实系数一元二次方程 教案

时间:2019-05-12 17:40:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《实系数一元二次方程 教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《实系数一元二次方程 教案》。

第一篇:实系数一元二次方程 教案

实系数一元二次方程

一、教学目标:

1、理解实系数一元二次方程在复数集中解的情况;会在复数集中解实系数一元二次方程。

2、掌握当0时,实系数一元二次方程根与系数的关系

3、培养类比推理的思想方法及探索精神。

二、教学重点:在复数集内解实系数一元二次方程。

三、教学难点:共轭虚根的应用

四、教学过程:

(一)复习旧知:

1、师问:我们初中学习了解一元二次方程axbxc0(a、b、cR且a0),对这个方程,我们有哪些认识?

生答:①当b4ac0时,方程有两个不相等的实根:x②当b4ac0时,方程有两个相等的实根; ③当b4ac0时,方程无实根。

根与系数的关系:设方程的两个根为x1,x2,则有x1x2ba2222b2ab4ac2a2;,x1x2ca

2、上一节课学习了“复数的平方根与立方根”,大家知道-1的平方根是:i.师问:一元二次方程x10在复数范围内有没有解? 师问:在复数范围内如何解一元二次方程xx10? 引出本节课的课题:实系数一元二次方程

(二)讲授新课

1、实系数一元二次方程在复数集C中解的情况:(1)回忆求解实数范围内一元二次方程的过程

设一元二次方程axbxc0(a、b、cR且a0).222因为a0,所以原方程可变形为 x2baxca,配方得(xb2a)(2b2a2)2ca,即(xb2a)2b4ac4a2.2(1)当b4ac0时,原方程有两个不相等的实数根x2b2ab4ac2a;

(2)当b4ac0时,原方程有两个相等的实数根x22b2a;

2、师问:当b4ac0时,你能有上述过程及上节课的知识推倒出方程的根的情况吗? 生:当b4ac4a2220,由上一堂课的教学内容知,2b4ac4a22的平方根为4acb2ai,即xb2a4acb2ai,2此时原方程有两个不相等的虚数根:x2b2a4acb2ai 为一对共轭虚数根

3、师问:b4ac0根与系数的关系成立吗?(类比,猜想)

带领学生证明根与系数的关系:x1x2ba,x1x2ca(证明)

结论:(1)实系数一元二次方程在复数范围内必有两个解:当0时,有两个实根;当0时,有一对共轭虚根.(2)韦达定理仍然适用。

例1:在复数集中解方程:(1)xx10

(2)2x4x50 学生练习:(1)x50

(2)x2x30 2222小结:强化巩固在复数范围内解实系数一元二次方程 变式:在复数集中解方程:x23x5m0(mR)小结:渗透含参问题分类讨论的思想方法。

例2:已知实系数一元二次方程2xaxb0的一个根为2i3,求a,b的值. 小结:共轭虚根及根与系数关系的应用

例3:已知x1,x2是实系数方程xxp0的两根,且满足|x1x2|3,求实数p的值。

小结:法一:题目中没有讲明根的虚实,需对根的情况分类讨论

法二:利用复数性质|z|2|z2|转化,在利用根与系数的关系,可避免对根的情况讨论。

思考题:已知关于x的实系数方程xkxk3k0有一个模为2的根,求实数k的值

(三)课堂小结:

(四)回家作业 练习册配套作业

2222

第二篇:《一元二次方程根与系数的关系》教案

《一元二次方程根与系数的关系》教案

教学目标:

1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。

2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。

3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。教学重点:

一元二次方程的根与系数的关系及简单应用。教学难点:

一元二次方程的根与系数的关系的推导。数学思考与问题解决:

通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。

一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查)

【师生活动】:

教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。

学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。【设计意图】:

本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。【学案内容】:

1、方程:X2+3X–4=0(1)二次项系数是_____,一次项系数是______,常数项是______。(2)解得方程的根X1=______,X2=______。(3)则X1+X2=_______,方程中 一次项系数()

二次项系数常数项()(4)X1·X2=_______,方程中

二次项系数

2、方程3 X2+X-2=0(1)二次项系数是_____,一次项系数是______,常数项是______。(2)解得方程的根X1=______,X2=______。

(3)则X1+X2=_______,方程中 一次项系数 ()二次项系数比一比,你发现了什么呢:__________________________________(4)X1·X2=_______,方程中

常数项()

二次项系数比一比,你发现了什么呢:__________________________________

3、方程X2-2X=(1)二次项系数是_____,一次项系数是______,常数项是______。(2)解得方程的根X1=______,X2=______。(3)由你发现的规律可知: X1+X2=(________)

X1·X2=()(________)(_________)()

(_________)

二、合作求证 生成新知(每小题10分,共20分)(合作完成,交换检查)

【师生活动】:

教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;鼓励学生参与合作学习,调动学生合作交流的主动性和积极性。

学生小组合作完成导学案,通过推导证明前面的结论;实现一元二次方程的根与系数的关系感性认识到理性认识的转变;小组长检查小组成员完成情况后,两小组交换检查推导过程;分小组汇报合作学习成果。【设计意图】:

本环节为“一元二次方程的根与系数的关系”的证明过程,即理性认识过程。让学生自己发现问题、探求规律,两从理论角度加以验证,经历从特殊到一般的科学探索过程,培养学生科学、严谨的求学态度,团队精神和合作意识,促进学生的相互交流、学习。【学案内容】:

(1)根据以上规律,若aX2+bX+c=0(a≠0)的两个根为X1和X2,则X1+X2=_______,X1·X2=_______。(2)这是不是一个普遍规律呢?在所有的一元二次方程中,是否成立呢?请用一元二次方程的一般形式证明:(b2-4ac≧0)∵ X1=bb24acbb24ac

X2=

2a2a∴X1+X2=

∴X1·X2=

三、交流展示 目标达成(每小题10分,共40分)(合作完成,分组展示)

【师生活动】:

教师巡视,随时发现问题、了解学生导学案完成情况并适时点拨、强调;充分利用现有设施设备,为学生搭建电子白板、实物投影、黑板等不同的展示自我的平台;适时评价、鼓励学生能多种方法解决问题,促进发散思维的培养。

导学案【目标1】:学生先独立完成,组长检查,后组内交流,全班汇报、评价。(学生利用一体机白板演示解题过程)

导学案【目标2】:小组合作完成,组长督促,全班汇报、评价。(学生利用实物投影展示解题过程)

导学案【目标3】:小组合作完成,组长督促,全班汇报、评价。(学生利用黑板展示解题过程)

【设计意图】:

本环节为“一元二次方程的根与系数的关系”的实践过程,即教学目标的达成、检测过程。设计了三个不同难度且有梯度的“目标”,让学生由易到难、由浅入深,加深对一元二次方程的根与系数的关系的理解和应用,强调学生对科学的严谨性和书写的规范性,培养学生对所学知识的应用意识和应用能力,以及合作学习意识与数学语言的表述能力。【学案内容】:

【目标1】不解方程,求下列方程的两根的和与两根的积各是多少?

(1)x2-3x+1=0;

(2)3x2-2x=2;

【目标2】已知方程X2-4X+M=0的一个根是-2,求方程的另一个根及M的值。

【目标3】已知X1,X2 是方程2X2-4X-1=0的两个实数根,求

x1的值。

2x22

四、查漏补缺 总结提高(共10分)(自主完成,集体分享)

【师生活动】:

教师鼓励学生谈所学所想所获,集体分享学习成果,归纳课堂所学知识点,解决学习中仍然存在的问题和困惑。【设计意图】:

本环节为本节课的总结提高过程。目的是帮助所有学生总结回顾、查漏补缺,形成知识体系,培养学生及时小结、善于归纳梳理的学习习惯,提高学生运用数学语言的能力和口头表达能力。【学案内容】:

请你谈谈本节课的收获或存在的问题。__________________

第三篇:复习教案 一元二次方程根与系数关系

第十三课时 一元二次方程根与系数关系

一、复习目标:掌握一元二次方程根的判别式和韦达定理,并会灵活运用它们解决问题.二、复习重点和难点:

(一)复习重点: 一元二次方程根的韦达定理.(二)复习难点:灵活运用韦达定理解决问题.三、复习过程:

(一)知识梳理:

1、根与系数的关系(韦达定理)

一元二次方程ax2bxc0(a0),如果有实数根(即b4ac0),设两实数根为x1,x2,则x1x2

2、常见的含两根的对称式:

(1)x1x2(x1x2)22x1x2(2)222bc,x1x2 aaxx211 1x1x2x1x2(3)(x1x2)2(x1x2)24x1x2 ; x1x2(x1x2)24x1x2

x2x1x1x2(x1x2)22x1x2(4); x1x2x1x2x1x2

3、利用根与系数的关系判定一元二次方程的两根符号: 22c可判断两根符号之间的关系: acc 若x1x20,则x1,x2同号; 若x1x20,则x1,x2异号,即一正一负

aab 再由x1x2可判断两根大小的关系。

a由x1x2

4、由x1,x2两根可构造的一元二次方程 以x1,x2为根的一个一元二次方程为x2(x1x2)xx1x20;

5、一元二次方程与二次函数的联系:

若二次函数y=ax+bx+c的图象与x轴有两交点,分别设为A(x1,0),B(x2,0),则x1、x2就是一元二次方程axbxc0(a0)的根,因此,求二次函数y=ax+bx+c

22的图象与x轴有交点坐标,只要令y=0,解axbxc0(a0)的根,就可得到二次函

2数y=ax+bx+c的图象与x轴有交点坐标的横坐标。

强调:应用一元二次方程根与系数的关系时,应注意: ①根的判别式b24ac0 ②二次项系数a0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.(二)典例精析:

一、已知一元二次方程的一个根,求出另一个根。

1、已知方程x6xm2m50的一个根为2,求另一个根及

分析:此题通常有两种解法:一是根据方程根的定义,把22

2的值。

代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。

解:设方程的另一个根为x1,根据题意,利用韦达定理得:

x126x14x14,解得:或 2m3m12xm2m51∴方程

二、不解方程,判断两根的情况。

2、不解方程,试判断方程x3x60两根的符号;

分析:要判断方程根的符号,可以根据根的定义,这样的方法显得很笨拙,而我们如果利用根与系数的关系就显得非常巧妙。

解:由34(6)330,方程有两个不相等的实数根。设这两根为x1,x2,得x1x260,易得方程两根一正一负。

如果得出x1x20,需考虑x1x2的正负,从而判断方程有两个正根还是两个负根。

三、求作新的方程;

3、作一个一元二次方程,使它的两个根为一元二次方程x3x10的两根的平方. 解:设方程x3x10的两根为x1,x2,那么所求的方程的根为x1,x2,由根与系数关系可得:x1x23,x1.x21,∴x1x2(x1x2)22x1x2322(1)11,22222的另一个根为4,的值为3或—1。

222 x1x2(x1x2)2(1)21,∴所求作的方程为x11x10.

四、不解方程,求方程两根所组成的某些代数式的值,这种应用与根的判别结合在一起。例4(1)已知关于x的方程3x+6x-2=0的两根为x1,x2,求

222211的值.x1x2 分析:已知方程,求两根组成代数式的值。这里主要说明解题格式,学生完成过程.(2)已知关于x的方程3x-mx-2=0的两根为x1,x2,且2

22113,求 ①m的值;②求x1x2x1+x2的值.分析:第(1)题是已知方程,求两根组成代数式的值,而第(2)题的第一问就反来了,也就是已知代数式的值求方程。第②问,再进一步,已知代数式的值,求另一个代数式的值.但是,无论是哪一个问题,所要用到的都是根与系数的关系.小结:1.求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式.例

5、(2000年四川省中考试题)若关于x的一元二次方程x-3(m+1)x+m-9m+20=0有两个实数根,又已知a、b、c分别是△ABC的∠A、∠B、∠C的对边,∠C=90°,且cosB=

23,b-a=3,5是否存在整数m,使上述一元二次方程两个实数根的平方和等于Rt△ABC的斜边的平方?若存在,请求出满足条件m的值;若不存在,说明理由.“存在性”问题)

分析:(1)提问:此题与哪些知识有关?(勾股道理、解直角三角形、根与系数的关系、根的判别式)

(2)如何利用条件cosB=

3? 5(3)“使上述一元二次方程两个实数根的平方和等于Rt△ABC的斜边的平方”通过这句话,你能明白什么?你先必须求什么?

(4)然后按照解决“存在性”问题的过程去解题.(5)求出m后,要考虑它是否符合题意.通过此题,使学生明白解决这类问题,一般遵循“三步曲”,即假设存在——推理论证——得出结论(合理或矛盾两种情况).五、利用根与系数关系解决一元二次方程与二次函数的综合题: 例

6、已抛物线y(m1)x2(m2)x1(m为实数)。

(1)m为何值时,抛物线与x轴有两个交点?

(2)如果抛物线与x轴相交于A、B两点,与y轴交于点C,且△ABC的面积为2,求该抛物线的解析式。

分析:抛物线与x轴有两个交点,则对应的一元二次方程有两个不相等的实数根,将问题转化为求一元二次方程有两个不相等的实数根m应满足的条件。

m10略解:(1)由已知有,解得m0且m1 2m0(2)由x0得C(0,-1)

又∵ABm am1∴SABC∴m11mABOC12 22m144或m 35122126∴yxx1或yxx1

3355

第四篇:《一元二次方程》参考教案

21.1 一元二次方程教学内容

本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.

教学目标

知识技能

探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.

数学思考

在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.

解决问题

培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.

情感态度

通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

重难点、关键

重点:一元二次方程的定义、各项系数的辨别,根的作用. 难点:根的作用的理解.

关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.

教学准备

教师准备:制作课件,精选习题

学生准备:复习有关知识,预习本节课内容

教学过程

一、情境引入 【问题情境】

问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛? 【活动方略】

教师演示课件,给出题目.

学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题. 【设计意图】

由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.

二、探索新知 【活动方略】

学生活动:请口答下面问题.

(1)上面几个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

【设计意图】

主体活动,探索一元二次方程的定义及其相关概念.

三、范例点击 例1 将方程3x(x1)5(x2)化成一元二次方程的一般形式,并指出各项系数. 解:去括号得

0

3x23x5x1,移项,合并同类项,得一元二次方程的一般形式

3x28x100.

其中二次项系数是3,一次项系数是-8,常数项是-10. 【活动方略】 学生活动:

学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.

教师活动:

在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题). 【设计意图】

进一步巩固一元二次方程的基本概念. 例2 猜测方程x2x560的解是什么? 【活动方略】 学生活动:

学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.

教师活动:

教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结: 使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根). 【设计意图】

探究一元二次方程根的概念以及作用.

四、反馈练习课本P4 练习1、2题 补充习题:

1.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

2.你能根据所学过的知识解出下列方程的解吗?(1)x2360;

【活动方略】

学生独立思考、独立解题.

教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)

【设计意图】

检查学生对基础知识的掌握情况.五、应用拓展

例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.

证明:m2-8m+17=(m-4)2+1

∵(m-4)2≥0

∴(m-4)2+1>0,即(m-4)2+1≠0

∴不论m取何值,该方程都是一元二次方程.

例4:有人解这样一个方程(x5)(x1)7.

解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?

由(x5)(x1)7得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.

【活动方略】

教师活动:操作投影,将例

3、例4显示,组织学生讨论. 学生活动:合作交流,讨论解答。【设计意图】

使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.(2)4x290. 作业:

第五篇:一元二次方程的根与系数的关系的九年级教案

一、复习引入

导语:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?

二、探究新知

1.课本思考

分析:将(x-x1)(x-x2)=0化为一般形式x2-(x1+x2)x+x1x2=0与x2+px+q=0对比,易知p=-(x1+x2),q=x1x2.即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习

求下列方程的两根x1、x2.的和与积.x2+3x+2=0;x2+2x-3=0;x2-6x+5=0;x2-6x-15=0

3.方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?

分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?

4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?

分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习

求下列方程的两根x1、x2.的和与积.13x2+7x+2=0;3x2+7x-2=0;3x2-7x+2=0;3x2-7x-2=0;

25x-1=4x2;5x2-1=4x2+x

6.拓展练习

1已知一元二次方程2x2+bx+c=0的两个根是-1,3,则b=,c=.2已知关于x的方程x2+x-2=0的一个根是1,则另一个根是,的值是.3若关于x的一元二次方程x2+px+q=0的两个根互为相反数,则p=若两个根互为倒数,则q=.分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数

下载实系数一元二次方程 教案word格式文档
下载实系数一元二次方程 教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元二次方程根与系数的关系说课稿

    一元二次方程根与系数的关系说课稿作为一名教学工作者,通常会被要求编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。那么优秀的说课稿是什么样的呢?下面是小编帮......

    一元二次方程根与系数的关系试题

    1.已知方程x2-2x-m=0有两个正的实数根,求m的取值范围.2.已知m、n是方程x2-2002x+1=0的两个实数根,求代数式mn2+m2n-mn+1的值.3.已知关于x的方程x-92x+m=0有两个实数根x1、x2,且丨x1-x......

    关于一元二次方程教案大全(含5篇)

    关于一元二次方程教案大全一元二次方程是初中数学的主要内容,在初中代数中占重要地位。学生积极动手、动脑、动口为主线来完成。在教学中渗透类比化归等数学思想,让学生充分观......

    一元二次方程的根与系数的关系评课

    一元二次方程的根与系数的关系评课 “一元二次方程的根与系数的关系”是初中数学九年级上册第二十一章一元二次方程的内容,但不是课标要求范围的内容,教学要求是“阅读材料”......

    一元二次方程实际问题

    例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题: (1)......

    一元二次方程应用2010

    1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50......

    2014最新人教版一元二次方程 简单

    《一元二次方程》单元训练题 班级:姓名: 一、选择题(每小题3分,共24分) 1.方程x2=2x-3化为一般形式后二次项系数、一次项系数和常数项分别为 A. 1、2、-3B.1、2、-3C.1、-2、3D.1、2、3......

    一元二次方程专题复习

    一元二次方程专题复习类型之一 一元二次方程及其解的概念1 (2020·白银)已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值为(  )A.-1或2B.-1C.2D.0【变式训练】1.(2020·黑龙江......