2.3 确定二次函数的表达式(第2课时) 教学设计

时间:2019-05-12 17:28:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.3 确定二次函数的表达式(第2课时) 教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.3 确定二次函数的表达式(第2课时) 教学设计》。

第一篇:2.3 确定二次函数的表达式(第2课时) 教学设计

第二章 二次函数

2.3确定二次函数的表达式(第2课时)》

一、学生知识状况分析

在前几节课,学生已经分别学习了二次函数的图象与性质,确定二次函数的表达式(第1课时).在此基础上,通过对待定系数法进一步探讨二次函数的表达式的确定方法.

二、教学任务分析

本节课是北师大版义务教育教科书九年级(下)第二章《二次函数》第三节的第2课时,主要是通过对用待定系数法求二次函数表达式的探究,掌握求表达式的方法.能灵活的根据条件恰当地选取选择表达式,体会二次函数表达式之间的转化.本节课的教学目标是:

知识与技能:经历确定二次函数表达式的过程,体会求二次函数表达式的思想 方法,培养数学应用意识.过程与方法:会用待定系数法求二次函数的表达式.情感态度与价值观:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点:求二次函数的解析式.教学难点:根据问题灵活选用二次函数表达式的不同形式,求出函数解析式,解决实际问题.三、教法学法

“问题情境—建立模型—应用与拓展”,让学生积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中发现新知识.四、教学过程

本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.

第一环节:情境引入

(从现实情境和已有知识经验出发,讨论求二次函数表达式的方法)

1、一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式.2、二次函数y=ax2+bx+c,用配方法可化成:y=a(x-h)2+k,顶点是(h,k).配方: y=ax2+bx+c=__________________=___________________=__________________=a(x+)+.对称轴是x=,顶点坐标是 ,其中 h=,k= , 所以,我们把_____________叫做二次函数的顶点式.3、已知A(2,1)、B(0,-4),求经过A、B两点的一次函数表达式.解:设过A、B两点的一次函数表达式为

把、代入

解得k= ,b= 所以表达式为.我们把这种方法叫做待定系数法.提出问题:确定二次函数y=ax2+bx+c需要哪些条件? 第二环节:问题解决

例1 已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标. 分析:(1)本题可以设函数的表达式为?

(2)题目中有几个待定系数?

(3)需要代入几个点的坐标?

(4)用一般式求二次函数的表达式的一般步骤是什么? 解:设所求的二次函数的表达式为yax2bxc

由已知,将三点(-1,10),(1,4),(2,7)分别代入表达式,得

10abc4abc 74a2bc2 解这个方程组,得

a22b3 ∴ 所求函数表达式为y2x3x5 c5331∴ y2x23x52(x)2

483331∴ 二次函数对称轴为直线x,顶点坐标为(,)

448说明:通过解决此问题,让学生体会求二次函数表达式的一般方法------待定系数法,此问题解决后及时引导学生总结解法.021 21.已知二次函数的图像过点A(0,-1)B(1,-1)C(2,3)求此二次函数解析式; 2.已知二次函数的图像过点A(1,-1)B(-1,7)C(2,1)求此二次函数解析式; 3.已知二次函数图像的顶点坐标为(-1,-8),图像与x轴的一个公共点A的横坐标为-3,求这个函数解析式

第四环节:课时小结

1.掌握求二次函数的解析式的方法——待定系数法;

2.能根据不同的条件,恰当地选用二次函数解析式的形式,尽量使解题简捷; 3.解题时,应根据题目特点,灵活选用,必要时数形结合以便于理解.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.第五环节:作业布置 作业:习题2.7 1.2.3

第二篇:5.5_确定二次函数的表达式_教学设计

5.5 确定二次函数的表达式

教学设计

一、学情分析

在前几节课,学生已经分别学习了二次函数的图象与性质,初二下学期学习一次函数时已学习了待定系数法.在此基础上,通过对待定系数法进一步探讨二次函数的表达式的确定方法.

二、教材分析

本节课是青岛版义务教育教科书九年级(下)第五章《二次函数》第5节,主要是通过对用待定系数法求二次函数表达式的探究,掌握求表达式的方法.能灵活的根据条件恰当地选取选择表达式,体会二次函数表达式之间的转化.教学目标

知识目标:经历确定二次函数表达式的过程,体会求二次函数表达式的思想 方法,培养数学应用意识.技能目标:会用待定系数法求二次函数的表达式.情感目标:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点

求二次函数的解析式

教学难点

根据问题灵活选用二次函数表达式的不同形式,求出函数解析式,解决实际问题

三、教法学法

“问题情境—建立模型—应用与拓展”,让学生积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中发现新知识.四、教学过程

本节课设计了六个环节:第一环节:复习提问;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:当堂检测.第六环节:布置作业

第一环节:复习提问

二次函数的表达式有哪几种形式?

第二环节:问题解决

例1 已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标. 分析:(1)本题可以设函数的表达式为?

(2)题目中有几个待定系数?

(3)需要代入几个点的坐标?

(4)用一般式求二次函数的表达式的一般步骤是什么? 解:设所求的二次函数的表达式为yax2bxc

由已知,将三点(-1,10),(1,4),(2,7)分别代入表达式,得

10abc4abc 74a2bc 解这个方程组,得

a22b3 ∴ 所求函数表达式为y2x3x5 c5331∴ y2x23x52(x)2

483331∴ 二次函数对称轴为直线x,顶点坐标为(,)

448说明:通过解决此问题,让学生体会求二次函数表达式的一般方法------待定系数法,此问题解决后及时引导学生总结解法.2 例1对大部分学生是比较容易用待定系数法来解决的.例

2、例3引导学生从学过的二次函数的顶点式、交点式出发,观察点具有的特点,从而找到解决问题的办法.由学生自主探究后小组交流,对有困难的学生教师可适当点拨.在运用用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力.对于例四的处理是展示给学生三种不同形式的解题过程,总结一下如何根据问题灵活选用二次函数表达式的不同形式,求出函数解析式.第三环节:反馈练习

1、已知抛物线的图象经过点(1,4)、(-1,-1)、(2,-2),设抛物线解析式为__________.2.已知二次函数的顶点是(-2,3)且过点(1,4)可设二次函数解析式为________________;

3.已知二次函数的最大值是6,且过点(2,3)(-4,5)可设二次函数解析式为________________;

4.已知二次函数的对称轴是X=-2且过点(1,3)(5,6), 可设二次函数解析式为________________;

5.已知二次函数与X轴交于(-1,0)(1,0)且过点(2,-3)可设二次函数解析式为________________;

第四环节:课时小结

1.掌握求二次函数的解析式的方法——待定系数法;

2.能根据不同的条件,恰当地选用二次函数解析式的形式,尽量使解题简捷; 3.解题时,应根据题目特点,灵活选用,必要时数形结合以便于理解.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.第五环节:当堂检测:

1.已知二次函数的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求二次函数的解析式.3

2、已知抛物线的顶点坐标为(1,2),与Y轴交于点(0,-3),求这条抛物线的解析式。

3、已知抛物线过A(-2,0)、B(1,0)、C(0,2)三点。求这条抛物线的解析式

第六环节:布置作业

五、教学设计反思

(1)设计理念

二次函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,利用已经学习过的知识,进一步探究待定系数法解决二次函数表达式的确定,同时通过对给出条件的分析,选择合适的二次函数表达式和方法来解决问题.(2)突出重点、突破难点的策略

本节课是在学生已经掌握了二次函数的有关性质和表达式的基础上,对有关知识进行应用和拓展.在教学过程中,应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力.

第三篇:确定二次函数表达式导学案

确定二次函数表达式导学案

学习目标

1、从实际问题入手,经历确定二次函数表达式的过程。

2、会用待定系数法求二次函数解析式,能灵活的根据条件恰当地选择解析式,体会二次函数解析式之间的转化。

3、从学习过程中体会学习数学知识的价值,培养数学应用意识。

学习过程

教学过程:

生活中的很多问题需要运用数学知识解决,比如说这道题,昨天晚上大家已经进行自主探究。

(一)前置自学

某建筑物的屋顶设计成横截面为抛物线型(曲线AcB)的薄壳屋顶.它的拱宽AB为4m,拱高CD为2m.施工前要先制造模板,怎样画出模板的轮廓线呢?至少设计两种方案。

(温馨提示:建立适当的直角坐标系,求出这段抛物线所对应的二次函数表达式)

自主解决:

按下列问题组内交流你的预习成果 小组合作 质疑解惑(1)你们组共有几种方案,你还能想到哪些?(2)比较哪种方案更简单,说明理由。

集体交流 展示成果

通过刚才这些同学的展示,那咱同学回想这些图形,你是如何确定出二次函数表达式?(学生思考)

师提示:比如说这个y=ax2 它有什么特点?

生齐答,师板书:它的顶点在原点,那y=ax2+c 呢?顶点(0,c);y=a(x-h)2 这三种形式实际上我们都可以归结为y=a(x-h)2+k 这个顶点式的完整形式。举个例子,如果我说它经过的是原点(0,0),顶点是(0,0),实际上也就是当h=0时,k=0把它代入这个顶点式,即可求出二次函数的表达式,师提问:那么从图像上面获取信息,获取的是哪些信息呀?(思考)提示:你如何求出这个表达式?我们要从中找到顶点坐标,然后代入解析式,求出结果。

小组在一起把你们组的情况再汇总一下。缺少什么补充。实际上还有很多方案,课后你可以继续探讨。

梳理点拨 诊断评价: 投影显示:

请看黑板,这道题如何求出函数表达式?

(二)例题精析

已知二次函数的图像经过(0,2)(1,0)和(-2,3),求这个函数表达式。首先自主解决

在本上先只列式不解答

集体交流

师:由什么条件决定设成y=ax2+bx+c 生:因为他告诉你三个点坐标

师:这道题与前面一组问题有什么本质区别? 它没有明确的提出当中的顶点,三个点先选定哪个? 生:(0,2)求出c,再将另外两点,组成方程组 师:几个未知数,是二元一次方程,解出方程组,求出a,b值。最后别忘了,你这道题要求的问题是?

梳理点拨 诊断评价:

那么通过前面这一组题得练习,你能 归纳总结:

确定二次函数表达式的步骤: 养成习惯先自主解决

组内交换一下看法,拿出最后的方案 师:你们最终归纳的求二次函数表达式的步骤 生:

师:如果给定顶点坐标,代入哪个式子都适用?

y=a(x-h)2+k,防止今后混淆,你就记准这一个顶点式,如果要设一般式,我们通常要知道几点坐标(齐答:三点)

刚才我们探究预习题时,如果没有坐标系,要记着先建立平面直角坐标系。步骤的第一步建立适当的坐标系(要从中找到求表达式必须的点坐标)

(三)内化知识 拓展应用 用刚才所学的知识 A、判断下列问题适合设哪种二次函数表达式?(口答)

①已知二次函数的图像经过A(-1,6)

B(1,4)和C(0,2), 求表达式。师提问:五组三号

②已知抛物线顶点为(-1,-3),与y轴交点纵坐标为-5,求表达式。师提问:六组三号 解题的关键词是什么

③已知抛物线与x轴交于点A(-1,0),B(1,0),且过M(0,1),求表达式。

师提问:八组三号

不用紧张,仔细读它给定你的点坐标,求表达式 非常好,要相信自己的能力

④当 x>3时,y随x的增大而增大,当 x<3时,y随x的增大而减小,y的最大值是2,且图像经过点(5,0),求函数表达式。

集体说

通过刚才的学习,咱同学动笔完成,分层检测,请每组4号同学做第一题,你只要完成了第一题,这节课你就是成功的,1-3号同学,做2、3两题。直接做在导学案上。4组三号做第二题,九组二号做第三题,王玉双做第一题。

B、分层练习巩固提升

1、已知抛物线的顶点坐标是(0,3),与x轴交点是(-3, 0),求函数表达式。

2、已知二次函数图像经过(0,-1)和(3,5)两点,对称轴是直线x=1,求函数表达式。

3、已知A(3,-2)和B(2,5)两点,试写出两个二次函数表达式,都经过A、B两点。

组内交换批改一下,展示一下你研究的成果 机会给各组的三号,第二题 实物投影:生操作

师提问:题目的具体步骤,利用了哪个关键词设成顶点式?

虽然只知道对称轴,但是把H确定以后,需要求的待定系数只有两个。有没有同学设成了一般式,简单的叙述步骤 第三题:说出你的真实想法就行

对于数学课,首先要有敢错的勇气,说错了并不可怕。

生答:我选择顶点式是y=ax2+c,我选他的原因是因为我只知道两个点的坐标,前面做的题都是知道三个点的坐标,师纠正:暂停,如果你选的y=ax2+c为你所要求的表达式,它的顶点坐标是什么(0,c)在第三题中的两点,有这种形式的点吗?设顶点式如果对它的形式有疑问的情况下,设成y=a(x-h)2+k。两点不能设成一般式,那么要设成顶点式,必须知道其中之一是顶点。所以几种情况(两种)

今天练习做的有些艰难,下面放松一下,同学们猜过谜语吗?那猜过数学谜语吗?这节课让我们来尝试一下。你首先要自己知道答案,编出一道高质量的数学题。最后这节课的自测题当中,我就要选取某几组当中的优秀作品,考考全班同学,开始。

C、创作篇 同学们都猜过谜语吧,“数学谜语”呢?那么今天由我们自己来创作。自编一道求二次函数表达式的问题(谜底自己要知道哟)。考考同学们。

(四)总结归纳 感悟提升

回顾这节课你都学习了那些知识?

(五)课堂检测

(五)盘点收获 反馈矫正

择优选择的小组自编题

1、第(5)组

已知二次函数图象经过(2,-1)和(-4,-1),(6,-2)三点,求函数表达式。

2、第()组

※ 自我评价 你完成本节导学案的情况为(A.很好 B.较好 C.一般 D.较差

(六)课后作业

.)课本P66页 随堂练习习题2、3

第四篇:2.4 二次函数的应用(第2课时)教学设计

第二章

二次函数

《二次函数的应用(第2课时)》

一.教学任务

“何时获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴.二次函数化为顶点式后,很容易求出最大或最小值.而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题.因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践.即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释.教学目标

(一)知识与技能

1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.(二)过程与方法

经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.(三)情感态度与价值观

1、体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值

教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值

二、教学过程

本节课以探究活动

一、探究活动二及议一议这三个环节为主体,展开对二次函数应用的研究与探讨.第一环节 探究活动一

活动内容:(有关利润的问题)

服装厂生产某品牌的T恤衫成本是每件10元,根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示每件降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?

回顾:在学习一元二次方程的应用时遇到过有关销售利润的问题,常用相等关系是: 销售利润=单件利润×销售量

若设批发单价为x元,则:

(x10)元; 单件利润为

13-x(5000500)件0.1降价后的销售量为 ;

销售利润用y元表示,则 y(x10)(500013x500)0.1-5000(x224x140)

5000(x12)220000

∵-5000<0 ∴抛物线有最高点,函数有最大值.当x=12元时,y最大= 20000元.答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元. 若设每件T恤衫降a元,则:

(13a10)元; 单件利润为

a(5000500)件0.1降价后的销售量为 ;

销售利润用y元表示,则

y(13a10)(5000a500)0.12 -5000(a22a3)

5000(a1)220000

∵-5000<0 ∴抛物线有最高点,函数有最大值.当x=1元时,即批发单价是12元时,y最大= 20000元.答:当批发单价是12元时,厂家可以获得最大利润,最大利润是20000元. 想一想:解决了上述关于服装销售的问题,请你谈一谈怎样设因变量更好?

活动目的:

通过这个实际问题,让学生感受到二次函数是一类最优化问题的数学模型,并感受数学的应用价值.在这里帮助学生分析和表示实际问题中变量之间的关系,帮助学生领会有效的思考和解决问题的方法,学会思考、学会分析,是教学的一个重要内容.第二环节 探究活动二

活动内容:

某旅社有客房120间,每间房的日租金为160元时,每天都客满,经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高? 分 析:相等关系是

客房日租金的总收入=每间客房日租金×每天客房出租数

解:设每间客房的日租金提高x个10元,则每天客房出租数会减少6x间,若客房日租金的总收入为y元,则:

y(16010x)(1206x)=-60(x2)219440

∵x0,且120-6x0

∴0x20

当x=2时,y有最大值 19440.这时每间客房的日租金为160102180元,客房总收入最高为19440元.随堂练习:课本P49练习1 某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?

解:设销售单价提高x元,销售利润为y元,则 y=(30-20+x)(400-20x)=-20x2+200x+4000 =-20(x-5)2+4500.答:当销售单价提高5元时,可在半月内获得最大利润4500元.

第三环节 议一议

活动内容:解决本章伊始,提出的“橙子树问题”

本章一开始的“种多少棵橙子树”的问题,我们得到了表示增种橙子树的数量x(棵)与橙子总产量y(个)的函数关系是:二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?

(要求学生画出二次函数的图象,并根据图象回答问题)

实际教学效果:

学生可以顺利解决这个问题,答案如下

(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.课堂小结: 请你结合本节课的内容谈谈你对二次函数应用的认识.课后作业:习题2.9、2、3 1

第五篇:《确定一次函数表达式》教学设计

确定一次函数表达式

一、教学目标

(1)知识与技能目标

1.了解两个条件确定一次函数。

2.能根据所给信息确定一次函数的表达式。3.能利用所学知识解决实际问题。(2)过 程与方法目标

经历对正比例函数及一次函数表达式的探求过程,培养学生对数学对象进行思考的习惯,逐步培养学生的探索能力。

(3)情感与态度目标

1.经历从不同信息中获取~次函数表达式的过程,体会到解决问题的多样性,培养学生思维的全面性。

2.经历对实际问题的解决过程,培养学生学数学,用数学的意识。

二、教材分析

教材前几节内容已对一次函数的表达式、函数图像及性质作了一定研究,给定一个一次函数的表达式可以得到对应的函数图像及性质,而本节则从相反角度来研究一次函数:即根据图像、表格等信息,确定一次函数的表达式。我首先安排想一想,让学生思考确定一次函数需要几个条件,教师可组织学生讨论陈述理由,从函数表达式及图像等 方面让学生深刻理解两个条件确定一个一次函数。教学中应尽可能多的选择各种类型的信息帮助学生探索确定一次函数表达式的具体方法。

教学重点:能根据一个、两个条件或者实际确定一个一次函数。

教学难点:从各种问题情境中寻找条件,确定一次函数的表达式。

三、学情分析

确定一次函数的表达式是本章教材的一个重、难点,学生往往会按老师讲述的方法,单纯地进行模仿,求出表达式,但却对为什么要这样做缺乏思考,结果是条件一变,就无法动手。因此在教学中应注重对解题思路的分析,注意控制难度。

四、教学过程

一、创设情境

前面我们已经学习了一次函数,那么什么是一次函数,一次函数的图像是什么,一次函数又有什么性质呢?

1、表达式形如 y=kx+b(k≠0)的函数称为一次函数; 表达式形如 y=kx(k≠0)的函数称为正比例函数

2、一次函数 y=kx+b的图像是一条直线;

3、一 次函数y= kx+b,当k>0时y随x的增大而增大

当k<0时y随x的增大而减小。

二、自主探究

确定一次函数的表达式需要几个条件?确定正比例函数的表达式呢?

学生讨论:确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件。

引导学生从表达式和函数图像两方面思考。

1、觉得一次函数的表达式 y=kx+b有两个常数 k,b,要求出 k和 b的值,因此需要两个条件。而正比例函数中b=0,只需求k,所以只需一个条件。

2、因为一次函数的图像是一条直线,两点确定一条直 线,所以需要两个条件,而正比例函数的图像是经过原点的一条直线,所以只需一点就可以确定这条直线。

三、讨论引导

下面我们结合具体问题来探索如何确定一次函数的表达式。

1、某物体沿着一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.

(1)写出v与t之间的关系;

(2)下滑3秒时物体的速度是多少?

分析:题目所给信息是函数的图象,首先从图象是一条经过原点的射线判断出该函数应是正比例了函数;其次在函数图象上任取一点(原点除外),如(2,5)点,代入表达式,就可计算出k值。

解:(1)设v = kt(k≠0),由图象可得,点(2,5)满足函数关系式,将其代入可得: = 2k,解得k = 2.5 ∴v = 2.5t(2)当t = 3时,v = 2.5×3 = 7.5(米/秒)在这个例子中,我们先将表达式中的未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法。

确定正比例函数的表达式需要哪几个条件?确 定一次函数的表达式呢? 学生思考,并总结出答案。

2、写出满足下表的一个一次函数的解析式 x-?1-0-2 y-7.5-7-6 解析:设y = kx+b;注意 到(0,7)这个特殊点,因此可选取(0,7),(2,6)代入进行计算,解得:y = ? x+7 求函数表达式的步骤。(1)设函数表达式;(2)根据已知条件列出方程;(3)解方程;(4)把求出的R、b值代回到表达式中即可。实践验证

1、若一次函数y = x+n的图 象经过点A(?3,2),则n = __________;

2、一条直线与x轴的交点为(?3,0),与y轴的交点为(0,?7),那么这条直线对应的函数表达式是__________,这条直线与两坐标轴围成的三角形的面积S = ________

3、已知三点(3,5),(t,9),(?4,?9)在同一直线上,则t = ________ 例

3、已知y?2与x成正比例,当x = 3时,y = 1,求y与x之间的函数关系式

解:设y?2 = kx,(k≠0),将(3,1)点代入,得 1?2 = 3k,k = ? ∴y?2 = ? x,即y = ? x+2 用换元的思想,将y? 2看成一个整 体。

练一练:已知y是x2的一次函数,当x = ?1时,y = 6;当x = 2时,y = 9,试求x,y的函数表达式。答案:y = x2+5

五、创新发展

(09济南)如图所示,已知直线y=x+3的图象与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的表达式. 课堂小结

本节课我们学习了怎样确定一次函数的解析式,在确定一次函数的解析式时可使用待定系数法,即先设出解析式y=kx+b,再根据题目条件找到满足条件的两对(x,y)的值,(可根据图像、表格或具体问题得出)代人解析式,从而求出k,b的值。

教学反思

本节课是在学生掌握了一次函数的一般形式以及图像的特点的基础上展开教学的。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求一些简单的一次函数表达式,并能解决有关现实问题。

本节课让学生感受确定一次函数表达式的必要性。通过一系列问题的设计,让学生运用不同的探索方式解决问题,从而各方面的能力得以全面提高,兼顾了不同层面学生的学习。鼓励学生从函数图象中获取条件,注重发展了学生的数形结合的思想方法,以及综合分析解决问题的能力,为后继学习打下基础。

唯一感觉不足之处就是对学生估计太高,板书了一个确定函数表达式的过程,以为学生能够准确写出过程,但检测时还有一部分学生过程写的不是很规范,下节课需要再次强调。总之,对学生要耐心细致,更要严格要求。

下载2.3 确定二次函数的表达式(第2课时) 教学设计word格式文档
下载2.3 确定二次函数的表达式(第2课时) 教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《确定一次函数表达式》教学设计

    《确定一次函数表达式》教学设计 教学目标: 知识目标:1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数;2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的......

    二次函数第一课时教学设计

    《二次函数》教学设计一、教材分析 《二次函数》选自义务教育课程标准试验教科书人教版九年 级上册第二十一章这章是在学生学习了一次函数与反比例函数对于函数已经......

    九年级数学青岛版确定二次函数的表达式教案

    九年级数学青岛版确定二次函数的表达式教案 教学目标: 让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式. 重点:二次函数表达式的形式的选择 难点:各种隐含条件的......

    2.7二次根式(第3课时)教学设计

    第二章 实数 7.二次根式(第3课时) 一、学生情况分析 前面学习了实数,实数的运算法则,最简二次根式及二次根式的化简,已能进行实数的四则运算.但熟练程度不高,同时对根号内含字母的......

    二次函数教学设计

    《二次函数》教学设计 一、教材分析: 《二次函数》选自义务教育课程标准试验教科书(五四学制)《数学》(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于......

    《二次函数》教学设计

    实际问题与二次函数教案 仙游私立一中 林元炳 教学目标: 1、知识与技能:经历数学建模的基本过程。 2、方法与技能:会运用二次函数求实际问题中的最大值或最小值。 3、情感、态......

    二次函数教学设计

    一、教学目标 1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体会如何用数学的方法描述变量之间的数量关系。 2.能够表示简单变量之间的二次函数关系。 3.经历......

    二次函数教学设计

    教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷......