《在一条线段上植树(两端都栽)》教学设计(大全)

时间:2019-05-12 17:02:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《在一条线段上植树(两端都栽)》教学设计(大全)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《在一条线段上植树(两端都栽)》教学设计(大全)》。

第一篇:《在一条线段上植树(两端都栽)》教学设计(大全)

《在一条线段上植树(两端都栽)》教学设计

教学内容:人教版小学数学教材五年级上册第106页例1及相关内容。

教学目标:

1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

教学重点:建立并理解“点数=间隔数+1”的数学模型。

教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

教学准备:课件。

教学过程:

一、情境出示,设疑激趣

教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)

例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

教师:你能利用所学的知识解决问题吗?

预设1:20棵。(教师追问:你是怎么想的?)每隔5 m栽一棵,共栽100÷5=20(棵)。

预设2:我认为是21棵,因为题目中写着“两端要栽”,所以要再加1棵。

教师:你认为哪一个结果是正确的?(指名回答)

【设计意图】直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。

二、经历过程,感受方法

教师:可以用怎样的方法进行检验呢?(画线段图)那我们可以在草稿本上试一试。遇到了什么困难?

预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)

学生:可以先用简单的数试一试。(课件出示)

【设计意图】使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。

三、探索实践,建立模型

教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树,在草稿本上画一画。

实物投影或课件出示:

教师:说说你是怎么想的?

预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。

教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?

预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。

还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)

教师:不画图,你能把下面的表格填写完整吗?

(根据学生回答,教师在课件上输入数据)你发现了什么规律?

预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。

教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)

教师:回顾这个问题的解答过程,说说你的想法。

归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。

【设计意图】“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。

四、利用新知,解决问题

教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)

1.在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?

教师:读完这个题目,你觉得有哪些地方需要特别引起注意?

预设1:单位不统一,要先进行转化再计算。

预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)

学生练习,指名回答。

km=2000 m(2000÷50+1)×2=82(盏)

答:一共要安装82盏路灯。

教师:2000÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)

2.马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

教师:仔细读题,认真思考,说说你对这个题目的理解。

引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数-1”。

25-1=24(棵)

答:一共要栽24棵银杏树。

教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?

【设计意图】练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。

五、逆向思考,拓展新知

园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?

预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。

教师追问:该怎样解答呢?试一试,并说说你的思路。

(36-1)×6=210(m)

答:从第1棵到最后一棵的距离是210 m。

教师:“36-1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。

【设计意图】通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数-1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。

六、回顾思考,全课总结

教师:通过这一节的学习,你有什么收获?跟大家交流一下。

根据学生回答,强调:

1.解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。

2.当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。

第二篇:《 植树问题两端都栽》教学设计

教学内容:人教版小学数学五年级上册《植树问题——两端都栽》。

教学目标:

1、通过猜测、小组合作操作、验证等数学探究活动,发现间隔数和棵数之间的规律,并解决简单的植树问题。

2、在学习过程中,体会数学与生活的密切联系,体验数学思想方法在解决问题上的应用。

教学重点:引导学生发现两端都栽时,棵数与间隔数的关系。

教学难点:理解两端都栽时棵数与间隔数之间的规律,并灵活运用规律解决类似的问题。

教学过程:

1、复习铺垫

1、出示幻灯片:

师:你看到了什么?辣椒和茄子是怎么排列的?(一个隔着一个排列)

你能继续往后排吗?(学生说,课件显示)

2、出示幻灯片:

师:你知道后面是怎么排的吗?验证一下对不对?(学生根据规律往后排)

3、出示幻灯片:

师:继续往后排。学生观察后,回答:不知道后面排的什么。

师:为什么?

发现:第一行和第二行是有规律的排列,可以根据规律继续往后排;第三行的排列没有规律,所以说不准后面排的是什么。

4、师:第一行和第二行排列的规律一样吗?它们都是怎么排列的?两行有不同的地方吗?(首尾不同)

2、探究新知

1、春天来了,同学们正在参加植树活动。看,他们在那儿。(出示例题)

同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都栽),一共要栽多少棵?

2、同学们先来猜一猜,棵数与什么有关?(停留片刻)

没关系,一时想不起来的或者说不清楚,我们来做一做好吗?

100米太长了,怎么办?我们可以用简单的数试试,先来看看20米的植树情况。

(1)同桌合作,在课桌上演示在20米的小路上栽树。边做边思考:棵数与什么有关系?

(2)全班交流。20÷5=4 4+1=5(棵)

谁能给大家讲讲?

(3)25米要栽几棵?学生独立操作。

全班交流。25÷5=5 5+1=6(棵)

师:通过植树,你觉得棵数与什么有关?

(3)根据刚才的经验,不操作,你知道30米、35米分别要栽多少棵吗?根据学生回答,板书: 30÷5=6 6+1=7(棵)

35÷5=7 7+1=8(棵)

3、你发现了什么规律?(棵数都比间隔数多1)

4、根据这个规律,你能求出在100米的小路上要栽多少棵吗?

100÷5=20 20+1=21(棵)

找同学讲解题思路。

5、如果在1000米的小路上栽树,要栽多少棵?

1000÷5=200 200+1=201(棵)

6、小结:同学们真了不起。题中100米太长了,我们先用了20米、25米、30米、35米这些简单的数试了试,发现了棵数总比间隔数多1这一规律,然后根据这个规律,不但求出了较长的100米的小路要栽21棵树,而且还求出更长的1000米的小路要栽201棵树。这种方法数学上称之为“化繁为简”。它是数学上很重要、很常用的研究方法。同学们以后遇到较大的数、较多的数、较复杂的问题,都可以用这种方法试试。

7、同学们,你知道为什么两端都栽,棵数总比间隔数多1吗?我们能不能也看作是一种有规律的排列呢?那么,是哪两种物体按什么规律在排列呢?有没有方法直接就知道哪种的数量多一些?

回忆植树过程,把间隔数和棵数一一对应起来,发现两端都栽,棵数比间隔数多1。

8、这就是我们今天研究的植树问题。(板书课题)

3、巩固联系提高

生活中还有类似的问题,我们来看看能不能解决,怎样解答。

1、工人们正在架设电线杆,相邻两根的距离是20米。在总长3000米的笔直路上,一共要架设多少根电线杆(两端都架设)?

2、(1)把一根木头锯3次,能锯()段。

(2)如果锯成8段,要锯()次。

3、在一条全长2千米的街道两旁安装路灯(两端都要安装),每隔50米安一盏,一共要安装多少盏路灯?

四、这节课你有什么收获?(发现了两端都栽时,棵数比间隔数多1。知道了“化繁为简”的研究方法。植树问题也可以看成是间隔和棵数的一一间隔排列问题。)

第三篇:植树问题(两端都栽)教学设计

植树问题(两端都栽)教学设计

濮阳市昆吾小学 王光华 教学内容:

义务教育青岛版小学数学三年级下册“智慧广场124页 教学目标:

1.认识棵数,知道什么是间隔数、。

2.在小组合作、交流中,进一步理解间隔数与棵数之间规律,并解决简单的植树问题。

3.在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

教学重点:探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

教学难点:灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题。教具:课件

学具:直尺、植树问题研究报告表

学情分析:从学生的思维特点看,三年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

教学过程:

一、创设情境

生成目标

1、认识“间隔”和“间隔数”

师:同学们,喜欢猜谜语吗?今天老师给大家带来了一个谜语,齐读一下,想一想谜底是什么? 生:手

师:同学们真聪明,很快就猜出了谜底。其实手不仅能写会算,而且还隐藏着许多数学问题。今天,咱们先从手开始研究它的数学奥秘。看一下老师的手,现在老师伸出了几根手指? 生:……

师:仔细观察手指与手指之间是什么? 生:……

师:这个缝隙在我们数学中有个名字叫“间隔”.(板书:间隔)师:认真看大屏幕,现在伸出了几根手指?有几个间隔? 生:……

师:现在又伸出了几根手指?有几个间隔? 生:……

师:又伸出了几根手指?又有几个间隔? 生:……

师:2个间隔,3个间隔,4个间隔就是间隔的个数,间隔的个数就是间隔数。(板书: 间隔数)

2、在生活中找间隔

师:在我们生活中有许多与间隔有关的现象,谁能举出一些例子。生1:„„ 生2:„„ „„

师:同学们的见识真广。关于生活中的间隔现象,老师也采取了一些,我们欣赏一下(出示幻灯片)。可见数学与生活有着密切的联系,下面我们以“植树问题”为例来研究与间隔有关的数学问题。(板书课题:植树问题)

二、探究规律

实现目标

1、获取数学信息理解题意

师:同学们,植树不仅可以美化环境,还可以净化空气,下面是我们昆吾小学植树节那天开展的植树活动。(幻灯片)出示例题:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、师:读一读,在题中你读到哪些信息?谁来说一说? 生:„„

师:谁还有不懂得地方

生:一旁栽,两端都要栽是什么意思?

师:谁来帮XXX解释一下,并用你手中的学具(直尺)到前面演示。生:„„

师:你们明白了,老师还有不明白的地方,每个5米栽一棵是什么意思?谁来帮老师解释一下? 生:„„

师强调:每隔5米栽一棵也就是每相邻两棵树之间的距离是5米,每相邻两棵树之间的距离在数学上也有一个名字叫“间隔长度”(板书:间隔长度)

师:同学们猜一猜一共需要准备多少棵树苗? 生1:„„ 生2:„„

2、课件演示 验证猜想

师:同学们,4棵树苗,5棵树苗是我们的猜想,要想知道我们的猜想对不对,应该怎么办? 生:„„

师:下面咱们在小路上亲自栽一栽。(幻灯片演示,边演示,边解释边提问题)

师:这是在20米长的小路上栽树,如果在100米、200米、500米、1000米的小路上亲自栽,这样做很复杂。平时,我们分析问题常常借助什么理解题意? 生:„„

师:今天我们也借助画线段图的方法来分析题意。(幻灯片演示)画一条20厘米长的线段表示20米长的小路,一条小竖线表示一棵小树,5厘米表示5米的间隔长度。从线段的一端开始画,每隔5厘米画一条小竖线,以此画下去,线段的另一端画一条小竖线。师:同学们,仔细观察线段图,有几个间隔?栽了几棵树? 生:„„

3、小组合作 得出结论

师:以小组为单位,用画线段图的方法来研究不同路上数的棵树与间隔数之间的关系。小组合作要求:

1、第一小组研究在10米的路长上栽树; 第二小组研究在15米的路长上栽树; 第三小组研究在25米的路长上栽树;

第四小组研究在30米的路长上栽树。(间隔长度都是5米)

2、用画线段图的方法来探究棵数与间隔数之间的规律,将有关数据填写在你手中的《植树问题研究报告表》中。学生小组合作,教师巡视,并指导学生 小组代表汇报,填写《植树问题研究报告表》

师:观察表格,①你认为间隔数怎么求?你认为棵树与间隔数有什么关系?

生:„„

板书: 间隔数=全长÷间隔长度

棵树=间隔数+1 师:为什么还要加1呢?这个1表示什么? 生:„„

师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?(板书:植树问题(两端都栽))

三、应用规律

检测目标 活学活用:

同学们在全长100米的小路一边植树。每隔5米栽一棵(两端都栽)。一共需要多少棵树苗? 生:生做题

师:你是怎么想的呢? 生:„„.老师:说得很好,看来大家已经理解了在两端都栽的情况下棵数与间隔数之间的关系

1、填一填

1.排列在同一条直线上的16棵树之间有()个间隔。2.从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。3.河边的护栏有8根铁链,需要()跟柱子。4.王老师家在6楼,她从1楼到6楼要爬()层楼。5.一根木头长8米,每2米锯一段,一共要锯()次。6.23路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有()个车站。

2、课件出示习题(安装路灯)

工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?(1)师:这里有植树问题吗?什么相当于两棵树之间的距离? 师:你能解决这些问题吗?

(2)学生独立思考,写出解题步骤(3)多媒体出示解题过程

四、课堂小结

今天,我们一起探讨学习了植树问题中两端都要栽的情况,谈谈你有哪些收获? 假如只栽一端或两端都不栽,那又会是什么情形呢?下节课我们继续进行探究。

五、板书设计

植树问题(两端都栽)

间隔数=全长÷间隔长度

棵树=间隔数+1

第四篇:两端都栽的植树问题教学设计

《植树问题》教学设计

教学内容:

人教版《义务教育课程标准实验教材》四年级下册《植树问题》,117页例

1、及做一做,练习二十第1,2,5题。

教学设想:

(一)教材简析

四年级下册第八单元的《数学广角》主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单视实际问题。

解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔)和植树的棵数之间的关系就不同。例1是探讨关于一条路线的植树问题并且两端都要栽树的情况,让学生先通过划线段图来发现栽树的棵数和间隔数之间的关系,再用发现的规律解决实际问题。教学中通过生活中的事例,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用,同时培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,初步培养学生抽取数学模型的能力。

(二)教学设计思路

新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”首先通过课前活动来调动学生的积极性,利用孩子们自己的双手五指间的空格引出“间隔”,并举例说出生活中的“间隔”到处可见,从而引出课题。其次,揭示本节课的学习目标,使学生明确学习目的。最后,教学过程利用多媒体课件创设情境,结合新课标的要求,力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学目标:

1、在摆一摆、画一画、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

2、在小组合作、交流中,进一步理解间隔数与棵数之间规律,并解决简单的植树问题。

3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题。

教学难点:让学生发现植树的棵数和间隔数之间的关系。理解“间隔数+1=棵数,棵数-1=间隔数”

教学过程

一、初步感知间隔的含义

1、每位同学都有一双灵巧的小手,请举起你的右手,将五指并拢,再张开,数一数,(张开后)五指之间有几个空格?(4个)

师:在数学上,我们把这个空格叫“间隔”。间隔的个数就叫间隔数。

板书:间隔

间隔数

也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?(师提醒学生完整表述:5个手指之间有4个间隔)

还可以继续追问4个手指之间有几个间隔?3个手指之间有几个间隔?••••••?

2、举例说出生活中的“间隔”。

师:生活中的“间隔”到处可见,你能举几个例子吗?(课件出示图片)生...........3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,假如把我们的一个手指看成一棵小树,那树与树之间的距离,用数学的语言来说就叫间距。板书:间距 比如说:每隔5米植树一棵,这5米指的就是间距。

想一想: 5棵小树之间有几个间隔(4个),6棵呢(5个)?7棵呢(6个)••••••?

4、引入课题 同学们刚才我们了解的5棵小树、6棵小树间、7棵小树间分别有几个间隔等;数学中统称为植树问题。(板书)师:我们先来看本节课的学习目标(课件出示)

二、经历探究,发现规律

师:刚才我们通过观察手指已经理解间隔、间隔数、间距的含义。接下来我们将要完成第2个和第3个学习目标,请同学们一起来读一读第2个和第3个学习目标。这两个学习目标我们将采取自主探究的方式解决,首先来看一道例题

请看大屏幕。(课件呈现图)

1、情境提问,猜测结果

师出示完整问题:学校要在长100米的球场一边植树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

师: 看例题1,读一读,在题中你读到哪些数学信息?谁来说一说?

师:全长100米 表示什么? 每隔5米栽一棵表示什么意思?什么是两端都要栽? 师:在黑板上贴图

两端都要种 师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

那一共需要多少棵树苗,你会列式计算吗?学生独立完成后,汇报算法。(学情预设:100÷5=20)预设:学生可能大多数会得到20棵。(请一位学生说说理由,允许争论)答案对吗?实践是检验真理的唯一标准。到底谁的猜测正确呢,怎么办?(验证)对,验证是检验真理的最好方法。下面我们就一起想办法来验证一下。

2、小组探究,发现规律。

师:我们用这条线段表示小路,两端要栽,两头都种上树,然后隔5米种一棵,老师隔5米种一棵,再隔5米种一棵,又隔5米种一棵,又再隔5米种一棵……就这样一直种到100米? 师:这种模拟种树的方法,你有什么想法吗?(生:太麻烦了)师:老师也有同感,一棵一棵种到100米,确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究,比如100米的路太长,我们可以先在短距离的路上先种一种。下面我们就要运用这种方法来探究规律

2、摆一摆,简单验证,发现规律

(课件出示)(师:请同学们看自学提示)师:一起来读一读

开始学习吧 依次完成表格。

(1)画一画,填一填。请同学们在作业本上用线段图画一画或用学具摆一摆,然后(2)议一议,说一说。观察表格,你有什么发现,把你的结论在小组内说一说。

(3)小组汇报,引导发现规律。A、教师根据学生汇报,完成表格。

B、师:请同学们仔细观察,看看你有什么发现?栽树的棵数与平均分成的份数或者说是段数、间隔数之间有什么关系?(板书:棵数=间隔数+1)

C、小结:师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。“间隔数+1”=棵数

3、应用规律,解决问题

师:现在我们用研究出的这个规律来验证一下你们刚才的猜测正确吗?

尝试例1:(回到情景1中的题目)学校要在长100米的球场一边植树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

生:100÷5=20(段)20+1=21(棵)

师:同学们,你们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的植树问题。孩子们,下面就让我们来一展身手吧!

三、应用规律

检测目标

1、师:先来看(课件出示填空题)想好了吗?出示你的手指告诉老师答案

师:你是怎么想的呢?(思考:什么相当于植树的棵数?)生:楼层相当于植树的棵数

护拦相当于植树的棵数

师:说得很好,看来大家已经理解了在两端都栽的情况下,棵数与间隔数之间的关系

2、老师要考考你了(课件出示选择题)

3、完成课本第118页上面“做一做”。独立完成后交流反馈。

4、师:本节课即将结束(出示学习目标)你们完成任务了吗?学到哪些知识呢?

四、总结设疑

拓展目标

师:祝贺同学们,运用我们的智慧发现了植树问题中两端都栽的规律,还学习了一种研究问题的方法,那就是遇到复杂的问题先想什么呢?简单的,植树中的学问还有很多,比如在两座建筑物之间植树,棵数与间隔数之间又会藏着什么秘密呢?这将是我们下节课要学习的内容,有兴趣的同学可以下课后查找资料,先去研究研究。

第五篇:《植树问---两端都栽》教学反思

《植树问题-----两端都栽》教学反思

杨红梅

《两端都栽的植树问题》是新人教版教科书五年级上册第七单元“数学广角”中的第一课时的教学内容,这节课需要掌握的知识点多,而且比较抽象,不易理解。因此在课的设计中,我遵循学生的认知水平和心理特点,亲自让学生说一说、摆一摆、议一议,从中悟出其数学思想。

一、比较好的几方面:

1、创设浅显易懂的生活原型,让数学走近生活。课的开始时,我通过让学生猜谜语,引出手,并以手为素材,引入植树问题的学习。使学生清晰地看出手指的个数与间隔数之间是相差1的。为后面的学习作了铺垫,同时也激起了学生的学习兴趣。

2、注重学生的自主探索,体验植树问题的本质。体验是学生从旧知识向隐含的新知识迁移的过程。在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生大胆地猜测需要几棵树苗?有的学生说需要4棵,有的说需要5棵,从而引发矛盾。再通过让学生亲自模拟栽树栽一栽,老师再演示,答案自然而然的揭晓了。然后以例题展开,让学生动脑、动手反复验证,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律:间隔数+1=棵数。通过例题感知间隔,以生活中植树问题的应用为探讨对象,了解植树问题实质,突破本节课的重难点。

3、多角度的应用练习巩固,拓展学生对植树问题的认识。直接应用模型解决简单的实际问题。推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如,公共汽车的车站事件,学生做操的事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。

二、不足之处:

1、这节课需要掌握的概念多,而且比较抽象,不易理解,离学生的生活比较远。但我引导得不是太到位,没有让学生真正的从本质去理解,流于形式。

2、本节课在“动手验证规律”这一环节耽误时间较长,掌控课堂的能力有待加强!

3、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X 间隔长”等等知识的扩散。

三、今后改进方面:

1、由于这节课充分展示多媒体对教学的辅助作用,所以容量比较大,有个别学生吃不透,对教材的梳理上还要学会取舍,照顾好中差生。

2、教师对课堂的生成问题处理还不够灵活。

3、对学生的评价这块还显得能力不足。

4、普通话也有待提高。

评语:

反思内容紧扣教学内容,对教学收获总结全面,对失误之处分析准确,认真有效的整理改进措施。经数学组全体教师评议,推荐该反思为优秀反思。

下载《在一条线段上植树(两端都栽)》教学设计(大全)word格式文档
下载《在一条线段上植树(两端都栽)》教学设计(大全).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《植树问题(两端都栽)》教案

    人教版小学数学五年级上册 《植树问题(两端都栽)》 教师:张景超 1 / 8 植树问题(两端都栽) 教学目标: 1.通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题......

    《数学广角—植树问题(两端都栽)》教学设计

    《数学广角—植树问题(两端都栽)》教学设计 汪 顺 银 【教学内容】(人教版) 《义务教育课程标准实验教科书 数学(五年级上册)》第106页内容 【教学目标】 1、让学生经历从实际......

    “两端都栽的植树问题”教学设计及反思

    “两端都栽的植树问题”教学设计及反思 教学内容:人教版数学四年级下册第117页、118页。教学重点:理解棵数与间隔数之间的关系。 教学难点:应用植树问题(两端都栽)的数学模型灵......

    《植树问题(两端都栽)》参考教案(精选5篇)

    《植树问题(两端都栽)》参考教案 教学目标: 1.通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。 2.培养学......

    五年级数学上册两端都栽的植树问题教学设计

    五年级数学上册两端都栽的植树问题教学设计教学目标1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。2.利用线段图理解“点数=间隔数+1”、“总长=间隔数......

    两端都不栽的植树问题教学设计

    《两端都不栽的植树问题》教学设计 教学内容:人教版小学数学教材五年级上册第107页例2及相关内容。 教学目标: 1.建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数-1......

    线段的垂直平分线(一)教学设计

    第一章三角形的证明 3.线段的垂直平分线(一) 一、学生知识状况分析 学生对于掌握定理以及定理的证明并不存在多大得困难,这是因为在七年级学习《生活中的轴对称》中学生已经有......

    植树问题(一)教学设计5篇

    《植树问题》教学设计 教师:冯涛 教学目标: 一、知识与技能性: 1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。 了解同一直线上植树......