第一篇:一元二次方程根与系数的关系的教学反思 (最终版)
一元二次方程根与系数的关系的教学反思
庐江县黄道中学 陈良俊
本节课通过情景设置(同学们,老师这里有一手绝活,你只要给出两个数,我立即就能说出以这两个数为根的一元二次方程,同学们若不信,咱就试一试!)调起学生的胃口,激发起学生的好奇心和求知欲,在此推动下,引领学生展开探究活动,并将探究根与系数的关系分为初探、再探两个层次,即将二次项系数为1和非1的一元二次方程分两次出现,这样处理基于如下的原因,一元二次方程根与系数的关系的教学反思。
第一,使得每一位学生都能参与探究,学生的认知能力总是有所差异的,如果将这两类方程同时加以研究的话,有一部分同学很难参与,事实上,研究事物往往从简单到复杂,当a=1时,容易发现根与系数的关系,当a≠1时,猜想不正确,造成认知上的冲突,更能激发学生去完善第一次的猜想,培养学生勇于探究、积极思维的精神,教学反思《一元二次方程根与系数的关系的教学反思》。
第二,给予学生一个适度的梯度探究空间,在循序渐进的教学原则下,通过“特例探究——一般猜证——深化理解”的教学设计,由“实验——猜想——再实验——再猜想”的探究过程,使学生感悟认识事物的规律是由特殊到一般,由具体到抽象的思维过程,学生在这样的氛围下,会感到新知是旧知的自然延伸和自然流露,对于学生而言,既经历了一次探究性学习,又得到了一次思想方法的涵育和能力提升的机会。
总之,在整个教学设计中,充分发挥了教师主导、学生主体的作用,通过学生自身体验过程、探究发现,激发学生获得求知的欲望;通过发现、猜想、证明的过程,使学生感受数学研究的方法与思想。学习例题、习题中渗透的数学的思想,以此为载体,充分发挥其素质教育的功能,培养起学生的发散性思维和探究能力。
第二篇:一元二次方程根与系数的关系说课稿
一元二次方程根与系数的关系说课稿
作为一名教学工作者,通常会被要求编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。那么优秀的说课稿是什么样的呢?下面是小编帮大家整理的一元二次方程根与系数的关系说课稿,欢迎阅读与收藏。
[教材分析]
中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。因此一元二次方程便成为了方程中研究的重要内容。一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]
进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。再加上我所执教的学生,他们有着较强的认知力与求知欲,
基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]
在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]
发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程
[教学过程]
一、复习导入
请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
二、探求新知
数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。初探新知中,我将学生们分成两组,分别对二次项系数为1的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。我在这些方程中安排了两个无理根方程。当学生们发现这两个无理根在求和,求积后,竟变成了有理数,而且每一组两根和(积)都与系数有着密切的联系,此时的他们不难对两根和与两根积产生关注,经历了对二次项系数为1的一元二次方程两根和差积商的研究后,确定了课题并获得猜想:“两根和等于一次项系数的相反数,两根积等于常数项。”对于这一猜想,会有学生提出不同看法,他们提出研究二次项系数非1的一元二次方程。学生的质疑启动再探新知。直接研究一元二次方程两根和、两根积与系数的关系。这一环节中我不再给出具体的方程要求研究,故除了部分同学自定义方程求根求和求积后产生猜想,还有部分同学对仍保留在板书部分的求根公式着手进行两根和,积的运算。这两种方案齐头并进,当前者通过不断验证来说明他们猜想的可靠度时,后者通过论证,在严格意义下,说明了此结论的正确性。对于论证中学生出现的问题,我们在第一时间内揪错指正,
在知识初探与再探后,学生获得了新知,得到了一元二次方程根与系数的关系,
三、训练感悟
我将之前从学生那里收集来的错解对照表中方程,询问检验其正误的方法。学生根据已有经验,将其代入方程,进行检验。为寻求更为简便的方法,引出作用一,利用根与系数的关系,不解方程检验两数是否为原方程的根。我再给出两例,便于巩固练习,更明确了只有当两数和(积)同时满足方程两根和(积)的时侯,才是正确的根。当学生们正为找到了一种行之有效的检验方法,高兴不已的时候。突然间,表格中的数据丢失了,我分别隐去了方程的一根及b,c,a三个系数。为了将材料修复,学生小组展开热烈的讨论。有了上一题的经验,学生们会利用根与系数关系,不解方程,求出另一根及系数。也会使用代入求解的方法解题,通过新旧方法的比较,在训练中获得感悟:方法的选择在于简便,学生们在选择了恰当的方法后,修复了材料也巩固了新知。
四、总结提升
由学生回顾知识的发生发展及应用过程,以“我的收获”与“我的疑惑”交流心得。我再帮助学生整理所学知识,引导领会数学的思想。我还会自豪的告诉他们,数学家们还发现了存在于一元n次方程中的根与系数的普遍关系,这一内容将在高数中有所涉及,激励奋进五、分层作业,除必做题外,留有一道思考题:已知x1,x2分别是方程2x2+3x-5=0和两个根,利用根与系数关系,求:(1)x12x2 +x1x22(2)x12 +x22(3)x1-x2的值。作为能力上的提升。也为下一课内容作下铺垫。
[设计意图]
现在的设计较之以往,有所继承,有所变革。
1.研究启动入口不同
过去我总是先给出若干具体方程要求学生求根,并计算两根和(积),作出猜想。这样的数学后曾有学生问我:“老师为什么会想到两根和(积)与系数的关系,而不是其它?”这种疑问的产生一定与过去设计指定了学生的活动过程有关,为了给学生的活动指向更为宽泛,让两根和积与系数的研究更显合理,现在的设计中主要体现了由数到式的研究,从两根和差积商的重组合再有所观察,有所挑选,方才定位于两根和(积)作进一步的探究。这种设计正是从数学内部下了功夫,由知识线索的连贯性,师生共同理顺了实验对象的来龙去脉,从数学本身上培养了学生的观察、分析、概括的综合能力。
2.探究部分两步走
我将二次项系数为1,非1的一元二次方程分两次出现,分别放置与知识初探和再探两个环节,这样设计的原因有一:学生的认知能力总是有所差异的,如果将这些方程合二为一加以研究的话,一部分同学对别人获得的正确猜想是瞬间接受,却缺乏思维的参与。事实上,研究事物往往从简单到复杂,在这里,当a=1时,易找规律,当a ≠1后造成的认知冲突,更是激发了这一猜想的`完善。其实这一串,由实验——猜想——再实验——再猜想的思维过程,既符合认知规律,也是一种研究性学习的示范,一种创造性能力的培养。为了让每一个学生都亲身参与其中,真正感受由“实践——认识——再实践——再认识”这一客观世界认知论的基本规律。便是我如此设计的原因之一。原因二:研究入口处,利用两根和差积商的结果,优选出对和积的研究。初探中二次项系数为1的方程两根计算足以起到这一筛选作用。因此在下一环节的再探新知中,便自然关闭了对两根差与商相对较为繁琐的计算,直接由两根和积入手研究与系数的关系,提高了研究的效率。
3.再探新知放手走
我没有再给出任何具体的方程以供研究,这里的放手,引出了学生不同的操作方法。一部分学生把注意力转放在求根公式上展开直接论证,就连另一部分学生自定义方程数据研究的方式也各不相同,他们有的翻开笔记本查阅之前解方程的资料;有的反凑特殊值方程;更有的会从中提炼出代数论证的方法;当然也有借助于计算器完成了繁琐的计算。
放手的探究,为了给学生更大的思维空间,让学生有更多方法的选择,从而展开自主的学习。
[尾声]
但原学生们带着对数学的兴趣与喜爱,在学的海洋里,奋勇搏击。而作为一名青年教师的我,亦将在教学的舞台上,不断求索。多由学生所想来引导;多设角度空间去探究;多从细节处渗透数学思想,充分利用数学课堂来达成文化传承与发展创新的协调统一。
第三篇:一元二次方程根与系数的关系试题
1.已知方程x2-2x-m=0有两个正的实数根,求m的取值范围.
2.已知m、n是方程x2-2002x+1=0的两个实数根,求代数式mn2+m2n-mn+1的值.
3.已知关于x的方程x-92x+m=0有两个实数根x1、x2,且丨x1-x2丨=22, 求m的值.4.若实数x1≠x2,且x1-3x1+1=0,x2-3x2+1=0,求
5.已知关于x的方程2(x-1)(x-3t)=x(t-4)的两个实数根的和与积相等,求t的值。
6.是否存在整数m,使关于x的方程x2-4(m-2)x+4m2=0的两个实数根的平方和为224?若存在,求出m的值;若不存在,请说明理由。
7.已知菱形ABCD的边长为5,两条对角线相交于O,并且AO、BO的长是关于x的方程x2+(2m-
1)x+m2+3=0的两个根,求m的值。
8.在等腰三角形ABC中,∠A、∠B、∠C的对边分别是a、b、c,已知a=3,b和c是关于x的方程x2+mx+2-
12222+的值. m=0的两个实数根,求ΔABC的周长。
第四篇:《一元二次方程根与系数的关系》教案
《一元二次方程根与系数的关系》教案
教学目标:
1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。
2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。
3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。教学重点:
一元二次方程的根与系数的关系及简单应用。教学难点:
一元二次方程的根与系数的关系的推导。数学思考与问题解决:
通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。
一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查)
【师生活动】:
教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。
学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。【设计意图】:
本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。【学案内容】:
1、方程:X2+3X–4=0(1)二次项系数是_____,一次项系数是______,常数项是______。(2)解得方程的根X1=______,X2=______。(3)则X1+X2=_______,方程中 一次项系数()
二次项系数常数项()(4)X1·X2=_______,方程中
二次项系数
2、方程3 X2+X-2=0(1)二次项系数是_____,一次项系数是______,常数项是______。(2)解得方程的根X1=______,X2=______。
(3)则X1+X2=_______,方程中 一次项系数 ()二次项系数比一比,你发现了什么呢:__________________________________(4)X1·X2=_______,方程中
常数项()
二次项系数比一比,你发现了什么呢:__________________________________
3、方程X2-2X=(1)二次项系数是_____,一次项系数是______,常数项是______。(2)解得方程的根X1=______,X2=______。(3)由你发现的规律可知: X1+X2=(________)
X1·X2=()(________)(_________)()
(_________)
二、合作求证 生成新知(每小题10分,共20分)(合作完成,交换检查)
【师生活动】:
教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;鼓励学生参与合作学习,调动学生合作交流的主动性和积极性。
学生小组合作完成导学案,通过推导证明前面的结论;实现一元二次方程的根与系数的关系感性认识到理性认识的转变;小组长检查小组成员完成情况后,两小组交换检查推导过程;分小组汇报合作学习成果。【设计意图】:
本环节为“一元二次方程的根与系数的关系”的证明过程,即理性认识过程。让学生自己发现问题、探求规律,两从理论角度加以验证,经历从特殊到一般的科学探索过程,培养学生科学、严谨的求学态度,团队精神和合作意识,促进学生的相互交流、学习。【学案内容】:
(1)根据以上规律,若aX2+bX+c=0(a≠0)的两个根为X1和X2,则X1+X2=_______,X1·X2=_______。(2)这是不是一个普遍规律呢?在所有的一元二次方程中,是否成立呢?请用一元二次方程的一般形式证明:(b2-4ac≧0)∵ X1=bb24acbb24ac
X2=
2a2a∴X1+X2=
∴X1·X2=
三、交流展示 目标达成(每小题10分,共40分)(合作完成,分组展示)
【师生活动】:
教师巡视,随时发现问题、了解学生导学案完成情况并适时点拨、强调;充分利用现有设施设备,为学生搭建电子白板、实物投影、黑板等不同的展示自我的平台;适时评价、鼓励学生能多种方法解决问题,促进发散思维的培养。
导学案【目标1】:学生先独立完成,组长检查,后组内交流,全班汇报、评价。(学生利用一体机白板演示解题过程)
导学案【目标2】:小组合作完成,组长督促,全班汇报、评价。(学生利用实物投影展示解题过程)
导学案【目标3】:小组合作完成,组长督促,全班汇报、评价。(学生利用黑板展示解题过程)
【设计意图】:
本环节为“一元二次方程的根与系数的关系”的实践过程,即教学目标的达成、检测过程。设计了三个不同难度且有梯度的“目标”,让学生由易到难、由浅入深,加深对一元二次方程的根与系数的关系的理解和应用,强调学生对科学的严谨性和书写的规范性,培养学生对所学知识的应用意识和应用能力,以及合作学习意识与数学语言的表述能力。【学案内容】:
【目标1】不解方程,求下列方程的两根的和与两根的积各是多少?
(1)x2-3x+1=0;
(2)3x2-2x=2;
【目标2】已知方程X2-4X+M=0的一个根是-2,求方程的另一个根及M的值。
【目标3】已知X1,X2 是方程2X2-4X-1=0的两个实数根,求
x1的值。
2x22
四、查漏补缺 总结提高(共10分)(自主完成,集体分享)
【师生活动】:
教师鼓励学生谈所学所想所获,集体分享学习成果,归纳课堂所学知识点,解决学习中仍然存在的问题和困惑。【设计意图】:
本环节为本节课的总结提高过程。目的是帮助所有学生总结回顾、查漏补缺,形成知识体系,培养学生及时小结、善于归纳梳理的学习习惯,提高学生运用数学语言的能力和口头表达能力。【学案内容】:
请你谈谈本节课的收获或存在的问题。__________________
第五篇:复习教案 一元二次方程根与系数关系
第十三课时 一元二次方程根与系数关系
一、复习目标:掌握一元二次方程根的判别式和韦达定理,并会灵活运用它们解决问题.二、复习重点和难点:
(一)复习重点: 一元二次方程根的韦达定理.(二)复习难点:灵活运用韦达定理解决问题.三、复习过程:
(一)知识梳理:
1、根与系数的关系(韦达定理)
一元二次方程ax2bxc0(a0),如果有实数根(即b4ac0),设两实数根为x1,x2,则x1x2
2、常见的含两根的对称式:
(1)x1x2(x1x2)22x1x2(2)222bc,x1x2 aaxx211 1x1x2x1x2(3)(x1x2)2(x1x2)24x1x2 ; x1x2(x1x2)24x1x2
x2x1x1x2(x1x2)22x1x2(4); x1x2x1x2x1x2
3、利用根与系数的关系判定一元二次方程的两根符号: 22c可判断两根符号之间的关系: acc 若x1x20,则x1,x2同号; 若x1x20,则x1,x2异号,即一正一负
aab 再由x1x2可判断两根大小的关系。
a由x1x2
4、由x1,x2两根可构造的一元二次方程 以x1,x2为根的一个一元二次方程为x2(x1x2)xx1x20;
5、一元二次方程与二次函数的联系:
若二次函数y=ax+bx+c的图象与x轴有两交点,分别设为A(x1,0),B(x2,0),则x1、x2就是一元二次方程axbxc0(a0)的根,因此,求二次函数y=ax+bx+c
22的图象与x轴有交点坐标,只要令y=0,解axbxc0(a0)的根,就可得到二次函
2数y=ax+bx+c的图象与x轴有交点坐标的横坐标。
强调:应用一元二次方程根与系数的关系时,应注意: ①根的判别式b24ac0 ②二次项系数a0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.(二)典例精析:
一、已知一元二次方程的一个根,求出另一个根。
例
1、已知方程x6xm2m50的一个根为2,求另一个根及
分析:此题通常有两种解法:一是根据方程根的定义,把22
2的值。
代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。
解:设方程的另一个根为x1,根据题意,利用韦达定理得:
x126x14x14,解得:或 2m3m12xm2m51∴方程
二、不解方程,判断两根的情况。
例
2、不解方程,试判断方程x3x60两根的符号;
分析:要判断方程根的符号,可以根据根的定义,这样的方法显得很笨拙,而我们如果利用根与系数的关系就显得非常巧妙。
解:由34(6)330,方程有两个不相等的实数根。设这两根为x1,x2,得x1x260,易得方程两根一正一负。
如果得出x1x20,需考虑x1x2的正负,从而判断方程有两个正根还是两个负根。
三、求作新的方程;
例
3、作一个一元二次方程,使它的两个根为一元二次方程x3x10的两根的平方. 解:设方程x3x10的两根为x1,x2,那么所求的方程的根为x1,x2,由根与系数关系可得:x1x23,x1.x21,∴x1x2(x1x2)22x1x2322(1)11,22222的另一个根为4,的值为3或—1。
222 x1x2(x1x2)2(1)21,∴所求作的方程为x11x10.
四、不解方程,求方程两根所组成的某些代数式的值,这种应用与根的判别结合在一起。例4(1)已知关于x的方程3x+6x-2=0的两根为x1,x2,求
222211的值.x1x2 分析:已知方程,求两根组成代数式的值。这里主要说明解题格式,学生完成过程.(2)已知关于x的方程3x-mx-2=0的两根为x1,x2,且2
22113,求 ①m的值;②求x1x2x1+x2的值.分析:第(1)题是已知方程,求两根组成代数式的值,而第(2)题的第一问就反来了,也就是已知代数式的值求方程。第②问,再进一步,已知代数式的值,求另一个代数式的值.但是,无论是哪一个问题,所要用到的都是根与系数的关系.小结:1.求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式.例
5、(2000年四川省中考试题)若关于x的一元二次方程x-3(m+1)x+m-9m+20=0有两个实数根,又已知a、b、c分别是△ABC的∠A、∠B、∠C的对边,∠C=90°,且cosB=
23,b-a=3,5是否存在整数m,使上述一元二次方程两个实数根的平方和等于Rt△ABC的斜边的平方?若存在,请求出满足条件m的值;若不存在,说明理由.“存在性”问题)
分析:(1)提问:此题与哪些知识有关?(勾股道理、解直角三角形、根与系数的关系、根的判别式)
(2)如何利用条件cosB=
3? 5(3)“使上述一元二次方程两个实数根的平方和等于Rt△ABC的斜边的平方”通过这句话,你能明白什么?你先必须求什么?
(4)然后按照解决“存在性”问题的过程去解题.(5)求出m后,要考虑它是否符合题意.通过此题,使学生明白解决这类问题,一般遵循“三步曲”,即假设存在——推理论证——得出结论(合理或矛盾两种情况).五、利用根与系数关系解决一元二次方程与二次函数的综合题: 例
6、已抛物线y(m1)x2(m2)x1(m为实数)。
(1)m为何值时,抛物线与x轴有两个交点?
(2)如果抛物线与x轴相交于A、B两点,与y轴交于点C,且△ABC的面积为2,求该抛物线的解析式。
分析:抛物线与x轴有两个交点,则对应的一元二次方程有两个不相等的实数根,将问题转化为求一元二次方程有两个不相等的实数根m应满足的条件。
m10略解:(1)由已知有,解得m0且m1 2m0(2)由x0得C(0,-1)
又∵ABm am1∴SABC∴m11mABOC12 22m144或m 35122126∴yxx1或yxx1
3355