第一篇:关于一元二次方程教案大全
关于一元二次方程教案大全
一元二次方程是初中数学的主要内容,在初中代数中占重要地位。学生积极动手、动脑、动口为主线来完成。在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。以下是东星资源网小编整理的关于一元二次方程教案,欢迎查阅!
一元二次方程教案1
启发探究,获取新知
上面的三个方程这两个方程是一元一次方程吗?它们与一元一次方程的区别在哪里?它们有什么共同特点呢?(学生分组讨论,然后各组交流)
共同特点:(1)(2)(3)
(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
【设计意图】通过上述情景分析,让学生小组合作,列出方程。在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。
(三)例题解析,练习反馈
例题解析(投影展示)
例1:下列方程中哪些是一元二次方程?试说明理由。
例2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项
说明:一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。
此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。
例3:已知关于x的方程(k2-1)x2+(k+1)x-2=0
(1)当k取何值时此方程为一元一次方程?
(2)当k取何值时此方程为一元二次方程?并写出该一元二次方程的二次项系数,一次项系数,常数项。(同学先讨论,同桌交流再进行归纳)
【设计意图】通过例题,使学生巩固一元二次方程的概念,把握概念的实质。
练习反馈
1、课本第32页1、
2、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请尽可能多的写出满足条件的不同的一元二次方程?
【设计意图】开放题可以使学生开阔思维,进一步巩固概念。
(四)小结归纳,上升理性
引导学生从以下3个方面进行小结,(1)本节课我们学习了哪些知识?(2)学习过程中用了哪些数学方法?(3)确定一元二次方程的项及系数时要注意什么?
【设计意图】主要由学生进行总结和互相补充,以培养学生的归纳概括能力。
(五)作业布置
1、教材P34 习题22.1
2、选用作业设计。
板书设计
一元二次方程教案2
教学目标:
1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点
1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点
1、建立一元二次方程实际问题的数学模型.
2、把一元二次方程化为一般形式
教学方法:指导自学,自主探究
课时:第一课时
教学过程:
(学生通过导学提纲,了解本节课自己应该掌握的内容)
一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)
1、请认真完成课本P39—40议一议以上的内容;整理化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?
你能把这些特点用一个方程概括出来吗?
3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?
二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?
4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?
5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?
三、总结反思:(学生总结,进一步加深本节课所学内容)
这节课你学到了什么?
四、自查自省:(通过当堂小测,及时发现问题,及时应对)
1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个
(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.
作业:必做题:习题7.1
选做题:(挑战自我)p41随堂练习
1、已知关于的方程是一元二次方程,则为何值?
2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?
3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?
4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?
(1)(2)
板书设计:一元二次方程
定义:一个未知数整式方程可以化为
一般形式ax2+bx+c=0(a、b、c为常数,a≠0)
二次项一次项常数项
系数为a系数为b
教学反思
这次我参加了区里组织的优质
课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的.挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。
首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,提供有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间
其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。
再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。
我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。
一元二次方程教案3
一元二次方程的概念
教材分析:1.本节以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本节内容是在前面所学方程、一元一次方程、整式、方程的解的基础上进行学习,也是后面学习二次函数的一个基础。
2.这些概念是全章后继内容的基础。
3.让学生体会数学来源于生活,又服务于生活的基本思想。
学情分析:1.授课班级学生基础较差,学生成绩参差不齐,差生较多。教学中应给予充分思考的时间,注意讲练结合,以学生为本,体现生本课堂的理念。
2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的
优势,从而充分调动学生主动性和积极性,使课堂气氛活跃,让学生在愉快的环境中学习。
3.作为该班的班主任,同时又担任该班的数学教学,对学生学习情况有比较深入地了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法,着重加强对学生的双基训练。
教学目标:
一 知识与技能:
1.理解一元二次方程的概念,能判断一个方程是一元二次方程。
2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二 过程与方法:
1.引导学生分析实际问题中的数量关系,组织学生讨论,让学生类比、抽象出一元二次方程的概念 。
2.培养独立思考,合作交流学,分析问题,解决问题的能力。
三 情感态度与价值观:
1.培养学生主动探究知识、自主学习和合作交流的意识.
2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
3.让学生体会数学来源于生活,又服务于生活的基本思想,从而意识到数学在生活中的作用。
教学重点:一元二次方程的概念及一般形式,利用概念解决实际问题。
教学难点:1.由实际问题向数学问题的转化过程.2.正确识别一般式中的“项”及“系数”.
3.一元二次方程的特点,如何判断一个方程是一元二次方程。
教学过程:
一、创设情境,引入新课
1.问题1:广安区为增加农民收入,需要调整农作物种植结构,计划20**年无公害蔬菜的产量比20**年翻一番,要实现这一目标,20**年和20**年无公害蔬菜产量的年平均增长率是多少?(通过放幻灯片引入)
设无公害蔬菜产量的年平均增长率为x,20**年的产量为a(a≠0),翻一番的意思就是a变为2a,那么
(1)用代数式表示20**年的产量;
(2)20**年蔬菜的产量比20**年增加了2x,对吗?为什么?你能用代数式表示出来吗?
学生思考交流得出方程 a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通过幻灯片引入情境,提出问题:
问题2:广安市政府在一块宽200m、长320m的矩形广场上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为57000m2,问小路的宽应为多少?
设小路的宽为x m,则横向小路的面积如何表示?纵向的呢?重叠部分的面积是多少?小路所占的面积用x的代数式如何表示?
这个问题的相等关系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
谁还能换一种思路考虑这个问题?
把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比较一下,哪种方法更巧妙?
3.通过幻灯片引入情景。问题3:广安重百商场销售某品牌服装,若每件盈利50元,则每月可销售100件。若每件降价1元,则每月可多卖出5件,若每月要盈利6000元,则商场决定每件服装降价多少?
设每件降价x元,则现在的盈利为(50-x)元,降价后销售量为(100+5X)件。可列方程为:(50-x)(100+5X)=6000
教学总结:尽量让学生duodu多多参与,多鼓励学生积极回答问题。
第二篇:《一元二次方程》参考教案
21.1 一元二次方程教学内容
本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
知识技能
探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.
数学思考
在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.
解决问题
培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:一元二次方程的定义、各项系数的辨别,根的作用. 难点:根的作用的理解.
关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
一、情境引入 【问题情境】
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛? 【活动方略】
教师演示课件,给出题目.
学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题. 【设计意图】
由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.
二、探索新知 【活动方略】
学生活动:请口答下面问题.
(1)上面几个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
【设计意图】
主体活动,探索一元二次方程的定义及其相关概念.
三、范例点击 例1 将方程3x(x1)5(x2)化成一元二次方程的一般形式,并指出各项系数. 解:去括号得
0
3x23x5x1,移项,合并同类项,得一元二次方程的一般形式
3x28x100.
其中二次项系数是3,一次项系数是-8,常数项是-10. 【活动方略】 学生活动:
学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.
教师活动:
在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题). 【设计意图】
进一步巩固一元二次方程的基本概念. 例2 猜测方程x2x560的解是什么? 【活动方略】 学生活动:
学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.
教师活动:
教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结: 使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根). 【设计意图】
探究一元二次方程根的概念以及作用.
四、反馈练习课本P4 练习1、2题 补充习题:
1.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
2.你能根据所学过的知识解出下列方程的解吗?(1)x2360;
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.五、应用拓展
例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
例4:有人解这样一个方程(x5)(x1)7.
解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?
由(x5)(x1)7得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.
【活动方略】
教师活动:操作投影,将例
3、例4显示,组织学生讨论. 学生活动:合作交流,讨论解答。【设计意图】
使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.(2)4x290. 作业:
第三篇:实际问题与一元二次方程教案
教学过程
〖活动1〗 问题 通过上节课的学习,大家学到了哪些知识和方法? 教师提出问题,学生回忆,选一位同学作答,其他同学补充.在本次活动中,教师应重点关注:(1)学生对列方程解应用问题的步骤 是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.(活动1为学生创设了一个回忆、思考的情景,又是本课一种很自然的引入,为本课的探究活动做好铺垫).〖活动2〗 问题 要设计一本书的封面,封面长27cm ,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).(1)本题中有哪些数量关系?
(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?(3)如何利用已知的数量关系选取未知数?(4)列方程并得出结论.(5)反思解决问题的关键是什么?
教师展示课件,教师提出问题(1)学生分析,请一位同学回答,教师在题目中指出数量关系.教师提出问题(2)学生思考,请一位同学回答,可举简单例子说明,最后引导学生得出正中央矩形的长宽比是9︰7.问题(1)(2)都是帮助学生更好的理解题意,为后面的解题做以铺垫.教师提出问题(3)学生分组讨论,选代表上台演示、回答,每位同学要着重分析对题目中的数量关系的处理方法.问题(3)是活动2的中心环节,在本次活动中,教师应重点关注:(1)学生对几何图形的分析能力;(2)学生在未知数的选择上,能否根据情况,灵活处理;(3)在讨论中能否互相合作;(4)学生回答问题时的语言表达是否准确.学生充分的讨论,得出多种不同的方法,激发学生的学习热情,使学生体会解决问题的方法多样性.为活动3埋下一个伏笔.教师提出问题(4)学生分组,分别按问题三中所列的方程来解答,选代表展示解答过程.教师提出问题(5)学生充分的讨论,丰富解题经验.〖活动3〗某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条宽度相同的道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.教师展示课件,请一位同学朗读题目.教师提出问题,学生回答方案1,学生通过探究与讨论,活跃了解题思路.教师提出方案(2)学生思考.因为有活动2的基础,选一位同学回答这一组问题即可,如有不完全的地方,教师适当补充.教师做屏幕演示,特别提醒学生:剩余草坪的面积,是否就是原草坪的面积减去2条路的面积?以引导学生注意道路重叠部分的处理.活动2是针对活动2的巩固性练习.《思考》:能不能把纵、横两条路移动一下,使列方程容易些? 学生分组讨论,教师指导.引领学生 讨论后请一位同学回答.教师引领学生发现两个图形都存重叠部分,但除此之外的剩余部分,第一个图是一个完整的矩形,易于表示;而第二个图中分为4块,所以不容易表示.《思考》是活动3的中心环节,以图形对比的问题为 引导,通过对比两个图形的联系与区别,启发学生方案1为模型,构建草坪问题的解题思路.学生分组讨论,画图,上台演示.教师与学生一起评价,总结图形变换的基本原则.在本次活动中,教师应重点关注:(1)学生的学习效果;(2)使学生充分体会图形变换的灵活性;(3)学生对图形的观察、联想能力;(4)教师要强调图形变换中图形改变、位置改变、关键量不变的原则.在学生充分的思维活动之后,学生会自然产生动手实践的欲望,教师可以给学生一定的空间去发挥想象,同时也要注意对图形变换的指导,可以对部分不太合适的答案也进行一下点评.〖活动4〗 问题 通过本课的学习,大家有什么新的收获和体会?
〖活动5〗当堂测试
布置作业: 教科书53页,习题21.3第5、8题;教科书58页,复习题21第7、10题,教师应重点关注:
第四篇:一元二次方程复习课教案
一元二次方程 复习与小结 复习目标
1.知识与技能.
(1)了解一元二次方程的有关概念.
(2)能运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.
(3)会根据根的判别式判断一元二次方程的根的情况.
(4)知道一元二次方程根与系数的关系,并会运用它解决有问题.
(5)能运用一元二次方程解决简单的实际问题.
(6)了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.
2.过程与方法.
(1)经历运用知识、技能解决问题的过程.
(2)发展学生的独立思考能力和创新精神.
3.情感、态度与价值观.
(1)初步了解数学与人类生活的密切联系.
(2)培养学生对数学的好奇心与求知欲.
(3)养成质疑和独立思考的学习习惯.
重难点、关键
1.重点:运用知识、技能解决问题.
2.难点:解题分析能力的提高.
3.关键:引导学生参与解题的讨论与交流. 复习过程
一、复习联想,温故知新
基础训练.
1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.
例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.
2.解一元二次方程的一般解法有
(1)_________;(2)________;(•3)•_________;•(•4)•求根公式法,•求根公式是______________.
3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.
例如:不解方程,判断下列方程根的情况:
(1)x(5x+21)=20(2)x2+9=6x(3)x2-3x=-5
4.设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.
例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.
5.设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.
二、范例学习,加深理解
例:解下列方程.
(1)2(x+3)2=x(x+3)
(2)x2-2 x+2=0
(3)x2-8x=0
(4)x2+12x+32=0
点拨:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法.
三、合作交流,探索新知
1.已知关于x的方程x2-mx-3=0的两实根为x1,x2,若x1+x2=2,求x1,x2的值.
2.将一块正方形铁皮的四角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,已知盒子的容积是400cm3,求原铁皮的边长.
3.如图,某海关缉私艇在点O处发现在正北方向30海里的A•处有一艘可疑船只,测得它正以60海里/小时的速度向正东方向航行,随即调整方向,以75海里/•小时的速度准备在B处迎头拦截,问经过多少时间能赶上?
4.某工厂一月份生产零件2万个,一季度共生产零件7.98万个,•若每月的增长率相同,求每月产量的平均增长率.
5.已知x=1是一元二次方程(a-2)x2+(a2-3)x-a+1=0的一个根,求a的值.
四、归纳总结,提高认识
1.综述本节课的主要内容.
2.谈谈本节课的收获与体会.
五、布置作业,专题突破
1.课本P38复习题第1.(1)、(3)、(5)、(6),2.(1),3. 5. 6. 9.(4),10.(1)题.
2.选用课时作业设计.
3.预习作业:本章复习提纲.
六、课后反思(略)
课时作业设计
1.一元二次方程3x2+x=0的根是________.
2.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为:________,•二次项系数为:________,一次项系数为:________,常数项为:________.
3.方程2x2=4x的解是()
A.x=0
B.x=2
C.x1=0,x2=2
D.以上都不对
4.某商品连续两次降价,每次都降20%后的价格为m元,则原价是()
A.
D.0.8m2元
5.解下列方程.
(1)3x2-x=4
(2)(x+3)(x-4)=6
(3)(x+3)2=(1-2x)2
(4)3x2+5x-2=0
(5)x2+2 x-4=0
6.已知直角三角形三边长为连续整数,则它的三边长是_________.
7.用22cm长的铁丝,折成一个面积是30cm2的矩形,求这个矩形的长和宽.又问:能否折成面积是32cm2的矩形呢?为什么?
8.某科技公司研制成功一种产品,决定向银行贷款200万元资金用于生产这种产品,贷款的合同上约定两年到期时,一次性还本付息,利息为本金的8%.该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本息外,还盈余72万余.若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.
第五篇:实系数一元二次方程 教案
实系数一元二次方程
一、教学目标:
1、理解实系数一元二次方程在复数集中解的情况;会在复数集中解实系数一元二次方程。
2、掌握当0时,实系数一元二次方程根与系数的关系
3、培养类比推理的思想方法及探索精神。
二、教学重点:在复数集内解实系数一元二次方程。
三、教学难点:共轭虚根的应用
四、教学过程:
(一)复习旧知:
1、师问:我们初中学习了解一元二次方程axbxc0(a、b、cR且a0),对这个方程,我们有哪些认识?
生答:①当b4ac0时,方程有两个不相等的实根:x②当b4ac0时,方程有两个相等的实根; ③当b4ac0时,方程无实根。
根与系数的关系:设方程的两个根为x1,x2,则有x1x2ba2222b2ab4ac2a2;,x1x2ca
2、上一节课学习了“复数的平方根与立方根”,大家知道-1的平方根是:i.师问:一元二次方程x10在复数范围内有没有解? 师问:在复数范围内如何解一元二次方程xx10? 引出本节课的课题:实系数一元二次方程
(二)讲授新课
1、实系数一元二次方程在复数集C中解的情况:(1)回忆求解实数范围内一元二次方程的过程
设一元二次方程axbxc0(a、b、cR且a0).222因为a0,所以原方程可变形为 x2baxca,配方得(xb2a)(2b2a2)2ca,即(xb2a)2b4ac4a2.2(1)当b4ac0时,原方程有两个不相等的实数根x2b2ab4ac2a;
(2)当b4ac0时,原方程有两个相等的实数根x22b2a;
2、师问:当b4ac0时,你能有上述过程及上节课的知识推倒出方程的根的情况吗? 生:当b4ac4a2220,由上一堂课的教学内容知,2b4ac4a22的平方根为4acb2ai,即xb2a4acb2ai,2此时原方程有两个不相等的虚数根:x2b2a4acb2ai 为一对共轭虚数根
3、师问:b4ac0根与系数的关系成立吗?(类比,猜想)
带领学生证明根与系数的关系:x1x2ba,x1x2ca(证明)
结论:(1)实系数一元二次方程在复数范围内必有两个解:当0时,有两个实根;当0时,有一对共轭虚根.(2)韦达定理仍然适用。
例1:在复数集中解方程:(1)xx10
(2)2x4x50 学生练习:(1)x50
(2)x2x30 2222小结:强化巩固在复数范围内解实系数一元二次方程 变式:在复数集中解方程:x23x5m0(mR)小结:渗透含参问题分类讨论的思想方法。
例2:已知实系数一元二次方程2xaxb0的一个根为2i3,求a,b的值. 小结:共轭虚根及根与系数关系的应用
例3:已知x1,x2是实系数方程xxp0的两根,且满足|x1x2|3,求实数p的值。
小结:法一:题目中没有讲明根的虚实,需对根的情况分类讨论
法二:利用复数性质|z|2|z2|转化,在利用根与系数的关系,可避免对根的情况讨论。
思考题:已知关于x的实系数方程xkxk3k0有一个模为2的根,求实数k的值
(三)课堂小结:
(四)回家作业 练习册配套作业
2222