第一篇:1.1.9函数的单调性与最大(小)值教案
§1.1.9函数的单调性与最大(小)值(1)
第一课时 单调性
【教学目标】
1.知识与能力目标
(1)理解函数的单调性、最大(小)值及其几何意义。(2)学会运用函数图象理解和研究函数的性质.。
(3)理解增区间、减区间等概念,掌握增(减)函数的证明和判别。2.过程与方法目标
(1)逐步借助图像、表格、自然语言和数学符号语言,建立增(减)函数的概念。(2)学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养,借助函数图象的直观性得出函数的最值,(3)培养学生利用数学语言对概念进行概括的能力。3.情感态度与价值观目标
(1)通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯.(2)通过问题链的引入,激发学生学习数学的兴趣;学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习的信心。【教学重点难点】
重点:函数的单调性和最值及其几何意义.
难点:增函数、减函数、奇函数、偶函数形式化定义的形成.利用函数的单调性定义判断、证明函数的单调性 【教学过程】 导入新课
如图1-3-1-8所示,观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
图1-3-1-8 随x的增大,y的值有什么变化? 引导学生回答,点拨提示,引出课题.设计意图:创设情景,引起学生兴趣.推进新课 新知探究 提出问题
问题①:分别作出函数y=x+2,y=-x+2,y=x2,y=化规律.如图1-3-1-9所示:
1的图象,并且观察自变量变化时,函数值的变x 1
图1-3-1-9 问题②:能不能根据自己的理解说说什么是增函数、减函数? 设计意图:从图象直观感知函数单调性,完成对函数单调性的第一次认识:直观感知.问题③:如图1-3-1-10是函数y=x+和减函数吗?
2(x>0)的图象,能说出这个函数分别在哪个区间为增函数x
图1-3-1-10 设计意图:使学生体会到用数量大小关系严格表述函数单调性的必要性.问题④:如何从解析式的角度说明f(x)=x2在[0,+∞)上为增函数?
设计意图:把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习作好铺垫.问题⑤:你能用准确的数学符号语言表述出增函数的定义吗? 设计意图:让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.引导方法与过程:问题①:引导学生进行分类描述图象是上升的、下降的(增函数、减函数),同时明确函数的图象变化(单调性)是对定义域内某个区间而言的,是函数的局部性质.问题②:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.学生的困难是难以确定分界点的确切位置.问题③:通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.问题④:对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1、x2.问题⑤:师生共同探究:利用不等式表示变大或变小,得出增函数严格的定义,然后学生类比得出减函数的定义.归纳总结:1.函数单调性的几何意义:如果函数y=f(x)在区间D上是增(减)函数,那么在区间D上的图象是上升的(下降的).2.函数单调性的定义:略.可以简称为步调一致增函数,步调相反减函数.讨论结果:①(1)函数y=x+2,在整个定义域内y随x的增大而增大;函数y=-x+2,在整个定义域内y随x的增大而减小.(2)函数y=x2,在[0,+∞)上y随x的增大而增大,在(-∞,0)上 y随x的增大而减小.(3)函数y=
1,在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增x大而减小.②如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y越来越小,我们说函数f(x)在该区间上为减函数.③不能.④(1)在给定区间内取两个数,例如2和3,因为22<32,所以f(x)=x2在[0,+∞)上为增函数.(2)仿(1),取多组数值验证均满足,所以f(x)=x2在[0,+∞)上为增函数.(3)任取x1、x2∈[0,+∞),且x1 例1课本P29页例1.思路分析:利用函数单调性的几何意义.学生先思考或讨论,再回答.点评:本题主要考查函数单调性的几何意义.图象法求函数单调区间的步骤: ①画函数的图象; ②观察图象,利用函数单调性的几何意义写出单调区间.图象法的难点是画函数的图象,常见画法有描点法和变换法.答案:略.变式训练 课本P32练习4.例2课本P32页例2.思路分析:按题意,只要证明函数p= k在区间(0,+∞)上是减函数即可,用定义证明.V点评:本题主要考查函数的单调性.利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:(定义法)①任取x1、x2∈D,且x1 ③变形(通常是因式分解和配方); ④定号(即判断差f(x1)-f(x2)的正负); ⑤下结论(即指出函数f(x)在给定的区间D上的单调性).易错分析:错取两个特殊值x1、x2来证明.答案:略.变式训练 判断下列说法是否正确: ①已知f(x)=1,因为f(-1) 课本P32练习2.拓展提升 试分析函数y=x+1的单调性.x活动:先用计算机画出图象,找出单调区间,再用定义法证明.答案:略.课堂小结 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法:数形结合.(4)函数单调性的几何意义是:函数值的变化趋势,即图象是上升的或下降的.【作业】 :课本P39习题1.3A组2、3、4 【反思】 函数单调性 一、教学目标 1、建立增(减)函数及单调性、单调区间的概念 2、掌握如何从函数图象上看出单调区间及单调性 3、掌握如何利用定义证明一段区间上的函数单调性 二、教学重难点 1、了解增(减)函数定义 2、用定义法证明一段区间上的函数单调性 三、教材、学情分析 单调性是处于教材《数学•必修一》B版第二章第一节,初中对单调性有着初步感性认识,到这节课我们给单调性严格的定义。单调性是对函数概念的延续和扩展,也是我们后续研究函数的基础,可以说,起到了承上启下的作用。 四、教学方法 数形结合法、讲解法 五、教具、参考书 三角尺、PPT、数学必修 一、教师教学用书 六、教学过程 (一)知识导入 引入广宁县一天气温变化折线图 询问学生今天的温度是如何变化的? 学生答:气温先上升,到了14时开始不断下降。 由此导入函数图像的上升下降变化,给出f(x)=x和f(x)=x²的图像,询问学生,这两个函数图象是如何变化的? 学生答:前一个不断上升,后一个在y轴左边下降,在y轴右边上升。再询问学生并提醒学生回答:从上面的观察分析,能得出什么结论? 不同的函数,其图像的变化趋势不同,同一函数在不同区间上的变化趋势也不同,函数图像的变化规律就是函数性质的反映。 教师:那么这就是我们要研究的单调性。 (二)给出定义。 教师:首先我们来看一下一元二次函数y=x²的图象的对应值表,当x从0到5上变化时,y是如何变化的。生:随着x的增大而增大 教师:那么我们在这段上升区间中任取两个x1,x2,x1 教师顺势引导出增函数的概念,再由增函数类比画图演示,引导出减函数的概念。强调增(减)函数概念,尤其是在区间内任取x1,x2这句话的理解。由增(减)函数可以引出单调区间的定义,不作很详细讲解。给出例题让学生思考作答,进一步巩固知识点。 (三)证明方法 让学生们思考例二(思想为用定义法证明一段区间的单调性)并尝试解答,一段时间后教师给学生讲解。 讲解完例题后,引导学生归纳用定义法正明一段区间的单调性的方法: 1、设元。 2、做差。 3、变形。 4、断号。 5、定论。 (四)巩固深化 思考:函数y=1/x 的定义域I是什么?在定义域I上的单调性是怎样的? 通过这道问题的讲解说明,让学生们意识到单调性是离不开区间的且单调区间不能求并。 (五)课堂小结 再次对 1、增(减)函数定义。 2、增(减)函数的图象有什么特点?如何根据图象指出单调区间。 3、怎样用定义证明函数的单调性?三个问题进行阐述,牢固学生记忆和理解。 (六)布置作业。 函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计 北京教育学院宣武分院 彭 林 函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍然处于经验型逻辑思维发展阶段的高一学生来讲,有较大的学习难度。一直以来,这节课也都是老师教学的难点。最近,在我区“青年教师评优课”上,听了多名教师对这节课不同风格的课堂教学,通过对他们教学案例的研究和思考,笔者认为,在函数单调性概念的教学中,关键是把握住如下三个关键点。 关键点1。学生 学习函数单调性的认知基础是什么? 在这个内容之前,已经教学过一次函数、二次函数、反比例函数等简单函数,函数的变量定义和映射定义,以及函数的表示。对函数是一个刻画某些运动变化数量关系的数学概念,也已经形成初步认识。接踵而来的任务是对函数应该继续研究什么。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性。对各种函数模型而言,就是研究它们所描述的运动关系的变化规律,也就是这些运动关系在变化之中的共同属性或不变属性,即“变中不变”的性质。按照这种科学研究的思维方式,使得当前来讨论函数的一些性质,就成为顺理成章的、必要的和有意义的数学活动。至于在多种函数性质中,选择这个时机来讨论函数的单调性而不是其他性质,是因为函数的单调性是学生从已经学习的函数中比较容易发现的一个性质。 就中小学生与单调性相关的经历而言,学生认识函数单调性可以分为四个阶段: 第一阶段,经验感知阶段(小学阶段),知道一个量随另一个量的变化而变化的具体情境,如“随着年龄的增长,我的个子越来越高”,“我认识的字越多,我的知识就越多”等。 第二阶段,形象描述阶段(初中阶段),能用抽象的语言描述一个量随另一个量变化的趋势,如“y随着x的增大而减少”。 第三阶段,抽象概括阶段(高中必修1),能进行脱离具体和直观对象的抽象化、符号化的概括,并通过具体函数,初步体会单调性在研究函数变化中的作用。 第四阶段,认识提升阶段(高中选修系列1、2),要求学生能初步认识导数与单调性的联系。 基于上述认识,函数单调性教学的引入应该从学生的已有认知出发,建立在学生初中已学的一次函数、二次函数以及反比例函数的基础上,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.。 让学生分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.第三个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的. 在此基础上,教师引导学生用自己的语言描述增函数的定义: 如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数. 关键点2。为什么要用数学的符号语言定义函数的单调性概念? 对于函数单调性概念的教学而言,有一个很重要的问题,即为什么要进一步形式化。学生在初中已经接触过一次函数、反比例函数、二次函数,对函数的增减性已有初步的认识:随x增大y增大是增函数,随x增大y 减小是减函数。这个观念对他们而言是易于接受的,很形象,他们会觉得这样的定义很好,为什么还要费神去进行符号化呢?如果教师能通过教学设计,让学生感受到进一步符号化、形式化的必要性,造成认知冲突,则学生研究的兴趣就会大大提高,主动性也会更强。其实,数学概念就是一系列常识不断精微化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求,因为只有达到这种符号化、形式化的程度,才可以进行准确的计算,进行推理论证。 所以,在教学中提出类似如下的问题是非常必要的: 右图是函数函数吗? 的图象,能说出这个函数分别在哪个区间为增函数和减 对于这个问题,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.关键点3:如何用形式化的语言定义函数的单调性? 从数学学科这个整体来看,数学的高度抽象性造成了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律:在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象,即数学的思考方式。恰当运用图形语言、自然语言和符号化的形式语言,并进行三者之间必要的转化,可以说,这是学习数学的基本思考方式。而函数单调性这一内容正是体现数学基本思考方式的一个良好载体,教学中应该充分关注到这一点。长此以往,便可使学生在学习知识的同时,学到比知识更重要的东西—学会如何思考?如何进行数学的思考? 一般说,对函数单调性的建构有两个重要过程,一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述。对函数单调性的意义,学生通过对若干函数图象的观察并不难认识,因此,前一过程的建构学习相对比较容易进行。后一过程的进行则有相当的难度,其难就难在用数学的符合语言来描述函数单调性的定义时,如何才能最大限度地通过学生自己的思维活动来完成。这其中有两个难点: (1)“x增大”如何用符号表示;同样,“f(x)增大”如何用符号表示。(2)“‘随着’x增大,函数f(x)‘也’增大”,如何用符号表示。 用数学符号描述这两种数学意义的最大要害之处,在于要用数学的符号来描述动态的数学对象。 在初中数学中,除了学习函数的初级概念,用y=f(x)表示函数y随着自变量x的变化而变化时,接触到一点动态数学对象的数学符号表示以外,绝大多数都是用数学符号表示静态的数学对象。因此,从用静态的数学符号描述静态的数学对象,到用静态的符号语言刻画动态数学对象,在思维能力层次上存在重大差异,对刚刚由初中进入高中学习的学生而言,无疑是一个很大的挑战! 因此,在教学中可以提出如下问题2: 如何从解析式的角度说明 在上为增函数? 这个问题是形成函数单调性概念的关键。在教学中,教师可以组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈、评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种: ①在给定区间内取两个数,例如1和2,因为函数. ,所以 在上为增②可以用0,1,2,3,4,5验证: 在所以函数上是增函数。 对于这两种错误,教师要引导学生进一步展开思考。例如,指出回答②试图用自然数列来验证结论,而且引入了不等式表示不等关系,但是,只是对有限几个自然数验证不行,只有当所有的比较结果都是一样的:自变量大时,函数值也大,才可以证明它是增函数,那么怎么办?如果有的学生提出:引入非负实数a,只要证明 就可以了,这就把验证的范围由有限扩大到了无限。教师应适时指出这种验证也有局限性,然后再让学生思考怎样做才能实现“任意性”就有坚实的基础了。也就是,从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答: 任意取在,有为增函数. ,即,所以这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。至此,学生对函数单调性有了理性的认识.在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。 教学中,教师引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时设计了一组判断题: 判断题: ①②若函数③若函数满足f(2) 和(2,3)上均为增函数,则函数在(1,3)上为增函数.④因为函数减函数.在上都是减函数,所以在上是通过对判断题的讨论,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 从而加深学生对定义的理解 北京4中常规备课 【教学目标】 1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】 函数单调性的概念、判断及证明. 【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】 一、创设情境,引入课题 课前布置任务: (1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息? 预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知 问题1: 分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函 预案:(1)函数 在整个定义域内 y随x的增大而增大;函数 在整个定义域内 y随x的增大而减小. (2)函数在上 y随x的增大而增大,在上y随x的增大而减小. (3)函数 在上 y随x的增大而减小,在上y随x的增大而减小. 引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数 在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数 学生的困难是难以确定分界点的确切位置. 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究. 〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明 在为增函数? 22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数. (2)仿(1),取很多组验证均满足,所以(3)任取,所以 在,因为 为增函数. 在为增函数. 在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量. 【设计意图】把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题: ①. ②若函数 ③若函数 在区间 和(2,3)上均为增函数,则函数 在区间(1,3)上为增函 . ④因为函数在区间上是减函数.上都是减函数,所以在 通过判断题,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 思考:如何说明一个函数在某个区间上不是单调函数? 【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展 例 证明函数 在上是增函数. 1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取 ,设元 求差 变形,断号 ∴ ∴ 即 ∴函数 2.归纳解题步骤 在上是增函数. 定论 引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数 问题:要证明函数 在区间 上是增函数,除了用定义来证,如果可以证得对 在上是增函数. 任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔. 四、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结 (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业 书面作业:课本第60页习题2.3 第4,5,6题. 课后探究:(1)证明:函数 在区间 上是增函数的充要条件是对任意的上是增函数.,且 有. (2)研究函数的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明 一、教学内容的分析 函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点. 二、教学目标的确定 根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成. 三、教学过程的设计 为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入. (2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤. (3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔. 函数的单调性与最值 学习目标: 1.使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。2.会用单调性求最值。 3.掌握基本函数的单调性及最值。知识重现 1、一般地,设函数f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M; (2)存在x0I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值(maximum value) 2、一般地,设函数f(x)的定义域为I,如果存在实数M满足:(3)对于任意的xI,都有f(x) M;(4)存在x0I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最小值(minimum value)理论迁移 例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h米与时间t秒之间的关系为h(t)=-4.9t+14.7t+18,那么烟花冲出后什么1 时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)? 例2 已知函数f(x)= 22(x[2,6]),求函数的最大值和最小值。x1归纳基本初等函数的单调性及最值 1.正比例函数:f(x)=kx(k0),当k0时,f(x)在定义域R上为增函数;当k0时,f(x)在定义域R上为减函数,在定义域R上不存在最值,在闭区间[a,b]上存在最值,当k0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k0时, ,最大值为f(a)=ka,函数f(x)的最小值为f(b)=kb。2.反比例函数:f(x)=k(k0),在定义域(-,0)(0,+)上无单调性,也不存在x最值。当k0时,在(-,0),(0,+)为减函数;当k0时,在(-,0),(0,+) 为增函数。在闭区间[a,b]上,存在最值,当k0时函数f(x)的最小值为f(b)= 最大值为f(a)= k,bkkk, 当k0时, 函数f(x)的最小值为f(a)=,最大值为f(b)=。aab3.一次函数:f(x)=kx+b(k0),在定义域R上不存在最值,当k0时,f(x)为R上的增,当k0时,f(x)为R上的减函数,在闭区间[m,n]上,存在最值,当k0时函数f(x)的最小值为f(m)=km+b,最大值为f(n)=kn+b, 当k0时, 函数f(x)的最小值为f(n)=kn+b,最大值为f(m)=km+b。4.二次函数:f(x)=ax+bx+c, 当a0时,f(x)在(-,-2bb)为减函数,在(-,+)为增函数,在定义域R上 2a2ab4acb2有最小值f()=,无最大值。 2a4a当a0时,f(x)在(-,- bb)为增函数,在(-,+)为减函数,在定义域R上 2a2ab4acb2有最大值f()=,无最小值。 2a4a函数单调性的应用 1.利用函数的单调性比较函数值的大小 例1 如果函数f(x)=x+bx+c,对任意实数t都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。 例2 已知函数y=f(x)在[0,+)上是减函数,试比较f(22 32)与f(a-a+1)的大小。42.利用函数的单调性解不等式 例3 已知f(x)是定义在R上的单调函数,且f(x)的图像过点A(0,2),和点B(3,0) (1)解方程 f(x)=f(1-x) (2)解不等式 f(2x)f(1+x) (3)求适合f(x)2或f(x)0的x的取值范围。 3.利用函数的单调性求参数的取值范围 已知函数的单调性,求函数解析式中参数的范围,是函数单调性的逆向思维问题。这类问题能够加深对概念、性质的理解。 例3 已知f(x)=x-2(1-a)x+2在(-,4)上是减函数,求实数a的取值范围。 例4 已知A=[1,b](b1),对于函数f(x)=求b的值。 练习:已知函数y=f(x)=-x+ax- 2212(x-1)+1,若f(x)的定义域和值域都为A,2a1+在区间[0,1]上的最大值为2,求实数a的值。 42求函数值域(最值)的一般方法 1.二次函数求最值,要注意数形结合 与二次函数有关的函数,可以用配方法求值域,但要注意函数的定义域。例1:求函数y=-x2x2的最大值和最小值。 例2:求f(x)=x-2ax+x2,x[-1,1],求f(x)的最小值g(a).4.利用单调性求值域:当函数图像不好作或作不出来时,单调性成为求值域的首选方法。例3:求函数f(x)=2x在区间[2,5]上的最大值与最小值。x 5.分段函数的最值问题 分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数函数的最大或最小值,应该先求各段上的最值,再比较即得函数的最大、最小值。 12x,(x1)2例6:已知函数f(x)= 求f(x)的最大最小值。 1,(1x2)x 《函数的基本性质──单调性与最值》 教学设计 一、内容和内容解析 函数思想是贯穿高中数学的一根主线,函数的基本性质又是函数一章的重点内容。一方面,它是对以前所学具体函数的一次总结,又是函数知识的一次拓展,对后续学习指、对数函数、三角函数有重要的指导作用。另一方面,函数的单调性与最大(小)值是初等数学与高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的单调性与最大(小)值在解决实际问题中有着相当重要的作用。因此,函数单调性与最大(小)值的教学,在教材体系中有着不可替代的位置,又有着重要的现实意义。 函数的单调性最大(小)值是函数的重要性质之一,它是研究函数值与自变量变化的一种关系,既要求学生结合函数的图象(直观性)来研究函数单调性和最大(小)值,也要求学生利用函数单调性和最大(小)值的定义(严谨性)来研究函数单调性和最大(小)值。因此本节课的教学重点是函数的单调性与最大(小)值的概念及其几何意义;判断、证明函数单调性;求函数的最大(小)值,利用单调性和最大(小)值来解决实际问题,培养学生的函数思想,数形结合思想以及应用数学意识。 二、目标和目标解析 1、通过观察一些函数图象的特征,形成函数单调性的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出函数单调性的定义。理解函数单调性的定义,能够熟练应用定义判断与证明函数在某区间上的单调性。 2、通过实例,使学生体会到函数的最大(小)值实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最大(小)值,由此得出函数最大(小)值的定义。理解函数最值的定义,掌握求最值的基本方法和基本步骤,能解决相关实际问题。 3、利用函数的单调性和图象求函数在闭区间上的最大(小)值,解决日常生活中的实际问题,增进对数学应用价值的认识,激发学习数学兴趣与热情。 4、学会运用函数图象理解和研究函数的性质,利用函数的性质来画函数的图象(草图),培养学生数形结合的思想和应用数学意识。 5、函数单调性和最大(小)值的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程。培养学生的探究能力和创新精神,体验到思考与探索的乐趣,培养学生勇于探索,善于研究的精神,挖掘其非智力因素的资源,培养学生良好的思维品质。 三、教学问题诊断分析 函数的单调性这一性质学生在初中曾经接触过,但只是从图象上直观分析图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。在函数的单调性的概念教学中,学生往往在理解“任意两个”、“都”这两个词的含义出现障碍,误认为“有两个”、“某两个”,而教学中利用函数的图象,举一些反例加以理解巩固。函数的单调性一定与某个区间相对应,而学生容易犯“某个函数单调递增(减)函数”这一错误。“函数在(-∞,0)上y随x增大而减少,在(0,+∞)上y随x的增大而减少。” 在定义域内是减函数,即把两个单调区间进行合并;分别在而学生容易错误理解函数区间上取两个数-1和5,-1<5,而f(-1) 四、学习行为分析 学生在学习本节内容之前已经学习了函数的定义,表示法,图象,也学习了一次函数,二次函数,反比例函数的函数值y与变量x之间的关系,特别是学习了二次函数的最大(小)值,这为理解函数的单调性和最大(小)值奠定了一定的基础。但另一方面,以前对函数的单调性和最大(小)值的研究是一种定性的研究,侧重于直观的思维,而本节内容是要对函的最值,讨论函数 (x>0)单调区间等具数单调性和最大(小)值的定量的研究,侧重于逻辑思维能力,这给学生的学习带来了较大的困难。因此,在教学过程中,多创设熟悉的问题情景:如在引课中利用建造一个长方形的花坛,构造熟悉的二次函数,上课中所举例子都是一些常见的函数来加以落实。在定义教学中,多给学生思考问题的时间和空间,引导学生观察,归纳,总结。特别利用数形结合,定性与定量相结合,尽量让学生用数学语言来描述,以便于学生的理解和掌握。利用类比教学法:当介绍了增函数的定义之后,让学生自己得出相应减函数的定义;当介绍了函数最大值的定义之后,让学生自己得出函数最小值的定义;便于学生进一步加深对定义的理解。对于一些容易出错的问题采取纠错教学法:“函数上y随x的增大而减少,则函数 在(-∞,0)上y随x的增大而减少,在(0,+∞) 在定义域内是减函数”。“所有函数是否都有最大(小)值?”、“函数在相应的区间内是否一定有单调性?”。还有一些比较复杂的问题:“确定函数的单调区间”等问题让学生去讨论,去探究,教师积极引导,培养学生的自主探究能力。 五、教学支持条件分析 函数的单调性和函数的最大(小)值这一性质学生在初中接触到过,但只侧重于图象上直观分析,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,为了突破这一难点,充分发挥信息技术的辅助教学的功能。在概念教学中,首先利用多媒体技术画出函数y=x,y=x2,y=x3相应的函数的图象,然后在函数上取不同的点,由学生观察函数的值y随x的变化而变化的规律,化静为动,化抽象为直观,便于学生理解。对于概念中的一些关键字词,比如 “任意”、“都”、“存在”在多媒体课件中用不同的颜色加以标明,便于学生加深印象。对于一些容易出错的问题采取小组讨论法,纠错法。例如教师提出“讨论函数的单调性”,让学生分组讨论,然后推荐代表发言。有学生会回答是“递减函数”,理由是“图形的形状是下降”。也有同学会回答“不是单调函数”,理由是“因为x1=-1,x2=1时,x1 六、评价设计 《高中数学课程新标准》中提出:“对学生数学学习的评价,既要关注学生知识与技能的理解和掌握,更要关注他们情感与态度的形成与发展;既要关注学生数学学习的结果,更要关注他们在学习过程中的变化和发展。”根据新课程标准的要求,发展性评价的核心是关注学生的发展、促进学生的发展,实现评价发展性功能的一个重要举措就是突出评价的过程性,评价将贯穿于教学的整个过程,将学生在数学学习活动过程中的全部情况都纳入评价的范围,而不只是评价学生的学习的结果。在本教学设计过程中,始终注重过程评价,注重评价的针对性,实效性。主要体现在三个方面:一是基础知识掌握情况的评价。对函数的单调性和函数的最大(小)值的定义能否深刻的,全面的理解,特别是一些关键字词,如“任意两个”、“都”、“存在”的理解。举出正面和反面的例子让学生辨别,个别评价与集体评价相结合。二是基本技能掌握情况的评价。主要包括函数单调性判断的基本方法(图象法,定义法,复合函数法),如何选择不同的方法。证明函数单调性的基本步骤和基本策略(主要是作差变形的策略),单调区间的确定。求最值的基本方法的掌握情况等。三是数学思想的落实和数学探究能力培养的评价。运用函数图象理解和研究函数的性质,利用函数的性质来画函数的图象(草图),提升学生数形结合的思想。函数单调性和最大(小)值的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程。让学生真正参与到数学活动中来,让学生真正成为学习的主人。(具体的教学评价见教学过程) 七、教学过程设计 设计环节 设计意图 师生活动 教师提出问题: “问题是数学的心脏”,把问题作为出发点,为一.创设情境,导下一步提出探索性的出问题 问题创设有效的学习 学校准备建造一个长环境。 方形的花坛,周长设计为16米。由于受周围地理位 置限制,其中一边的长度既不能超过6米,又不能 少于1米。 二、借助信息技y=x,y=x,y=,y=x3 术,利用熟悉的函学生动手画图,个别板演,集体探讨函数值与自变从形象、直观的图形入数,给出单调性直量之间的关系,教师适当引导。 手,为探索与思考问题观认识。y=x在R上y随x的增大而增大。 提供方向和“路标”,并 借机发展学生的动手y=x在(-∞,0)上y随x的增大而减少,在(0,+∞)上y 实践能力、创新能力、随x的增大而增大。 和探索能力。y=在(-∞,0)上y随x的增大而减少,在(0,+∞)上y随x的增大而减少。 y=x3 在R上y随x的增大而增大。 教师利用信息技术,动画演示函数的图象。 怎样用数学语言表示y=x在R上y随x的增大而增 大呢?(学生讨论,教师引导,得出增函数的定 义)(学生不一定一下子答得比较完整,教师应抓住从定性描述到定量描时机予以启发,纠正,补充)。述,从通俗的日常用语一般地,设函数f(x)的定义域为I:如果对于属于I到严谨的数学语言,让内某个区间D上的任意两个自变量值x1、x2,当x1 三、从定性到定会逻辑地、合理地思考量,引出单调性的问题。定义,并能深刻理 解定义的含义。 增函数(increasing function) 注意数形结合,定义是用类比的方法得出减函数的定义: 严谨的语言,图象是直如果对于属于I内某个区间D上的任意两个自变量观的语言,注意两者有值x1、x2,当x1 1、建立面积y与一边长x的函数关系式。 生:y=x(8-x)(1≤x≤6) 问 2、画出上面函数的图象。 问 3、指出y的值与x值的变化关系。以实际问题为背景、以生:当1≤x≤4时,y随x值的增大而增大,学生熟悉的一元二次当4≤x≤6时,y随x值的增大而减小。函数为入口点,激活学问 4、求出面积的最大值与最小值。生原有的认知,让学生 生:当x=4时,Smax=16m;当x=1时,Smin=7m 对所要学的新知获得感性的认识。引导学生解决,体会函数单调性与最大(小)值在实际中的应用。 请学生分别画出下列函数的图象,并探讨函数值y与自变量x之间的关系: 利用类比方法,实现知识与能力的迁移 教师提出问题,让学生 在自主探索,讨论,在function)合作交流中,充分体现如果函数y=f(x)在某个区间D上是增函数或减函数。学生学习的主体性,对那么就说函说y=f(x)在这一区间具有(严格的)单调概念进一步深入的领性,区间D叫做y= f(x)的单调区间.会。 1、“函数y=x2是单调递增函数”这一说法对吗? 2、y=在(0,+∞)上是减函数,在(-∞,0)是减函数,能否说函数在整个定义域上是减函数? 3、函数在某个区间是否一定具有单调性? 4、如何理解定义中“任意”两个字? 1、教材例(1)p34讲解:让学生自己通看教材,例(1)是利用函数的学生提问,学生自行解决,师生共同总结: 图象来判断函数的单(1)单调性与端点无关。 调性,具有直观性,也(2)判断函数的基本方法-----图象法。是常用方法。 2、教材例(2)p34讲解:教师板演,师生共同总 结: 四、讲解例题、巩(1)判断函数的基本方法-----定义法。 固知识,提高能(2)总结定义法证明单调性的基本步骤: 力。例(2)是利用单调性 1 任取x1,x2∈D,且x1 深对定义的理解。⑤下结论(指出函数f(x)在区间D上的单调性) 3、在解题中,根据题目的实际情况和具体要求,选择适当的方法。 从熟悉,具体的二次函数入手,探讨最大,最小值,让学生有感性认 五、回归引例,探识。 重新演示 讨最大(小)值的 含义 引例函数的图象及面积的最大值与最小值 分析上面图象可以发现,函数y=x(8-x)(1≤x≤6)的 图象上有一个最高点(4,16),任意的x∈[1,6],用数学语言描述最大都有f(x)≤f(4),当一个函数f(x)有最高点,我们就说值,最小值。函数有最大值。有一个最低点(1,7),任意的x ∈[1,6],都有f(x)≧f(1),当一个函数f(x)有最低点,我们就说函数有最小值。而函数f(x)=x的图象没有 最高点也没有最低点,所以函数f(x)=x没有最大值,也没有最小值。 得出函数最大值的定义: 从特殊到一般,揭示数一般地,设函数y=f(x)的定义域为I,如果存在实学通常的发现过程,便数M满足: 于学生接受。⑴ 对于任意的x∈I,都有f(x)≤M; ⑵存在x0∈I,使得f(x0)=M 那么,我们称M是函数y=f(x)的最大值(maximum value)利用类比方法,实现知让学生仿照最大值的定义,给出函数y=f(x)的最小 六、归纳最大(小)识与能力的迁移 值的定义(minimum value)。值的定义,并加以 一般地,设函数y=f(x)的定义域为I,如果存在实 说明,解释 数M满足: ⑴ 对于任意的x∈I,都有f(x)≥M; 教师提出问题,让学生⑵存在x0∈I,使得f(x0)=M 在自主探索,讨论,在那么,我们称M是函数y=f(x)的最小值(maximum 合作交流中,对概念进value)一步深入的领会。 1、函数y=x、y=有没有最值? 2、如何理解定义中的“存在”“任意”的含义? 3、以前求最值有哪些方法? 例(3)、例(4)的教学采用自学导学法,按以下步骤 实施: 例(3)是学生熟悉的烟 1、学生通读题目,理解题意 花问题,可转化为二次 2、利用多媒体演示动画,激发学生学习兴趣。函数来解决,难度不 3、学生自学,相互讨论,共同解决。大。 4、学生提问,教师答疑。 七、函数单调性、5、师生共同小结求最值的基本方法: 最大(小)值应用 (1)转化为二次函数的最值问题。例(4)是单调性与最值①配方法 问题的综合,具有一定②注意实际问题的条件限制。的难度。注意转化为反(2)利用函数的单调性求最值------在闭区间上。比例函数,利用数形结①先证明在在闭区间上具有单调性。合。②端点值即为函数的最值。利用课堂练习巩固所课堂练习: 学的知识内容,数学思课本第38页练习 1、练习 2、练习 3、练习4。想,数学方法,以达到学生独立思考与讨论相结合,教师巡查,个别辅导 八、练习、交流、教学目标,本环节以个与 反馈、评价 别辅导为主,体现面对集体辅导相结合。全体学生的课改新理念。 九、课堂小结 通过学生自我小结,既知识小结: 充分发挥学生的主观 1、函数单调性,最大(小)值的概念。 能动性,提高学生分 2、判断函数单调性的基本方法。 十、布置作业 析,概括,综合,抽象 3、用定义法判断函数的基本步骤 能力,又有利于学生把 4、求最大(小)值的基本方法。新知融入自己已有的师生、生生互动: 知识体系。 1、你觉得本节课中印象最深的是什么? 2、你觉得本节课中最大的困惑是什么? 让学生提问题,自行解决,教师适当补充。 沟通课内与课外,使学作业布置 生基础性学力与发展 1、书面作业:课本P45习题1.3(A组)第1-5性学力协调发展,让不题. 同学生得到不同的发 2、研究性作业:设f(x)是定义在R上的增函数,展。f(xy)=f(x)+f(y),1)求f(0)、f(1)的值; 2)若f(3)=1,求不等式f(x)+f(x-2)>1解集 八、设计反思 在普通高中数学课程标准强调高中数学活动中的师生互动,明确指出“必须关注学生的主体参与,师生互动”进行在教师指导或引导下“数学化”过程,“再创造”过程。建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用过程中,通过同化和顺应,使自身的认知结构得以转换和发展。备课不只是对知识和教学内容的准备,也包括对学生、学情的分析和掌握.二者的和谐统一是提高教学效果的基本要求。发现、探究、讲解、演练相结合教学法的确立,就是基于对学生认知基础和认知规律的关注。 在整个的设计过程中,始终体现以学生为中心的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程。强调学生的品德、思维和心理等方面的发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。通过讨论交流,进一步加深对概念的理解,完善认知结构,让学生在“平衡--不平衡--新平衡”中不断得到丰富和发展。通过讨论交流,实现生生互助,丰富情感体验;实现师生互助,活跃课堂气氛。第二篇:函数单调性教案(简单)
第三篇:函数单调性
第四篇:高一数学《函数的单调性与最值》第二课时教案
第五篇:《函数的基本性质──单调性与最值》教学设计