第一篇:一元二次方程专题练习
22.2降次——解一元二次方程
专题一利用配方法求字母的取值或者求代数式的极值
1.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为()
A.-9或11B.-7或8C.-8或9C.-8或9
222.如果代数式x+6x+m是一个完全平方式,则m=.3.用配方法证明:无论x为何实数,代数式-2x2+4x-5的值恒小于零.
2专题二利用△判定一元二次方程根的情况或者判定字母的取值范围
4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()
A.没有实数根B.可能有且只有一个实数根
C.有两个相等的实数根D.有两个不相等的实数根
25.关于x的方程kx+3x+2=0有实数根,则k的取值范围是()
A.k≤9999B.k<C.k<且k≠0D.k≤且k≠0 8888
6.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程 为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下 列结论正确的是()
A.a=cB.a=bC.b=cD.a=b=c
专题三解绝对值方程和高次方程
7.若方程(x2+y-5)=64,则x+y=.8.阅读题例,解答下题:
例:解方程x2-|x-1|-1=0.22解:(1)当x-1≥0,即x≥1时,x-(x-1)-1=0,∴x-x=0.解得:x1=0(不合题意,舍去),x2=1.22(2)当x-1<0,即x<1时,x+(x-1)-1=0,∴x+x-2=0.解得x1=1(不合题意,舍去),x2=-2.综上所述,原方程的解是x=1或x=-2.2依照上例解法,解方程x+2|x+2|-4=0.
222
2专题四一元二次方程、二次三项式因式分解、不等式组之间的微妙联系
9.探究下表中的奥秘,并完成填空:
10.请先阅读例题的解答过程,然后再解答:
代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们 知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两 个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方 程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2=
.
3a0,a0,根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有 或者请判
b0b0.
断王力的推测是否正确?若正确,请你求出不等式 说明理由.
5x
10的解集,如果不正确,请 2x3
专题五利用根与系数的关系求字母的取值范围及求代数式的值
11.设x1、x2是一元二次方程x+4x-3=0的两个根,2x1(x2+5x2﹣3)+a=2,则a=. 12.【2012·怀化】已知x1、x2是一元二次方程a6x2axa0的两个实数根,2
2⑴是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
⑵求使(x1+1)(x2+1)为负整数的实数a的整数值.
b2
13.教材中我们学习了:若关于x的一元二次方程ax+bx+c=0的两根为x1、x2,x1+x2=-ac
x1·x2=.根据这一性质,我们可以求出已知方程关于x1、x2的代数式的值.例如:已知
ax1、x2为方程x-2x-1=0的两根,则:
2(1)x1+x2=____,x1·x2=____,那么x1+x2=(x1+x2)-2 x1·x2=__ __.
mn
1(2)阅读材料:已知m2m10,n2n10,且mn1.求的值.
n解:由n2n10可知n0.方程左右两边同时除以n得 1∴
20,nn
10.n2n
11.∴m,是方程x2x10的两根. nn
又m2m10,且mn1,即m∴m
1.∴mn1=1. nn
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m23m10,n23n20,且mn1.求m22的值.
n
知识要点:
1.解一元二次方程的基本思想——降次,解一元二次方程的常用方法:直接开平方法、配方法、公式法、因式分解法.2.一元二次方程的根的判别式△=b2-4ac与一元二次方程ax+bx+c=0(a≠0)的根的关系: 当△>0时,一元二次方程有两个不相等的实数解; 当△=0时,一元二次方程有两个相等的实数解; 当△<0时,一元二次方程没有实数解.3.一元二次方程ax+bx+c=0(a≠0)的两根x1、x2与系数a、b、c之间存在着如下关系: x1+x2=﹣,x1•x2=.22.3实际问题与一元二次方程
专题一利用一元二次方程解决面积问题
1.在高度为2.8m的一面墙上,准备开凿一个矩形窗户.现用9.5m长的铝合金条制成如图所
示的窗框.问:窗户的宽和高各是多少时,其透光面积为3m(铝合金条的宽度忽略不计).
2.如图:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
3.数学的学习贵在举一反三,触类旁通.仔细观察图形,认真思考,解决下面的问题:(1)在长为am,宽为bm的一块草坪上修了一条1m宽的笔直小路(如图(1)),则余下草坪的面积可表示为m2;
(2)现为了增加美感,设计师把这条小路改为宽恒为1m的弯曲小路(如图(2)),则此时余下草坪的面积为m2;
(3)聪明的鲁鲁结合上面的问题编写了一道应用题,你能解决吗?相信自己哦!(如图(3)),在长为50m,宽为30m的一块草坪上修了一条宽为xm的笔直小路和一条长恒为xm的弯曲小路(如图3),此时余下草坪的面积为1421m2.求小路的宽
x.5.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感 染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有 效控制,3轮感染后,被感染的电脑会不会超过700台?
6.【2012·广元】某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售,由于 国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平方米5670 元的价格销售.
(1)求平均每次下调的百分率;
(2)房产销售经理向开放商建议:先公布下调5%,再下调15%,这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?
专题三利用一元二次方程解决市场经济问题
7.【2012·济宁】一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定: 如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最 终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?
8.【2012·南京】某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的售 价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售 出1部,所有售出的汽车的进价均降低0.1万元/部;月底厂家根据销售量一次性返利给 销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部 返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)
专题四利用一元二次方程解决生活中的其他问题
9.(1)经过凸n边形(n>3)其中一个顶点的对角线有条.......
(2)一个凸多边形共有14条对角线,它是几边形?
(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理
由.10.如图,每个正方形是由边长为1的小正方形组成.
(1)观察图形,请填写下列表格:
(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.
第二篇:《一元二次方程》基础练习
《一元二次方程》基础练习
积累●整合1、下列方程一定是关于x的一元二次方程的是()
A.ax2+bx+c=0
B.m2x+5m+6=0
C.x3-x-1=0
D.(k2+3)x2+2x-=02、一元二次方程x2-2(3x-2)+(x+1)=0的一般形式是()
A.x2-5x+5=0
B.x2+5x-5=0
C.x2+5x+5=0
D.x2+5=03、方程3x2-x+=0的二次项系数与一次项系数及常数项之积为()
A.3
B.-
C.
D.-94、下列方程中,不含一次项的是()
A.(2x-1)(1+2x)=0
B.3x2=4x
C.2x2=7-6x
D.x(1-x)=05、若x=1是方程x2+nx+m=0的根,则m+n的值是()
A.1
B.-1
C.2
D.-26、下列说法正确的是()
A.方程ax2+bx+c=0是关于x的一元二次方程
B.方程3x2=4的常数项是4
C.若一元二次方程的常数项为0,则0必是它的一个根
D.当一次项系数为0时,一元二次方程总有非零解
7、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()
A.1
B.-1
C.1或-1
D.
8、若ax2-5x+3=0是一元二次方程,则不等式3a+6>0的解集为()
A.a>-2
B.a<-2
C.a>-
D.a>-2且a≠0
拓展●应用
9、若一元二次方程2x2+(k+8)x-(2k-3)=0的二次项系数、一次项系数、常数项之和为5,则k=
10、若方程(m-1)x|m|+1-2x=3是关于x的一元二次方程,则m=
11、写出一个一元二次方程,使方程有一个根为0,并且二次项系数为1,12、已知x=-2是方程x2-mx+2=0的根,则-=
13、关于x的方程(k2-4)x2+(k-2)x+3k-1=0,当k=
时为一元一次方程;当k
时为一元二次方程。
14、根据题意,列出方程:
(1)一个两位数,两个数字的和为6,这两个数字的积等于这个两位数的,设这个两位数的个位数为x,可列出关于x的方程为
(2)有一个面积为20cm2的三角形,它的一条边比这条边上的高长3cm,设这条边的长度为x,可列出关于x的方程为
探索●创新
15、学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:
(1)它的一般形式为ax2+bx+c=0(a、b、c为常数,a≠0)
(2)它的二次项系数为5
(3)常数项是二次项系数的倒数的相反数
你能写出一个符合条件的方程吗?
16、已知关于x的方程(m-n)x2+mx+n=0,你认为:
(1)当m和n满足什么关系时,该方程是一元二次方程?
(2)当m和n满足什么关系时,该方程是一元一次方程?
参考答案
1、答案:D
解析:A要想成为一元二次方程,需加条件a≠0,B需加条件m≠0,C是一元三次方程,D中不论k为何值,k2+3永远为正,所以D是一元二次方程,故选D2、答案:A
解析:去括号,合并同类项即可得到答案A3、答案:D
解析:二次项系数为3,一次项系数为-,常数项为,3×(-)×=-94、答案:A
解析:(2x-1)(1+2x)=4x2-1,故选A5、答案:B
解析:将x=1代入x2+nx+m=0,得到1+n+m=0,即m+n=-1,故选B6、答案:C
解析:A中需加上a≠0才是一元二次方程,B中的常数项为-4,D中的一元二次方程解可能为0,例如:x2=0,故选C7、答案:B
解析:将x=0代入方程得到a2-1=0,即a=±1,因为原方程为一元二次方程,即a-1≠0,所以a≠1,所以a=-1,故选B8、答案:D
解析:因为ax2-5x+3=0是一元二次方程,所以a≠0,3a+6>0,即a>-2,所以a>-2且a≠0。故选D9、答案:8
解析:2+(k+8)+(-2k+3)=5,所以k=810、答案:-1
解析:|m|+1=2,所以m=±1,因为m-1≠0,即m≠1,所以m=-111、答案:x2-x=0(答案不唯一)
解析:发挥聪明才智,大胆想象
12、答案:-2
解析:将x=-2代入方程,m=-3,-=-=1-m-3+m=-213、答案:-2,≠±2
解析:方程为一元一次方程,k2-4=0,即k=±2,且k-2≠0,即k≠2,所以k=-2
方程为一元二次方程,k2-4≠0,即k≠±214、答案:(1)x(6-x)=[10(6-x)+x]
(2)x(x-3)=20
解析:(1)个位数为x,那么十位数为6-x,根据题意得x(6-x)=[10(6-x)+x]
(2)这条边长度为x,那么这条边上的高为x-3,根据三角形的面积公式得x(x-3)=2015、答案:这个方程是5x2-2x-=0(答案不唯一)
解析:由(1)知这是一元二次方程,由(2)(3)可确定a、c,而b的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键。
16、答案:(1)当m≠n时,方程是一元二次方程
(2)当m=n且m≠0时,方程是一元一次方程
解析:本题主要考查一元二次方程及一元一次方程的定义,一元二次方程中ax2中的a不可能为0,即m-n≠0;而一元一次方程中ax中的a不可能为0,即m≠0。对于一元二次方程ax2+bx+c=0一定要注意“a≠0”,当二次项系数为0,而一次项系数不为0时为一元一次方程。
第三篇:一元二次方程实际问题
例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.
(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]
(3)月销售成本不超过10000元,那么销售量就不超过10000=250kg,在这个提前下,40
•求月销售利润达到8000元,销售单价应为多少.
解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60
当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.
当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).
例4.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x
则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=
答:所求的年利率是12.5%.
1=0.125=12.5% 8
第四篇:一元二次方程应用2010
1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
2、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?
3、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子,可以使橙子的总产量达到60400个?
4、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请售答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过1000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
5、某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.求y关于x的二次函数关系式,并注明x的取值范围;
6、(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2
间包房租出,请分别写出y1、y2与x之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式。
7、(2009年甘肃庆阳)(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
8、(2009年湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.9.建造一个面积是140平方米的仓库,要求其一边靠墙,墙长16米,在与墙平行的一边开一道2米宽的门。现人32米长的材料来建仓库,求这个仓库的长是多少米?
10、如图在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。点P从A点开始,沿AB方向以每秒1厘米的速度移动,同时点Q从点B开始,沿BC方向以每秒厘米移动。问几秒时△PBQ的面积等于8平方厘米?
11.(2009年甘肃庆阳)若关于x的方程x2
2xk10的一个根是0,则k.
12.、(2009威海)若关于x的一元二次方程x2
(k3)xk0的一个根是2,则另一个根是______.、(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价P 13由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.
第五篇:2014最新人教版一元二次方程 简单
《一元二次方程》单元训练题
班级:姓名:
一、选择题(每小题3分,共24分)
1.方程x2=2x-3化为一般形式后二次项系数、一次项系数和常数项分别为()
A. 1、2、-3B.
1、2、-3C.
1、-
2、3D.1、2、3
2.方程(m2)x23mx10是关于x的一元二次方程,则()
A.m2B.m2C.m2D.m2
3.一元二次方程x2-4=0的解是()
A.x1=2,x2=-2B.x=-2C.x=2D.x1=2,x2=0
4.用配方法解方程x2-4x=-2,下列配方正确的是()
A.(x-2)2=2B.(x+2)2=2C.(x-2)2=-2D.(x-2)2=6
5.已知一元二次方程x2+x-1=0,下列判断正确的是()
A.该方程有两个相等的实数根B.该方程有两个不相等的实数根
C.该方程无实数根D.该方程根的情况不确定
6.若x1、x2是方程x23x50的两个根,则x1x2的值为()
22A.3B.5C.3D.5 7.如果x=4是一元二次方程x3xa的一个根,则常数a的值是()
A.2B.-2C.±2D.±4
8.为了美化环境,某市加大对环境绿化的投资.2009年用于绿化投资20万元,2011年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意,所列方程为()
A.20x2=25B.20(1+x)=25C.20(1+x)2=25D.20(1+x)+20(1+x)2=25
二、填空题(每小题3分,共21分)
9.一元二次方程x2x的解为:;
10.已知x=2是关于x的一元二次方程x2+4x-p=0的一个根,则p的值是_______.
11.已知
3、-5是关于x的方程x+px+q=0的两根,则 ,.12.已知x2+x-1=0,则3x2+3x-5=_______.
13.三角形的两边长分别为3和4,第三边的长是方程x6x80的一个根,则这个三角形的周长是
14.已知代数式x2x3与x7的值相等,则x的值是.
15.已知方程x-4x+3=0的两根为x1、x2, 则x1+x2=,x1·x2=,三.解下列方程(每小题5分,共20分)
21.x90;2.3x216x. 2222211. x1x
22x4.2x(x3)5x( 33.2x13
四.解答题(共35分)
1.已知x1=-1是方程x2+mx-5=0的一个根,求m的值及方程的另一个根x2.(8分)
4.已知关于x的一元二次方程x+(m+1)x+m+4=0,当m为何值时,方程有两个相等的实数根.(8分)
2.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.问该公司的年增长率是多少?(8分)
3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.
设每件商品降价x元.据此规律,请回答:
(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?(11分)