一元二次方程专题练习

时间:2019-05-12 06:28:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元二次方程专题练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元二次方程专题练习》。

第一篇:一元二次方程专题练习

22.2降次——解一元二次方程

专题一利用配方法求字母的取值或者求代数式的极值

1.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为()

A.-9或11B.-7或8C.-8或9C.-8或9

222.如果代数式x+6x+m是一个完全平方式,则m=.3.用配方法证明:无论x为何实数,代数式-2x2+4x-5的值恒小于零.

2专题二利用△判定一元二次方程根的情况或者判定字母的取值范围

4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()

A.没有实数根B.可能有且只有一个实数根

C.有两个相等的实数根D.有两个不相等的实数根

25.关于x的方程kx+3x+2=0有实数根,则k的取值范围是()

A.k≤9999B.k<C.k<且k≠0D.k≤且k≠0 8888

6.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程 为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下 列结论正确的是()

A.a=cB.a=bC.b=cD.a=b=c

专题三解绝对值方程和高次方程

7.若方程(x2+y-5)=64,则x+y=.8.阅读题例,解答下题:

例:解方程x2-|x-1|-1=0.22解:(1)当x-1≥0,即x≥1时,x-(x-1)-1=0,∴x-x=0.解得:x1=0(不合题意,舍去),x2=1.22(2)当x-1<0,即x<1时,x+(x-1)-1=0,∴x+x-2=0.解得x1=1(不合题意,舍去),x2=-2.综上所述,原方程的解是x=1或x=-2.2依照上例解法,解方程x+2|x+2|-4=0.

222

2专题四一元二次方程、二次三项式因式分解、不等式组之间的微妙联系

9.探究下表中的奥秘,并完成填空:

10.请先阅读例题的解答过程,然后再解答:

代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们 知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两 个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,就相当于解方 程x+2=0或3x-5=0,得到原方程的解为x1=-2,x2=

3a0,a0,根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有 或者请判

b0b0.

断王力的推测是否正确?若正确,请你求出不等式 说明理由.

5x

10的解集,如果不正确,请 2x3

专题五利用根与系数的关系求字母的取值范围及求代数式的值

11.设x1、x2是一元二次方程x+4x-3=0的两个根,2x1(x2+5x2﹣3)+a=2,则a=. 12.【2012·怀化】已知x1、x2是一元二次方程a6x2axa0的两个实数根,2

2⑴是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;

⑵求使(x1+1)(x2+1)为负整数的实数a的整数值.

b2

13.教材中我们学习了:若关于x的一元二次方程ax+bx+c=0的两根为x1、x2,x1+x2=-ac

x1·x2=.根据这一性质,我们可以求出已知方程关于x1、x2的代数式的值.例如:已知

ax1、x2为方程x-2x-1=0的两根,则:

2(1)x1+x2=____,x1·x2=____,那么x1+x2=(x1+x2)-2 x1·x2=__ __.

mn

1(2)阅读材料:已知m2m10,n2n10,且mn1.求的值.

n解:由n2n10可知n0.方程左右两边同时除以n得 1∴

20,nn

10.n2n

11.∴m,是方程x2x10的两根. nn

又m2m10,且mn1,即m∴m

1.∴mn1=1. nn

(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.

已知2m23m10,n23n20,且mn1.求m22的值.

n

知识要点:

1.解一元二次方程的基本思想——降次,解一元二次方程的常用方法:直接开平方法、配方法、公式法、因式分解法.2.一元二次方程的根的判别式△=b2-4ac与一元二次方程ax+bx+c=0(a≠0)的根的关系: 当△>0时,一元二次方程有两个不相等的实数解; 当△=0时,一元二次方程有两个相等的实数解; 当△<0时,一元二次方程没有实数解.3.一元二次方程ax+bx+c=0(a≠0)的两根x1、x2与系数a、b、c之间存在着如下关系: x1+x2=﹣,x1•x2=.22.3实际问题与一元二次方程

专题一利用一元二次方程解决面积问题

1.在高度为2.8m的一面墙上,准备开凿一个矩形窗户.现用9.5m长的铝合金条制成如图所

示的窗框.问:窗户的宽和高各是多少时,其透光面积为3m(铝合金条的宽度忽略不计).

2.如图:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?

3.数学的学习贵在举一反三,触类旁通.仔细观察图形,认真思考,解决下面的问题:(1)在长为am,宽为bm的一块草坪上修了一条1m宽的笔直小路(如图(1)),则余下草坪的面积可表示为m2;

(2)现为了增加美感,设计师把这条小路改为宽恒为1m的弯曲小路(如图(2)),则此时余下草坪的面积为m2;

(3)聪明的鲁鲁结合上面的问题编写了一道应用题,你能解决吗?相信自己哦!(如图(3)),在长为50m,宽为30m的一块草坪上修了一条宽为xm的笔直小路和一条长恒为xm的弯曲小路(如图3),此时余下草坪的面积为1421m2.求小路的宽

x.5.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感 染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有 效控制,3轮感染后,被感染的电脑会不会超过700台?

6.【2012·广元】某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售,由于 国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平方米5670 元的价格销售.

(1)求平均每次下调的百分率;

(2)房产销售经理向开放商建议:先公布下调5%,再下调15%,这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?

专题三利用一元二次方程解决市场经济问题

7.【2012·济宁】一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定: 如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最 终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?

8.【2012·南京】某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的售 价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售 出1部,所有售出的汽车的进价均降低0.1万元/部;月底厂家根据销售量一次性返利给 销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部 返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)

专题四利用一元二次方程解决生活中的其他问题

9.(1)经过凸n边形(n>3)其中一个顶点的对角线有条.......

(2)一个凸多边形共有14条对角线,它是几边形?

(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理

由.10.如图,每个正方形是由边长为1的小正方形组成.

(1)观察图形,请填写下列表格:

(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.

第二篇:《一元二次方程》基础练习

《一元二次方程》基础练习

积累●整合1、下列方程一定是关于x的一元二次方程的是()

A.ax2+bx+c=0

B.m2x+5m+6=0

C.x3-x-1=0

D.(k2+3)x2+2x-=02、一元二次方程x2-2(3x-2)+(x+1)=0的一般形式是()

A.x2-5x+5=0

B.x2+5x-5=0

C.x2+5x+5=0

D.x2+5=03、方程3x2-x+=0的二次项系数与一次项系数及常数项之积为()

A.3

B.-

C.

D.-94、下列方程中,不含一次项的是()

A.(2x-1)(1+2x)=0

B.3x2=4x

C.2x2=7-6x

D.x(1-x)=05、若x=1是方程x2+nx+m=0的根,则m+n的值是()

A.1

B.-1

C.2

D.-26、下列说法正确的是()

A.方程ax2+bx+c=0是关于x的一元二次方程

B.方程3x2=4的常数项是4

C.若一元二次方程的常数项为0,则0必是它的一个根

D.当一次项系数为0时,一元二次方程总有非零解

7、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()

A.1

B.-1

C.1或-1

D.

8、若ax2-5x+3=0是一元二次方程,则不等式3a+6>0的解集为()

A.a>-2

B.a<-2

C.a>-

D.a>-2且a≠0

拓展●应用

9、若一元二次方程2x2+(k+8)x-(2k-3)=0的二次项系数、一次项系数、常数项之和为5,则k=

10、若方程(m-1)x|m|+1-2x=3是关于x的一元二次方程,则m=

11、写出一个一元二次方程,使方程有一个根为0,并且二次项系数为1,12、已知x=-2是方程x2-mx+2=0的根,则-=

13、关于x的方程(k2-4)x2+(k-2)x+3k-1=0,当k=

时为一元一次方程;当k

时为一元二次方程。

14、根据题意,列出方程:

(1)一个两位数,两个数字的和为6,这两个数字的积等于这个两位数的,设这个两位数的个位数为x,可列出关于x的方程为

(2)有一个面积为20cm2的三角形,它的一条边比这条边上的高长3cm,设这条边的长度为x,可列出关于x的方程为

探索●创新

15、学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:

(1)它的一般形式为ax2+bx+c=0(a、b、c为常数,a≠0)

(2)它的二次项系数为5

(3)常数项是二次项系数的倒数的相反数

你能写出一个符合条件的方程吗?

16、已知关于x的方程(m-n)x2+mx+n=0,你认为:

(1)当m和n满足什么关系时,该方程是一元二次方程?

(2)当m和n满足什么关系时,该方程是一元一次方程?

参考答案

1、答案:D

解析:A要想成为一元二次方程,需加条件a≠0,B需加条件m≠0,C是一元三次方程,D中不论k为何值,k2+3永远为正,所以D是一元二次方程,故选D2、答案:A

解析:去括号,合并同类项即可得到答案A3、答案:D

解析:二次项系数为3,一次项系数为-,常数项为,3×(-)×=-94、答案:A

解析:(2x-1)(1+2x)=4x2-1,故选A5、答案:B

解析:将x=1代入x2+nx+m=0,得到1+n+m=0,即m+n=-1,故选B6、答案:C

解析:A中需加上a≠0才是一元二次方程,B中的常数项为-4,D中的一元二次方程解可能为0,例如:x2=0,故选C7、答案:B

解析:将x=0代入方程得到a2-1=0,即a=±1,因为原方程为一元二次方程,即a-1≠0,所以a≠1,所以a=-1,故选B8、答案:D

解析:因为ax2-5x+3=0是一元二次方程,所以a≠0,3a+6>0,即a>-2,所以a>-2且a≠0。故选D9、答案:8

解析:2+(k+8)+(-2k+3)=5,所以k=810、答案:-1

解析:|m|+1=2,所以m=±1,因为m-1≠0,即m≠1,所以m=-111、答案:x2-x=0(答案不唯一)

解析:发挥聪明才智,大胆想象

12、答案:-2

解析:将x=-2代入方程,m=-3,-=-=1-m-3+m=-213、答案:-2,≠±2

解析:方程为一元一次方程,k2-4=0,即k=±2,且k-2≠0,即k≠2,所以k=-2

方程为一元二次方程,k2-4≠0,即k≠±214、答案:(1)x(6-x)=[10(6-x)+x]

(2)x(x-3)=20

解析:(1)个位数为x,那么十位数为6-x,根据题意得x(6-x)=[10(6-x)+x]

(2)这条边长度为x,那么这条边上的高为x-3,根据三角形的面积公式得x(x-3)=2015、答案:这个方程是5x2-2x-=0(答案不唯一)

解析:由(1)知这是一元二次方程,由(2)(3)可确定a、c,而b的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键。

16、答案:(1)当m≠n时,方程是一元二次方程

(2)当m=n且m≠0时,方程是一元一次方程

解析:本题主要考查一元二次方程及一元一次方程的定义,一元二次方程中ax2中的a不可能为0,即m-n≠0;而一元一次方程中ax中的a不可能为0,即m≠0。对于一元二次方程ax2+bx+c=0一定要注意“a≠0”,当二次项系数为0,而一次项系数不为0时为一元一次方程。

第三篇:一元二次方程实际问题

例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算销售量和月销售利润.

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.

(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?

分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.

(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]

(3)月销售成本不超过10000元,那么销售量就不超过10000=250kg,在这个提前下,40

•求月销售利润达到8000元,销售单价应为多少.

解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元

(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000

(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60

当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.

当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).

例4.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x

则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0

解得:x1=-2(不符,舍去),x2=

答:所求的年利率是12.5%.

1=0.125=12.5% 8

第四篇:一元二次方程应用2010

1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

2、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?

3、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子,可以使橙子的总产量达到60400个?

4、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请售答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求y与x函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过1000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

5、某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.求y关于x的二次函数关系式,并注明x的取值范围;

6、(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。

(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2

间包房租出,请分别写出y1、y2与x之间的函数关系式。

(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式。

7、(2009年甘肃庆阳)(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?

(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?

8、(2009年湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?

(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.9.建造一个面积是140平方米的仓库,要求其一边靠墙,墙长16米,在与墙平行的一边开一道2米宽的门。现人32米长的材料来建仓库,求这个仓库的长是多少米?

10、如图在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。点P从A点开始,沿AB方向以每秒1厘米的速度移动,同时点Q从点B开始,沿BC方向以每秒厘米移动。问几秒时△PBQ的面积等于8平方厘米?

11.(2009年甘肃庆阳)若关于x的方程x2

2xk10的一个根是0,则k.

12.、(2009威海)若关于x的一元二次方程x2

(k3)xk0的一个根是2,则另一个根是______.、(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价P 13由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.

第五篇:2014最新人教版一元二次方程 简单

《一元二次方程》单元训练题

班级:姓名:

一、选择题(每小题3分,共24分)

1.方程x2=2x-3化为一般形式后二次项系数、一次项系数和常数项分别为()

A. 1、2、-3B.

1、2、-3C.

1、-

2、3D.1、2、3

2.方程(m2)x23mx10是关于x的一元二次方程,则()

A.m2B.m2C.m2D.m2

3.一元二次方程x2-4=0的解是()

A.x1=2,x2=-2B.x=-2C.x=2D.x1=2,x2=0

4.用配方法解方程x2-4x=-2,下列配方正确的是()

A.(x-2)2=2B.(x+2)2=2C.(x-2)2=-2D.(x-2)2=6

5.已知一元二次方程x2+x-1=0,下列判断正确的是()

A.该方程有两个相等的实数根B.该方程有两个不相等的实数根

C.该方程无实数根D.该方程根的情况不确定

6.若x1、x2是方程x23x50的两个根,则x1x2的值为()

22A.3B.5C.3D.5 7.如果x=4是一元二次方程x3xa的一个根,则常数a的值是()

A.2B.-2C.±2D.±4

8.为了美化环境,某市加大对环境绿化的投资.2009年用于绿化投资20万元,2011年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意,所列方程为()

A.20x2=25B.20(1+x)=25C.20(1+x)2=25D.20(1+x)+20(1+x)2=25

二、填空题(每小题3分,共21分)

9.一元二次方程x2x的解为:;

10.已知x=2是关于x的一元二次方程x2+4x-p=0的一个根,则p的值是_______.

11.已知

3、-5是关于x的方程x+px+q=0的两根,则 ,.12.已知x2+x-1=0,则3x2+3x-5=_______.

13.三角形的两边长分别为3和4,第三边的长是方程x6x80的一个根,则这个三角形的周长是

14.已知代数式x2x3与x7的值相等,则x的值是.

15.已知方程x-4x+3=0的两根为x1、x2, 则x1+x2=,x1·x2=,三.解下列方程(每小题5分,共20分)

21.x90;2.3x216x. 2222211. x1x

22x4.2x(x3)5x( 33.2x13

四.解答题(共35分)

1.已知x1=-1是方程x2+mx-5=0的一个根,求m的值及方程的另一个根x2.(8分)

4.已知关于x的一元二次方程x+(m+1)x+m+4=0,当m为何值时,方程有两个相等的实数根.(8分)

2.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.问该公司的年增长率是多少?(8分)

3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.

设每件商品降价x元.据此规律,请回答:

(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);

(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?(11分)

下载一元二次方程专题练习word格式文档
下载一元二次方程专题练习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元二次方程专题复习

    一元二次方程专题复习类型之一 一元二次方程及其解的概念1 (2020·白银)已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值为(  )A.-1或2B.-1C.2D.0【变式训练】1.(2020·黑龙江......

    实际问题一元二次方程

    22.3《实际问题与一元二次方程》学案 课型:上课时间:课时: 学习目标: 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 学习过程:......

    《一元二次方程》参考教案

    21.1 一元二次方程教学内容 本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 知识技能 探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际......

    一元二次方程与证明题

    一元二次方程与证明题班级姓名一.填空题1.一元二次方程x=16的解是2.若关于x的一元二次方程x2(k3)xk0的一个根是2,则另一个根是______.3.某种品牌的手机经过四、五月份连续两次降......

    关于一元二次方程教案大全(含5篇)

    关于一元二次方程教案大全一元二次方程是初中数学的主要内容,在初中代数中占重要地位。学生积极动手、动脑、动口为主线来完成。在教学中渗透类比化归等数学思想,让学生充分观......

    2014中考数学一元二次方程

    2014中考数学 一元二次方程一、选择题 1.(2012·嘉兴)一元二次方程x(x-1)=0的解是 A. x=0B. x=1 C. x=0或x=1D. x=0或x=-1 2.(2011·兰州)用配方法解方程x2-2x-5=0时,原方程应变形为 A.(......

    一元二次方程周末作业

    九年级数学(13)1、用配方法解方程x2x50时,原方程应变形为__________________________2.方程x24x0的解是_____________方程x-16=0的根为_______________(2x-1)(x+3)=0的根为_____......

    一元二次方程跟踪练习题

    《一元二次方程》跟踪练习一.选择题1.如果(a-1)x2+ax+a2-1=0是关于x的一元二次方程,那么必有A.a≠0B.a≠1C.a≠-1D.a=±-12.某种产品原来每件的成本是100元,由于连续两次降低成本,现在......