[初中数学]二次函数的应用教案10 苏科版(最终版)

时间:2019-05-12 17:49:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《[初中数学]二次函数的应用教案10 苏科版(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《[初中数学]二次函数的应用教案10 苏科版(最终版)》。

第一篇:[初中数学]二次函数的应用教案10 苏科版(最终版)

34.4二次函数的应用(第一课时)导学目标: 知识与技能:

1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根. 2.会利用二次函数的图象求一元二次方程的近似解. 过程与方法:

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 情感态度价值观:

通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.

导学难点:

1.方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解. 2.二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

教学课时: 1课时 教具学具准备:多媒体

导学过程:

一. 激趣导入:(1分钟)

上节课我们重点研究了不同形式的二次函数的图象与性质,.本节课我们继续来回顾利用二次函数的图象来求一元二次方程的根或近似根。二. 出示目标:(1分钟)1.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,能述何时方程有两个不等的实根、两个相等的实数和没有实根. 2.会利用二次函数的图象求一元二次方程的近似解. 三.自学指导/ 自主学习:(8分钟)

1.在练习本上认真完成课本19页“做一做”。2.回答“大家谈谈”里的两个问题。

3.思考:二次函数y = ax2+bx+c的图像与x轴相交,那么交点的横坐标与一元二次方程ax2+bx+c=0的根的关系.

四.当堂检测1(6分钟)

1.一般地,如果二次函数y = ax2+bx+c的图像与x轴相交,那么____就是一元二次方程ax2+bx+c=0的根.

2.二次函数(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1的图象如下图所示.

(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?(2)方程x2+x-2=0的根是 ____(3)方程x2-6x+9=0的根是____(4)方程x2-x+1=0的根是____

3.二次函数y = ax2+bx+c的图象与x轴有两个公共点时,方程ax2+bx+c=0有____实数根;二次函数y = ax2+bx+c的图象与x轴有一个公共点时,方程ax2+bx+c=0有____实数根; 二次函数y = ax2+bx+c的图象与x轴没有公共点时,方程ax2+bx+c=0____实数根

五.自学指导2/自主学习(56分钟)1.认真阅读课本19页“一起探究” 2.总结;求一元二次方程近似解的步骤。3.知道如何验证方程的近似解。

(不能独立完成的在组内交流)六.当堂检测2(6分钟)课本20页练习七,质疑解惑(3分钟)

学生对之前自主学习及练习当中的疑惑提出,尽可能由学生来解答,解答不了的师进行点拨。

八,归纳提升(4分钟)

1.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。对应的判别式:小于0,等于0,大于0.2.用二次函数的图象估计一元二次方程:ax2+bx+c=0的根,主要步骤为:(1)准确画出yax2bxc(a0)的图象,其中要先确定抛物线的顶点,再在顶点两侧取相对称的点(至少描五点来连线;(2)确定抛物线与x轴的交点在一哪两个数之间;(3)列表格,在第(2)步中确定的两个数之间取值,进行估计,通常只精确到十分位即可

九.当堂清:(10分钟)

1画出二次函数y=x2-5x+5的图像,则方程x2-5x+5=0的两个解,一个在____之间,另一个在____之间。

2.抛物线y=mx2+3x-4和x轴有两个不同的交点,则m的取值是 ____。

3.课本20页习题1.十,作业:

课本20页习题2;29页习题5.十一,课后记:

第二篇:初中数学复习二次函数

1、已知二次函数y=﹣x2+bx+c的图象过点A(3,0),C(﹣1,0).

(1)求二次函数的解析式;

(2)如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;

(3)在第一象限内的抛物线上有一点Q,当△QAB的面积最大时,求点Q的坐标.

2、如图,直线y=-33x+3分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+3经过A、B两点.

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)点M是直线BC上方抛物线上的一点,过点M从作MH⊥BC于点H,作轴MD∥y轴交BC于点D,求△DMH周长的最大值.

3、如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且0A=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)

求抛物线的解析式;

(2)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标;

(3)

是否存在点P,使得△ACP是以AC为直角边的直角三角形?

若存在,求出所有符合条件的点P的坐标;

若不存在,说明理由

4、如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,点C是抛物线与y轴的交点.

(1)求抛物线的解析式和顶点坐标;

(2)当0<x<3时,求y的取值范围;

(3)在抛物线的对称轴上是否存在点M,使△BCM是等腰三角形?若存在请直接写出点M坐标,若不存在请说明理由.

5、如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.

(1)求抛物线的函数表达式;

(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;.

6、如图,已知抛物线经过点A(-1,0),B(4,0)C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线交抛物线于点Q,交直线BD于点M.

(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?

7、如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,点E的坐标分别为(0,1),对称轴交BE于点F.

(1)求该抛物线的表达式;

(2)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

8、如图,一次函数y=-1/2X+2分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.

(1)求这个抛物线的解析式;

(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?

(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐

9、如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;

(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

10、如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.

(1)求抛物线的解析式;

(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.

11、如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;

(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

第三篇:二次函数的应用教案

30.4二次函数应用(第一课时)

教学目标

通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解最值问题。过

通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。情感、态度与价值观

通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。

教学重点:利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求面积最值问题

教学难点:(1)正确构建数学模型

(2)对函数图象顶点、端点与最值关系的理解与应用

一、复习引入

1、二次函数y=ax2+bx+c(a≠0)图象的顶点坐标、对称轴和最值。

2、(1)求函数y=x2+2x-3的最值。

(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)

3、抛物线在何位置取最值?

二、新课讲授

1、讲解例题教师提出问题,引导学生观察思考,学生独立研究解决方案、展示

师生共同分析解决问题,引导学生讨论、交流、归纳,深入参与讨论,重点关注是否准确建立函数关系及讨论自变量取值范围 汇报、展示

师生共同小结并反思,加深理解

2、归纳总结复习提问让学生回忆二次函数图象、顶点与最值,求最值方法;实际问题中,提醒学生注意求解函数问题不能离开自变量取值范围这个条件的制约才有意义,做完练习后及时让学生总结出了取最值的点的位置往往在顶点和两个端点之间选择,为学习新课做好知识铺垫。

例题及练习的设计是寻找了学生熟悉的家门口的生活背景,从学生身边较熟悉的事情

入手,让学生初步体会数学不能脱离生活实际,加深对知识的理解,做到数与形的完美结合,从而提炼出解题方法。让学生对自变量的意义有更深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。

小结过程中让学生体会到数学思想与方法。

三、练习

四、小结、作业

第四篇:6.4二次函数应用教案

课 题: §6.3二次函数的应用(2)教学目标:

1.能根据揭示实际问题中数量变化关系的图象特征,用相关的二次函数知识解决实际问题; 2.会用二次函数的相关知识解决现实生活中一些有关抛物线的问题

教学重点:运用二次函数的相关知识解决现实生活中一些有关抛物线的问题 教学难点:揭示实际问题中数量变化关系的图象特征 教学程序设计:

一、情境创设

打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度y(单位:米)与飞行距离x(单位:百米)满足二次函数:y=-5x2+20x.(1)这个球飞行的水平距离最远是多少米?(2)这个球飞行的最大高度是多少米?

y(米)30 20 10 师生活动设计:师:出示问题,让学生思考后尝试解答

生:思考并尝试解答情境中的两个问题

设计意图:该情境属于简单、常见的问题,根据已有的知识立刻可以知道该如何去做,从而为本节课做一个很好的铺垫,也符合学生的认知规律

二、探索活动 活动:

(1)如何求这个球飞行时最远的水平距离?

(2)如何求出飞行路线与x轴的两个交点坐标呢?(3)如何求这个球飞行的最大高度?(4)如何求出抛物线的顶点坐标?

师生活动设计:生1:求这个球飞行时最远的水平距离就是求落地点与原点的距离,因此只要求出飞行路线与x轴的两个交点坐标.生2:只要令y=0,求出相应x的值,就可求出飞行路线与x轴的两个交点坐标.生3:只要求出抛物线的顶点坐标.生4:把解析式配成顶点式或利用顶点公式.师:根据学生的回答依次板演解答过程.设计意图:通过活动的引导,让学生理解解决二次函数图象问题时,数形结合是重要的方法,而在解决问题的过程中,求抛物线上某点的坐标是关键

三、例题教学 O 1 2 3 4

例1:某喷灌设备的喷头B高出地面1.2m,如果喷出的抛物线形水流的水平距离x(m)与高度y(m)之间的关系为二次函数y=a(x-4)2+2.求水流落地点D与喷头底部A的距离(精确到0.1m)

B O(A)D

答案:

∵水流抛物线对应的二次函数为y=a(x-4)2+2,且该抛物线经过点B(0,1.2)∴把x=0、y=1.2代入y=a(x-4)2+2,得1.2=a(0-4)2+2,解得a=-0.05 ∴y=-0.05(x-4)2+2,把y=0代入y=-0.05(x-4)2+2,得-0.05(x-4)2+2=0,解得x1≈-2.3(舍去),x2≈10.3 答:水流落地点D与喷头底部A的距离约为10.3m.例2:如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.

y 0.5米 2.5米 O 2米 1米 x 师生活动设计师:出示例1 生:先思考尝试解答.师:请学生回答并说出解答过程,教师根据学生的回答板书 师:出示例2 生:独立思考后小组交流.师:请同学谈谈自己的做法,然后师生共同总结.设计意图:例1与例2是两个基本的二次函数的图象问题.例1相对简单,关键是确定二次函数的解析式,并求出二次函数的图象上某点的坐标去解决;而例2有所深化,要综合分析题意后思考解决.四、课堂小结

本节课学到了什么?

本节课主要探索由“形(函数图象)”到“数(函数关系式)”的实际问题,如喷泉、喷灌等喷出的抛物线形水流及体育运动中一些呈抛物线状的运动轨迹等.确定这些“隐性”函数图象对应的函数关系式,并进行有效调控,可以使有关实际问题获得理想的解决.师生活动设计:生:总结本节课的内容,并发言,其它学生补充。师:在学生完成小结后给出完善的小结。

设计意图:帮助学生深化知识理解,完善认知结构,领悟思想方法,强化情感体验,提高学生元认知的能力

五、当堂反馈(见导学案当堂反馈)

师生活动设计:独立思考并完成。

设计意图:通过当堂反馈,巩固和复习本节课的内容。

六、课后作业(见导学案课后作业)

设计意图:既照顾全体,又关注个别,真正体现全面关注所有学生的发展,并巩固学生所学习的知识.七、教学反思

第五篇:试讲教案初中数学二次函数方程

试讲教案(数学)

人教版初中数学教案

26.1 二次函数(1)教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果写在下表的空格中

2.x的值是否可以任意取?有限定范围吗? 3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答: 1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=x(20-2x)(0 <x <10=化为: y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D(0≤x≤2)……………………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大 2.二次函数定义:形如y=ax2+bx+c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1(3)y=2x3-3x2(4)y=5x4-3x+1 2.P3练习第1,2题。

五、小结 1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式

下载[初中数学]二次函数的应用教案10 苏科版(最终版)word格式文档
下载[初中数学]二次函数的应用教案10 苏科版(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学二次函数专题复习教案解读

    初中数学二次函数复习专题 〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗 1. 理解二次函数的概念; 2. 会把二次函数的一般式化为顶点式,确定图象的顶点......

    二次函数教学设计 —— 初中数学第五册教案

    马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维......

    《二次函数 》教案

    命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握......

    二次函数教案

    二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模......

    9.3反比例函数的应用1教案 苏科版

    课题:9.3反比例函数的应用 课型:新授 备课时间 上课时间 教学目标: 1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题 2、能根据实际问题中的条件确定反比例函......

    “苏教版”初中数学二次函数教学策略分析

    “苏教版”初中数学二次函数教学策略分析 摘 要:二次函数是初中数学教学的重要内容,它不仅关系到相关数学知识的整体应用,而且可以解决实际生活中的很多问题,是理论性和实践性都......

    九年级数学下二次函数教案

    教学课题:二次函数(1) 教案背景 这节课是在学完正、反比例、一次函数,认识了一元二次方程之后的二次函数的第一节课。本章内容,既是对之前所学函数知识的一个补充,对函数知识系统......

    初三数学复习教案(二次函数)

    用人要看他的忠诚度和可靠程度、归依企业的程度,希望能够跟企业结合一起的意向有多少,如果这三样东西都是对的,我们企业会给他非常大的机会去发展。 初三复习教案 教学内容:二次......