1)一(a+b)(a−b)=a2−b2 两数和与两数差的积,等于它们的平方差
二、例题 利用平方差公式计算:
(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)
三 巩固练习利用平方差公式计算:
(1)(a+2)(a-2);(2)(3a+2b)(3a-2b)
(主备人:鲍山中学
王梅老师)
第四篇:七年级数学下册 1.7平方差公式教案(二) 北师大版
1.7平方差公式
(二)教案
一、教学任务分析
本节课从组织学生运用平方差公式进行判断正误入手,通过拼图游戏引入新课。学生在探索这个问题的过程中,将自然体会到数形结合的思想,同时体会符号运算对证明猜想的作用,并灵活运用平方差公式进行计算。本节课的教学要培养学生的推理能力,使学生通过大胆而又合情合理的推理,有条理地表达自己的思考过程。由此,根据课标要求,我确定本节课的目的如下:
1.知识与技能:
(1)发展学生的符号感和推理能力;(2)了解平方差公式的几何背景。2.数学思考、解决问题:
(1)在进一步体会平方差公式的意义时,发展推理和有条理的表达能力;(2)通过拼图游戏,与同伴交流平方差公式的几何背景。
3.情感与态度:在发展推理能力和有条理的表达能力的同时,通过小组讨论学习,培养学生的团结协作精神。
二、教学设计分析
本节课的设计理念是:遵循“教学、学习、研究”同步协调的原则,让学生在探究合作交流的过程中,展示思维过程,让学生的思维全过程得到充分暴露,学生在再发现、再发明的过程中,思维火花发生强烈碰撞,数学结论的发现、生成为自然的事情.本节课可以按如下教学方式展开:放手做一做—引导想一想—鼓励说一说—特例验一验—设法证一证(多项式展开、几何图形解释)—规律用一用。
第一环节 复习回顾
活动内容:1.提问平方差公式的内容 2.判断正误:
(1)(a+5)(a-5)=a5(2)(3x+2)(3x-2)=3x2 222(3)(a-2b)(-a-2b)=a4b(4)(100+2)(100-2)=1002=9996(5)(2a+b)(2a-b)=4ab 提问:
⑴两个二项式相乘,因式要具备什么特征时,积才会是二项式?(当因式是两个数的和与这两个数的差相乘时,积是二项式。)....⑵为什么具备这些特点的两个二项式相乘,积会是二项式?而它们的积又有什么特征?(这是因为具备这样特征的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于因式中这两个数的平方差。)活动目的:通过学习旧知,为学习新知识做铺垫。这些都是学生常出错的题目,通过做题引导学生积极地思考并对学生的思维进行调控,帮助学生优化思维过程,进一步理解平方差公式。
第二环节 拼图游戏,验证公式
活动内容:如左图,边长为a的大正方形中有一个边长为b的小正方形。1.请表示图中阴影(紫色)部分的面积。
2.小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? 222222aabb 图1 a2-b2 图2(a+b)(a-b)3.比较1,2的结果,你能验证平方差公式吗? ∴ a2-b2 =(a+b)(a-b)2 4.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.
活动目的:让学生完整地经历“猜想——验证——证明”的过程。若从代数的角度,运用多项式乘法法则计算出结果,进一步明确平方差公式的运算本质;若从几何背景的角度,使平方差公式更具有直观性,避免对公式的死记硬背,使平方差公式的学习更有意义。学生学习数学是与具体实践活动分不开的,重视动手操作,是发展学生思维,培养学生数学能力最有效途径之一。新编数学教材的特点之一,是重视直观教学,增加了学生的实践活动和动手操作内容。为此,操作活动成了课堂教学过程中的一个重要环节。设计这个环节,不仅能使学生获得知识更容易,而且有利于提高学生的逻辑思维能力。通过让学生了解平方差公式的几何背景,进一步了解平方差公式的意义,并初步了解平方差公式的逆运用。说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让学生体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活. 第三环节 巩固深化,拓展思维 活动内容:例1 运用平方差公式计算(1)()()()(2)()()()
例2 运用平方差公式计算
(1)(200+1)(200-1)(2)102×98 3(3)203×197(4)201619 77活动目的:例1两个题都需要运用两次平方差公式,锻炼学生对平方差公式的灵活运用;例2目的是运用平方差公式进行一些有关数的简便运算。通过找规律,利用平方差公式简化数字运算,学生可以体会符号运算对证明猜想的作用,同时使学生较容易的运用平方差公式进行数字运算。
第四环节 感受问题,体验成功 活动内容: 例3 计算
(1)a2(ab)(ab)a2b2
(2)(2x5)(2x5)2x(2x3)
例4 填空
(1)a2-4=(a+2)()(2)25-x2=(5-x)()(3)m2-n2=()()思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习1 填空
1.x2-25=()()2.4m2-49=(2m-7)()3.a4-m4=(a2+m2)()=(a2+m2)()()练习2 判断
(1)(a+b)(-a-b)=a2-b2 1a111(2)计算: 23b3b2a
111111原式babab2a223234 3活动目的:加入简单的混合运算之后,逐步让学生养成识别公式特征并自觉套用的习惯。题目中加入了逆向使用公式的题目,让学生双向应用公式的过程中提高学生公式的应用能力。同时,有意识地通过练习慢慢渗透因式分解的思想。例3两个题的目的,是整式的混合运算,平方差公式的运用,能使运算简便;还需要注意的是运算顺序以及结果一定要化简。例4的目的使让学生体会平方差公式的逆用。
通过有提示的填空题形式,学会如何运用平方差公式解题。巩固所学知识,在练习中发现问题,及时解决。第五环节 扩展能力
1.(221)(241)(281)(2161)22.1234512346123443.观察下列各式:(x1)(x1)x21(x1)(x2x1)x31(x1)(x3x2x1)x41根据前面的规律可得:(x1)(xnxn1x1)________活动内容:
以上题目视学生情况而定。
第六环节 归纳总结,形成知识网络 活动内容:让学生谈谈自己的感受
活动目的:整理本节课的知识点,突出学习重点,明确新、旧知识间的联系,归纳整理重要的数学思想,让学生感觉学有所得。第七环节 布置作业
习题1.12
四、教学设计反思
第五篇:【湘教版】七年级数学下册:2.2.1《平方差公式》教案
百度文库
平方差公式
教学目标:
一、知识与技能
经历探索平方差公式的过程,进一步发展学生的符号感和推理能力;
二、过程与方法
会推导平方差公式,并能运用公式进行简单的计算;
三、情感、态度与价值观: 了解平方差公式的几何背景。教学重点:
1、弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点;
2、会用平方差公式进行运算。教学难点:会用平方差公式进行运算 教学方法:探索讨论、归纳总结。教学过程:
一、预学
1、计算下列各式(复习):
(1)x2x2(2)13a13a(3)abab
2、观察以上算式及其运算结果,你发现了什么规律?
3、讨论归纳:平方差公式:ababa2b2
文字叙述:两个数的和与这两个数的差的积等于这两个数的平方差。
二、探究
1、范例分析 P102 例1至例3 例
1、运用平方差公式计算:
(1)2x12x1(2)x2yx2y 解:原式=(2x)212 解:原式=x2(2y)2 =4x1 =x4y 2注意题目中的什么项相当于公式中的 a和 b,然后正确运用公式就可以了。
例2 运用平方差公式进行计算:(1)(2x11y)(2xy)(2)4ab4ab(3)(y+2)(y-2)(y2+4)2211121222解:(1)(2xy)(2xy)=(2x)(y)=4xy
2224(2)4ab4ab=(4a)2b2=16a2b2
(3)(y+2)(y-2)(y2+4)=(y2-4)(y2+4)=(y2)2-42=y4-16
三、精导
百度文库
百度文库
运用平方差公式计算:102×98 解: 102×98 =(100+2)(100-2)=1002-22 =10000-4
=9996
四、提升
1、练习P103 练习题 1至3题
2、小结:平方差公式:ababa2b2的几何意义如图所示
使用公式时,应注意两个项中,有一个项符号是相同的,另一个项符号相反的,才能使用这个公式。
五、课堂小结
六、布置作业:P107习题4.3 A组 第1题
思考题:若x2y212,xy6,求x和y的值。
百度文库